Unique strong solutions of stochastic differential equations driven by Lévy processes with discontinuous coefficients

Jiayu Zheng

University of Macau, Macau, China

Joint work with Prof. Jie Xiong and Xiaowen Zhou

Durham, July, 2017

< ロ > < 同 > < 回 > < 回 > .

1/43

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

- 2 Weak existence
- 3 Weak uniqueness
- 4 Strong uniqueness

5 Application

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

- 2 Weak existence
- **3 Weak uniqueness**
- 4 Strong uniqueness
- 5 Application

Introduction •ooo	Weak existence	Weak uniqueness	Strong uniqueness	Application
Literature review				

Bass [4] and Komatsu [10] show that the following SDE

$$dX_t = F(X_{t-})dL_t, \quad t \ge 0 \tag{1.1}$$

(ロ) (四) (E) (E) (E) (E)

4/43

admits pathwise uniqueness If $\{L_t\}$ is a symmetric stable process with exponent $\alpha \in (1, 2)$, $|F(x) - F(y)| \le \rho(|x - y|)$ and if $z \to \rho(z)$ satisfying

$$\int_{0+}\frac{1}{\rho(z)^{\alpha}}dz=\infty.$$

Introduction ○●○○	Weak existence	Weak uniqueness	Strong uniqueness	Application
Literature review				

- It is well-known that if the coefficients are assumed to be *Lipschitz continuous*, the pathwise uniqueness can be obtained by *Gronwall's inequality* and the results on continuous-type equations; see e.g. Ikeda and Watanabe [7].
- This condition has been improved by Fu and Li [6]. They proved the pathwise uniqueness for non-negative càdlàg solutions driven by spectrally positive Lévy noises under Lipschitz and *non-Lipschitz conditions*.

Introduction ○●○○	Weak existence	Weak uniqueness	Strong uniqueness	Application
Literature review				

- It is well-known that if the coefficients are assumed to be *Lipschitz continuous*, the pathwise uniqueness can be obtained by *Gronwall's inequality* and the results on continuous-type equations; see e.g. Ikeda and Watanabe [7].
- This condition has been improved by Fu and Li [6]. They proved the pathwise uniqueness for non-negative càdlàg solutions driven by spectrally positive Lévy noises under Lipschitz and *non-Lipschitz conditions*.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Literature review				

Weak uniqueness + Local time \Rightarrow Pathwise uniqueness

Advantages

Get rid of the continuous restriction on coefficients; The Jumps could be both positive and negative jumps.

Let N(ds, du) be the Poisson random measures associated with $\{p_t\}$. In this paper, we will study the solution to the stochastic differential equation (1.2) given below. By a solution of the stochastic equation

$$X_{t} = X_{0} + \int_{0}^{t} b(X_{s-}) ds + \int_{0}^{t} \sigma(X_{s-}) dB_{s} + \int_{0}^{t} \int_{U} g(X_{s-}, u) N(ds, du),$$
(1.2)

•{ B_t }, { p_t } are independent of each other;

• $\sigma(x)$, b(x) and g(x, u) are Borel functions on \mathbb{R} , which have at most countably many discontinuous points.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

2 Weak existence

- 3 Weak uniqueness
- 4 Strong uniqueness
- 5 Application

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Since martingale problem \iff weak existence,

then we just need to prove that

$$M_{t}^{f} = f(X_{t}) - \int_{0}^{t} \left(b(X_{s})f'(X_{s}) + \frac{1}{2}f''(X_{s})\sigma(X_{s})^{2} \right) ds$$

-
$$\int_{0}^{t} \int_{U} \left(f(X_{s} + g(X_{s}, u)) - f(X_{s}) \right) \mu(du) ds \quad (2.1)$$

is a martingale.

(2.a) There is a constant $K \ge 0$ such that

$$b(x)^2 + \sigma(x)^2 + \int_U |g(x, u)| \mu(du) \le K, \quad \forall x \in \mathbb{R};$$

(2.b) There is a constant $\sigma_0 > 0$ such that

$$|\sigma(x)| \ge \sigma_0, \quad \forall x \in \mathbb{R}.$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Since martingale problem \iff weak existence,

then we just need to prove that

$$M_{t}^{f} = f(X_{t}) - \int_{0}^{t} \left(b(X_{s})f'(X_{s}) + \frac{1}{2}f''(X_{s})\sigma(X_{s})^{2} \right) ds$$

-
$$\int_{0}^{t} \int_{U} \left(f(X_{s} + g(X_{s}, u)) - f(X_{s}) \right) \mu(du) ds \quad (2.1)$$

is a martingale.

