A low-rank approach to the solution of weak constraint variational data assimilation problems.

Introduction

Data assimilation is a way of combining observations with a numerical model, to create a better estimate of the true state.
We propose an approach for implementing the weak four-dimensional variational data assimilation method with a low-rank solution in order to achieve a reduction in storage space. We have

- A state $x_{k} \in \mathbb{R}^{n}$ at time t_{k}, with $x_{k+1}=\mathcal{M}_{k}\left(x_{k}\right)+\eta_{k}$.
- A background estimate x^{b} of the truth x_{0}^{*} with $x_{0}^{*}=x^{b}+e_{0}$
- Observations $y_{k}=\mathcal{H}_{k}\left(x_{k}^{*}\right)+\epsilon_{k} \in \mathbb{R}^{p_{k}}$
\mathcal{M}_{k} and \mathcal{H}_{k} are (potentially non-linear) model and observation operators. We assume the errors $\eta_{k}, e_{0}, \epsilon_{k}$ are Gaussian with zero mean and covariances Q_{k}, B and R_{k} respectively. Weak four dimensional variational data assimilation (Weak 4D-Var) minimises the cost function

$$
\begin{aligned}
J(x) & =\left\|x_{0}-x_{0}^{b}\right\|_{B^{-1}}^{2}+\sum_{k=0}^{N}\left\|y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right\|_{R_{k}^{-1}}^{2} \\
& +\sum_{k=1}^{N}\left\|x_{k}-\mathcal{M}_{k}\left(x_{k-1}\right)\right\|_{Q_{k}^{-1}}^{2},
\end{aligned}
$$

which is a weighted least squares to the background, observations, and the model trajectory.

Incremental 4D-Var

Incremental 4D-Var is a form of Gauss-Newton iteration. The 4D-Var cost function is approximated by a quadratic function of an increment

$$
\delta x^{(\ell)}=\left[\left(\delta x_{0}^{(\ell)}\right)^{T},\left(\delta x_{1}^{(\ell)}\right)^{T}, \ldots,\left(\delta x_{N}^{(\ell)}\right)^{T}\right]^{T}
$$

with $\delta x^{(\ell)}=x^{(\ell+1)}-x^{(\ell)}$, and iterate (ℓ).
At the minimum we have
$\nabla \tilde{J}(\delta x)=L^{T} D^{-1}(L \delta x-b)+\mathrm{H}^{T} \mathrm{R}^{-1}(\mathrm{H} \delta x-d)=0$.
Taking $M_{k} \in \mathbb{R}^{n \times n}$ and $H_{k} \in \mathbb{R}^{n \times p_{k}}$, as the linearisations of \mathcal{M}_{k} and \mathcal{H}_{k} about $x^{(\ell)}$, we let
$L=\operatorname{tridiag}\left(\left[-M_{1}, \cdots,-M_{N}\right], I, 0\right)$,
$D=\operatorname{diag}\left(B, Q_{1}, \cdots, Q_{N}\right)$,
$\mathrm{R}=\operatorname{diag}\left(R_{0}, \cdots, R_{N}\right), \mathrm{H}=\operatorname{diag}\left(H_{0}, \cdots, H_{N}\right)$
$b=\left[b_{0}^{T}, c_{1}^{T}, \cdots, c_{N}^{T}\right]^{T}, \quad d=\left[d_{0}^{T}, d_{1}^{T}, \cdots, d_{N}^{T}\right]^{T}$ where

$$
\begin{aligned}
& b_{0}^{(\ell)}=x_{0}^{b}-x_{0}^{(\ell)}, \quad c_{k}^{(\ell)}=\mathcal{M}_{k}\left(x_{k-1}^{(\ell)}\right)-x_{k}^{(\ell)} \\
& d_{k}^{(\ell)}=y_{k}-\mathcal{H}_{k}\left(x_{k}^{(\ell)}\right)
\end{aligned}
$$

Saddle point formulation

Let $\lambda=D^{-1}(b-L \delta x)$ and $\mu=\mathrm{R}^{-1}(d-\mathrm{H} \delta x)$, at the minimum we have

$$
\begin{equation*}
\nabla \tilde{J}=L^{T} \lambda+\mathrm{H}^{T} \mu=0 \tag{1}
\end{equation*}
$$

Additionally, we have

$$
\begin{align*}
& D \lambda+L \delta x=b \tag{2}\\
& \mathrm{R} \mu+\mathrm{H} \delta x=d \tag{3}
\end{align*}
$$

and $(1),(2)$ and (3) can be combined to give:

$$
\left[\begin{array}{ccc}
D & 0 & L \\
0 & \mathrm{R} & \mathrm{H} \\
L^{T} & \mathrm{H}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right]
$$

which is solved for δx.

Kronecker formulation

We may rewrite the saddle point matrix as
$\left[\begin{array}{ccc}E_{1} \otimes B+E_{2} \otimes Q & 0 & I \otimes I_{n}+C \otimes M \\ 0 & I \otimes R & I \otimes H \\ I \otimes I_{n}+C^{T} \otimes M^{T} & I \otimes H^{T} & 0\end{array}\right]$
where we make the additional assumptions that $Q_{k}=Q, R_{k}=R, H_{k}=H, M_{k}=M$ and the number of observations $p_{k}=p$ for each k. Here $C=\operatorname{tridiag}(-1,0,0)$,

$$
E_{1}=\left[\begin{array}{cccc}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right], \text { and } E_{2}=\left[\begin{array}{ll}
0 & \\
& 1 \\
&
\end{array}\right.
$$

The matrices $C, E_{1}, E_{2}, I \in \mathbb{R}^{N+1 \times N+1}$, whilst $B, Q, M, I_{n} \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{p \times n}$, and $R \in \mathbb{R}^{p \times p}$.

