On approximating the Gramian

Christian Bertram, TU Braunschweig, Germany Heike Faßbbender, TU Braunschweig, Germany

The controllability Gramian of a stable LTI system is defined as $\mathcal{P}=\int_{0}^{\infty} e^{A t} B B^{\top} e^{A t} \mathrm{~d} t$. It can be characterized as the solution of the Lyapunov equation $A \mathcal{P}+\mathcal{P} A^{\top}+B B^{\top}=0$. We will show that solving the Lyapunov equation with the ADI method is equivalent to a particular integral approximation.

Approximating the Gramian via quadrature

The Gramian \mathcal{P} is approximated via the midpoint rectangle method. With $h(t):=e^{A t} B$ this results in

$$
\begin{aligned}
\mathcal{P} & \approx \sum_{i=1}^{N} \int_{t_{i-1}}^{t_{i}} h(t) h(t)^{\top} \mathrm{d} t \approx \sum_{i=1}^{N} \omega_{i} h\left(\frac{t_{i-1}+t_{i}}{2}\right) h\left(\frac{t_{i-1}+t_{i}}{2}\right)^{\top} \\
& \approx\left[h_{1}, \ldots, h_{N}\right] \operatorname{diag}\left(\omega_{1}, \ldots, \omega_{N}\right)\left[h_{1}, \ldots, h_{N}\right]^{\top}
\end{aligned}
$$

with $t_{0}=0$ and quadrature weights $\omega_{i}=t_{i}-t_{i-1}$. To obtain the approximation $h_{j} \approx h\left(\frac{t_{j-1}+t_{j}}{2}\right), j=1, \ldots, N$, the ODE $\dot{x}=A x$, $x(0)=B$ is solved with $j-1$ steps of the trapezoidal rule with step sizes $\omega_{1}, \ldots, \omega_{j-1}$, followed by one backward Euler step with step size $\frac{1}{2} \omega_{j}$:

$$
\begin{aligned}
x_{0} & =B \\
x_{i} & =x_{i-1}+\frac{\omega_{i}}{2}\left(A x_{i-1}+A x_{i}\right) \\
& =\left(I-\frac{\omega_{i}}{2} A\right)^{-1}\left(I+\frac{\omega_{i}}{2} A\right) x_{i-1} \\
& =-\underbrace{\left(A+\frac{2}{\omega_{i}} I\right)}_{=: T_{i}} \underbrace{\left(A-\frac{2}{\omega_{i}} I\right)^{-1}}_{=: S_{i}} x_{i-1} .
\end{aligned}
$$

With one final backward Euler step this leads to

$$
h_{j}=\underbrace{\left(I-\frac{\omega_{j}}{2}\right)^{-1}}_{=: R_{j}} x_{j-1}=(-1)^{j-1} R_{j} T_{j-1} S_{j-1} \cdots T_{1} S_{1} B
$$

Approximating the Gramian via CF-ADI

In the Cholesky factor ADI method [1] the solution of the Lyapunov equation is approximated by the low-rank factorization

$$
\mathcal{P} \approx\left[z_{1}, z_{2}, \ldots, z_{N}\right]\left[z_{1}, z_{2}, \ldots, z_{N}\right]^{\top}
$$

With the so called ADI parameters $p_{1}, \ldots, p_{N} \in \mathbb{C}^{-}$the CF-ADI iteration is defined as follows:

$$
\begin{aligned}
& z_{1}=\sqrt{-2 p_{1}}\left(A+p_{1} I\right)^{-1} B \\
& z_{i}=\frac{\sqrt{-2 p_{i}}}{\sqrt{-2 p_{i-1}}} \underbrace{\left(A+p_{i} I\right)^{-1}}_{=: \widetilde{S}_{i}} \underbrace{\left(A-p_{i-1} I\right)}_{=: \widetilde{T}_{i}} z_{i-1}
\end{aligned}
$$

After j steps the iteration leads to

$$
\begin{aligned}
z_{j} & =\sqrt{-2 p_{j}}\left(A+p_{j} I\right)^{-1} \widetilde{T}_{j-1} \widetilde{S}_{j-1} \cdots \widetilde{T}_{1} \widetilde{S}_{1} B \\
& =\sqrt{\frac{2}{-p_{j}}} \underbrace{\left(I-\frac{1}{-p_{j}} A\right)^{-1}}_{=: \widetilde{R}_{j}} \widetilde{T}_{j-1} \widetilde{S}_{j-1} \cdots \widetilde{T}_{1} \widetilde{S}_{1} B .
\end{aligned}
$$

It's equivalent

With $p_{i} \in \mathbb{R}^{-}$and the choice

$$
\omega_{i}=\frac{2}{-p_{i}}
$$

the iteration matrices $T_{i}=\widetilde{T}_{i}, S_{i}=\widetilde{S}_{i}$ and $R_{i}=\widetilde{R}_{i}$ coincide. Thus we have

$$
\sqrt{\omega_{j}} h_{j}=(-1)^{j-1} z_{j}
$$

and the approximation to the Gramian \mathcal{P} is the same for both methods.

References

[1] J.-R. Li and J. White, Low Rank Solution of Lyapunov Equations, SIAM Journal on Matrix Analysis and Applications Vol. 24 No. 1, pp. 260-280 (2002) [2] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, sec. 12.4.5, SIAM (2005)