(2.a) There is a constant $K \ge 0$ such that

$$b(x)^2 + \sigma(x)^2 + \int_U |g(x, u)| \mu(du) \le K, \quad \forall x \in \mathbb{R};$$

(2.b) There is a constant $\sigma_0 > 0$ such that

$$|\sigma(x)| \ge \sigma_0, \quad \forall x \in \mathbb{R}.$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Let

$$b_n(x) = \mathbb{E}\left(b(x+\xi_n)\right),$$

where $\xi_n \sim N(0, \frac{1}{n})$. Let σ_n and g_n be defined similarly.

For every $n \ge 1$, by a well-known result on SDE, there is a unique strong solution to

$$X_t^n = X_0 + \int_0^t b_n(X_s^n) ds + \int_0^t \sigma_n(X_s^n) dB_s + \int_0^t \int_U g_n(X_s^n, u) \mathcal{N}(du, ds) ds$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

$$M_{t}^{n,f} = f(X_{t}^{n}) - \int_{0}^{t} \left(b_{n}(X_{s}^{n})f'(X_{s}^{n}) + \frac{1}{2}f''(X_{s}^{n})\sigma_{n}^{2}(X_{s}^{n}) \right) ds$$

- $\int_{0}^{t} \int_{U} \left(f(X_{s}^{n} + g_{n}(X_{s}^{n}, u)) - f(X_{s}^{n}) \right) \mu(du) ds$

is a martingale.

$$\lim_{n \to \infty} M_t^{n,f}$$

$$= \lim_{n \to \infty} f(X_t^n) - \lim_{n \to \infty} \int_0^t \left(b_n(X_s^n) f'(X_s^n) + \frac{1}{2} f''(X_s^n) \sigma_n^2(X_s^n) \right) ds$$

$$- \lim_{n \to \infty} \int_0^t \int_U \left(f(X_s^n + g_n(X_s^n, u)) - f(X_s^n) \right) \mu(du) ds \quad (2.2)$$

$$? = f(X_t) - \int_0^t \left(b(X_s) f'(X_s) + \frac{1}{2} f''(X_s) \sigma(X_s)^2 \right) ds$$

$$- \int_0^t \int_U \left(f(X_s + g(X_s, u)) - f(X_s) \right) \mu(du) ds \quad (2.3)$$

i.e.

$$\lim_{n\to\infty}b_n(X_{s-}^n)?=b(X_{s-}),$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

$$\lim_{n\to\infty}b_n(X_{s-}^n)?=b(X_{s-}),$$

Proposition 2.1

The sequence $\{X^n\}$ is tight in the Skorohod space $D([0,\infty),\mathbb{R})$.

$$\{X_t^{n_k}: t \ge 0\} \to \{X_t: t \ge 0\}, a.s.$$

Lemma 2.2

The level set of the process *X* at level *C* is defined as $\{t : X_t = C\}$. Then the level set has Lebesgue measure 0 for any *C*.

Then weak existence holds.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

2 Weak existence

- Weak uniqueness
- Strong uniqueness
- 5 Application

In this section, we impose the following conditions:

(3.a) There exists a constant $K \ge 0, \, \forall x \in \mathbb{R}$, such that

$$|b(x)| + \int_U |g(x,u)| \mu(du) \leq K\sigma(x)^2,$$

(3.b) $0 < |\sigma(x)| \le K$, $\forall x \in \mathbb{R}$. Let *A* be an operator on $B(\mathbb{R})$. The domain of *A* is denoted by $\mathscr{D}(A)$ and the range of *A* is denoted by $\mathscr{R}(A)$. A measurable stochastic process *X* is a solution of the martingale problem for *A* if there exists a filtration $\{\mathscr{F}_t\}$ such that

$$f(X_t) - \int_0^t Af(X_t) ds$$

is an $\{\mathscr{F}_t\}$ -martingale for each $f \in \mathscr{D}(A)$.