Simultaneous Matrix Equations

Using the identity $\left(\mathcal{B}^{T} \otimes \mathcal{A}\right) \operatorname{vec}(\mathcal{C})=\operatorname{vec}(\mathcal{A C B})$ we obtain the simultaneous matrix equations:

$$
\begin{aligned}
B \Lambda E_{1}+Q \Lambda E_{2}+X+M X C^{T} & =\mathfrak{b} \\
R U+H X & =d \\
\Lambda+M^{T} \Lambda C+H^{T} U & =0
\end{aligned}
$$

where $\lambda, \delta x, b, \mu$ and d are vectorised forms of the matrices $\Lambda, X, \mathfrak{b} \in \mathbb{R}^{n \times N+1}$ and $U, \mathbb{d} \in \mathbb{R}^{p \times N+1}$ respectively. Let us now suppose the matrices Λ, U, X have low-rank representations,
$\Lambda=W_{\Lambda} V_{\Lambda}^{T}, \quad U=W_{U} V_{U}^{T}, \quad X=W_{X} V_{X}^{T}$

Low-Rank GMRES

We use GMRES despite the symmetric matrix to experiment with constraint preconditioners. To implement a low-rank version of GMRES, we need:

Vector addition

Vectors in GMRES become vectorised matrices, so $X_{k 1}=\left[\begin{array}{ll}Y_{k 1}, & Z_{k 1}\end{array}\right], \quad X_{k 2}=\left[\begin{array}{ll}Y_{k 2}, & Z_{k 2}\end{array}\right]$ for $k=1,2,3$ gives addition, and $x=y+z$ is
$\operatorname{vec}\left(\left[\begin{array}{c}X_{11} X_{12}^{T} \\ X_{21} X_{22}^{T} \\ X_{31} X_{32}^{T}\end{array}\right]\right)=\operatorname{vec}\left(\left[\begin{array}{c}Y_{11} Y_{12}^{T}+Z_{11} Z_{12}^{T} \\ Y_{21} Y_{22}^{T}+Z_{21} Z_{22}^{T} \\ Y_{31} Y_{32}^{T}+Z_{31} Z_{32}^{T}\end{array}\right]\right)$
Matrix vector products come from the simultaneous matrix equations, giving $\hat{X}_{i j}$ after multiplication by the saddle point matrix

$$
\begin{aligned}
\hat{X}_{11} & =\left[B X_{11}, Q X_{11}, X_{31}, M X_{31}\right] \\
\hat{X}_{12} & =\left[E_{1} X_{12}, E_{2} X_{12}, X_{32}, C X_{32}\right] \\
\hat{X}_{21} & =\left[R X_{21}, H X_{31}\right], \\
\hat{X}_{22} & =\left[X_{22}, X_{32}\right], \\
\hat{X}_{31} & =\left[X_{11}, M^{T} X_{11}, H^{T} X_{21}\right], \\
\hat{X}_{32} & =\left[X_{12}, C^{T} X_{12}, X_{22}\right] .
\end{aligned}
$$

Inner products

$$
\begin{aligned}
\left\langle w, v^{(i)}\right\rangle= & \operatorname{trace}\left(W_{11}^{T} V_{11}^{(i)}\left(V_{12}^{(i)}\right)^{T} W_{12}\right) \\
& +\operatorname{trace}\left(W_{21}^{T} V_{21}^{(i)}\left(V_{22}^{(i)}\right)^{T} W_{22}\right) \\
& +\operatorname{trace}\left(W_{31}^{T} V_{31}^{(i)}\left(V_{32}^{(i)}\right)^{T} W_{32}\right)
\end{aligned}
$$

Truncating after concatenation steps, we obtain a low-rank implementation of GMRES

Numerical experiments with 1D advection-diffusion

We consider the 1D advection-diffusion system, with a discretisation of $n=100$, and $N+1=$ 200 assimilation steps. We take partial, noisy observations in all 200 timesteps with $p=20$, and observations at every fifth component. The covariances are $B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{100}$, $R=0.01 I_{20}$, leading to a saddle point system of size 44,000 .
We compare the root mean squared error (RMSE) of our low-rank implementation, the full-rank case (solving the saddle point system using backslash), and the background estimate with no assimilation.

Figure 1: RMSE for 1D A-D problem with partial, noisy observations, $(r=20)$ on left, $(r=5)$ on right. We see the low-rank approach achieves similar results to the full-rank case, and importantly significantly better than performing no assimilation on our initial guess.
These low-rank solutions result in storage reductions of 70 and 92.5% respectively, requiring 6,000 or 1,500 entries as opposed to 20,000 .

Conclusions

Weak constraint 4D-Var is a very large optimisation problem, however we have shown that under certain assumptions, low-rank solutions exist. Experimentally this appears to be the case under relaxed assumptions also. We have also found that preconditioning may not be necessary, with the low-rank approach acting like a regularisation. For more information and references, please see:
[1] M. A. Freitag and D. L. H. Green. A low-rank approach to the solution of weak constraint variational data
assimilation problems. ArXiv e-prints, 1702.07278