Now we use the following proposition which is given by Kurtz and Ocone [11] to prove the weak uniqueness in general.

Proposition 3.1

Suppose $\Re(\lambda - A)$ is separating for each $\lambda > 0$. If $\{v_t\}$ and $\{\mu_t\}$ satisfy

$$v_t f = v_0 f + \int_0^t v_s A f ds, \quad f \in \mathscr{D}(A)$$

are weakly right continuous and $v_0 = \mu_0$, then $v_t = \mu_t$ for all $t \ge 0$.

Suppose X_t and Y_t are two solutions of (1.2), v_t : the distribution of X_t , μ_t : the distribution of Y_t Proposition 3.1 $\Rightarrow v_t = \mu_t$ (Weak uniqueness holds)

We say that $M \subset B(\mathbb{R})$ is separating (for $\mathscr{P}(\mathbb{R})$) if $v, \mu \in \mathscr{P}(\mathbb{R})$ and $vf = \mu f$ for all $f \in M$ implies $v = \mu$.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Note that (1.2) is

$$X_t = X_0 + \int_0^t b(X_{s-}) ds + \int_0^t \sigma(X_{s-}) dB_s + \int_0^t \int_U g(X_{s-}, u) N(du, ds).$$

Let

$$W_t = \int_0^{\tau_t^{-1}} \sigma(X_{s-}) dB_s.$$

Then W_t is a Brownian motion. Hence,

$$\widetilde{X}_t = X_0 + W_t + \int_0^t (\sigma^{-2}b)(\widetilde{X}_{s-})ds + \int_0^{\tau_t^{-1}} \int_U g(\widetilde{X}_{s-}, u)N(du, ds)$$

Define the semigroup of the Brownian motion as follows

$$T_t f(x) = \int_R p_t(x-y) f(y) dy, \quad \forall f \in \mathbb{B},$$

where $p_t(x - y)$ is the transition density, and $T_0 f(x) = f(x)$. Let $A = A_0 + B + C$, where

$$Af(x) = \frac{1}{2}f''(x) + \frac{b(x)}{\sigma(x)^2}f'(x) + \frac{1}{\sigma(x)^2}\int_U (f(x+g(x,u)) - f(x))\mu(du),$$
$$A_0f(x) = \frac{1}{2}f''(x),$$

$$Bf(x) = \frac{1}{\sigma(x)^2} \int_U (f(x+g(x,u))-f(x))\mu(du),$$

and

$$Cf(x) = \frac{b(x)}{\sigma(x)^2} f'(x).$$

19/43

< ∃⇒

Introduction Weak existence Weak uniqueness Strong uniqueness Application

By Itô's formula, we get that for any $f \in D(A)$,

$$\mathbb{E}f(\widetilde{X}_t) = \mathbb{E}f(\widetilde{X}_0) + \int_0^t \mathbb{E}Af(\widetilde{X}_s)ds.$$
(3.1)

Let
$$D(A) = D(A_0) = \{f : f, f', f'' \in \mathbb{B}\}$$

Theorem 3.1

Under condition (3.a,b), the weak uniqueness holds for the equation (3.1), and hence, also for the time changed SDE.

Introduction Weak existence Weak uniqueness Strong uniqueness Application

We proceed to proving that $\mathscr{R}(\lambda - A)$ is separating. Let $\lambda > 0$ be arbitrary, define $R_{\lambda}f = \int_{0}^{\infty} e^{-\lambda t} T_{t}fdt$. Let $g \in \mathbb{B}$. We hope to show that there exists $f \in D(A)$ such that $(\lambda - A)f = g$.

 $\mathscr{R}(\lambda - A) \supseteq \mathbb{B}$

Namely, we need to solve

$$(\lambda - A_0)f = g + (B + C)f.$$
 (3.2)

Actually, $R_{\lambda} = (\lambda - A_0)^{-1}$ We first solve

$$f = R_{\lambda}(g + Bf + Cf) \equiv \Gamma(f). \tag{3.3}$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

$$f = R_{\lambda}(g + Bf + Cf) \equiv \Gamma(f).$$

 $\Gamma : \mathbb{B}^1 \to \mathbb{B}^1$

(ロ) (四) (E) (E) (E) (E)

22/43

Applying R_{λ} to both sides of (3.4), we have

٠

f = I

Introduction Weak existence Weak uniqueness Strong uniqueness Application

To prove that *f* is the solution of (3.2), we denote h = g + Bf + Cf. We now consider the following ODE:

$$\lambda l(x) - \frac{1}{2}l''(x) = h(x)$$
 (3.5)

< ロ > < 同 > < 回 > < 回 > .

23/43

It is well-known that the above ODE has a solution

$$I(x) = e^{\sqrt{2\lambda}x} \int_x^\infty \frac{h(y)}{\sqrt{2\lambda}} e^{-\sqrt{2\lambda}y} dy + e^{-\sqrt{2\lambda}x} \int_{-\infty}^x \frac{h(y)}{\sqrt{2\lambda}} e^{\sqrt{2\lambda}y} dy.$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Applying R_{λ} to both sides of (3.5), we have

$$R_{\lambda}(\lambda I - \frac{1}{2}I'') = R_{\lambda}h$$

Since $R_{\lambda}h = f$, and

$$\begin{aligned} R_{\lambda}(\lambda I - \frac{1}{2}I'') &= \lambda \int_{0}^{\infty} e^{-\lambda t} T_{t}I(x) dt - \frac{1}{2} \int_{0}^{\infty} e^{-\lambda t} T_{t}I''(x) dt \\ &= \lambda \int_{0}^{\infty} e^{-\lambda t} T_{t}I(x) dt - \int_{0}^{\infty} e^{-\lambda t} \frac{d}{dt} (T_{t}I(x)) dt \\ &= I, \end{aligned}$$

Then f = I. There exists $f \in D(A)$ such that $(\lambda - A)f = g$ Suppose X_t and Y_t are two solutions of the original SDE, $\tau_t = \int_0^t \sigma(X_s)^2 ds$ and $\lambda_t = \int_0^t \sigma(Y_s)^2 ds$. The distributions of the time changed processes $\widetilde{X}_t = X_{\tau_t^{-1}}$ and $\widetilde{Y}_t = Y_{\lambda_t^{-1}}$ satisfy (3.1). Hence, $\mathcal{L}(\widetilde{X}) = \mathcal{L}(\widetilde{Y})$. It is easy to show that

$$\tau_t^{-1} = \int_0^t \frac{1}{\sigma(\widetilde{X_s})^2} ds \equiv \mathcal{G}(\widetilde{X}),$$

and

$$\lambda_t^{-1} = \int_0^t \frac{1}{\sigma(\widetilde{Y_s})^2} ds \equiv \mathcal{G}(\widetilde{Y}).$$

As $X_t = \widetilde{X}_{\tau_t}$ and $Y_t = \widetilde{Y}_{\lambda_t}$, we have

$$\mathcal{L}(X) = \mathcal{L}(Y).$$

That is, the weak uniqueness of the original SDE holds.

25/43

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

- Introduction

 Literature review
- 2 Weak existence
- **3 Weak uniqueness**
- 4 Strong uniqueness
- **5** Application

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

We force the following conditions:

(4.a) For any fixed u, g(x, u) + x is non-decreasing ;

(4.b) There exist constants $\sigma_0, K \ge 0$, such that $0 < \sigma_0 \le |\sigma(x)| \le K$ for all x.

Let X be a semimartingale and let L^a be its local time at a. Then

$$(X_t - a)^+ - (X_0 - a)^+ = \int_{0+}^t \mathbf{1}_{\{X_{s-} > a\}} dX_s + \sum_{0 < s \le t} \mathbf{1}_{\{X_{s-} > a\}} (X_s - a)^- \\ + \sum_{0 < s \le t} \mathbf{1}_{\{X_{s-} \le a\}} (X_s - a)^+ + \frac{1}{2} L_t^a$$

where L^a denotes the local time process of X at a. and

$$(X_t - a)^{-} - (X_0 - a)^{-} = -\int_{0+}^{t} \mathbf{1}_{\{X_{s-} \le a\}} dX_s + \sum_{0 < s \le t} \mathbf{1}_{\{X_{s-} > a\}} (X_s - a)^{-} + \sum_{0 < s \le t} \mathbf{1}_{\{X_{s-} \le a\}} (X_s - a)^{+} + \frac{1}{2} L_t^a,$$

28/43

Introduction Weak existence Weak uniqueness Strong uniqueness Application

$$\begin{split} X_t^1 \vee X_t^2 = & X_t^1 + (X_t^2 - X_t^1)^+ \\ = & X_t^1 + \int_{0+}^t \mathbf{1}_{(X_{s-}^2 > X_{s-}^1)} d(X^2 - X^1)_s \\ & + \sum_{0 < s \le t} \mathbf{1}_{(X_{s-}^2 > X_{s-}^1)} (X_s^2 - X_s^1)^- \\ & + \sum_{0 < s \le t} \mathbf{1}_{(X_{s-}^2 \le X_{s-}^1)} (X_s^2 - X_s^1)^+ + \frac{1}{2} \mathcal{L}_t^0 (X^2 - X^1). \end{split}$$

By the non-decreasing property of x + g(x, u) in x, we get

$$\sum_{0 < s \le t} \mathbf{1}_{(X_{s-}^2 > X_{s-}^1)} (X_s^2 - X_s^1)^- = 0,$$

$$\sum_{0 < s \le t} \mathbf{1}_{(X_{s-}^2 \le X_{s-}^1)} (X_s^2 - X_s^1)^+ = 0.$$

29/43

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Then

$$\begin{split} X_{t}^{1} \vee X_{t}^{2} = & X_{0}^{1} \vee X_{0}^{2} + \int_{0}^{t} \sigma(X_{s-}^{1} \vee X_{s-}^{2}) dB_{s} + \int_{0}^{t} b(X_{s-}^{1} \vee X_{s}^{2}) dB_{s} \\ &+ \int_{0+}^{t} \int_{U} g(X_{s-}^{1} \vee X_{s-}^{2}, u) N(du, ds) \\ &+ \frac{1}{2} L_{t}^{0} (X^{1} - X^{2}), \end{split}$$

Under condition (4.a), if X^1 and X^2 are two solutions of (1.2) such that $X_0^1 = X_0^2$ a.s., then $X^1 \vee X^2$ is a solution if and only if $L^0(X^1 - X^2)$ vanishes identically.

Proposition 4.2

If uniqueness in law holds for (1.2) and $L^0(X^1 - X^2) = 0$ for any pair (X^1, X^2) of solutions such that $X_0^1 = X_0^2$ a.s., then pathwise uniqueness holds for (1.2).

Proof: If X^1 and X^2 are two solutions, and $L^0(X^1 - X^2) = 0$, then $X^1 \vee X^2$ is also a solution. Since the weak uniqueness holds, then we have

$$\mathcal{L}(X^1) = \mathcal{L}(X^2) = \mathcal{L}(X^1 \vee X^2)$$

and $X^1 \vee X^2 - X^1$ is a non-negative random variable, then

$$\mathbb{E}[X^1 \vee X^2 - X^1] = 0$$

so $X^1 \vee X^2 = X^1$ a.s.. Similarly, we have $X^1 \vee X^2 = X^2$ a.s., which implies $X^1 = X^2$ a.s..

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Lemma 4.2

Let *X* be a semimartingale. For $\varepsilon > 0$ and t > 0 define

$$A_t^{\varepsilon} := \int_0^t \mathbf{1}_{(0 < X_s \le \varepsilon)} \rho(X_s)^{-1} d[X, X]_s^c.$$

If $\mathbb{E}A_t^{\varepsilon} < \infty$ and $\lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)]$ for some $\varepsilon > 0$ and all t > 0, then $L^0(X) = 0$.

In the sequel ρ always stands for a Borel map from $[0, \infty)$ to itself such that $\int_{0+} da/\rho(a) = \infty$.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Lemma 4.1

Under conditions (2.a) and (4.a), if X^1 and X^2 are two solutions of (1.2), then $\mathbb{E}\left[L_t^a(X^1 - X^2)\right] \to \mathbb{E}\left[L_t^0(X^1 - X^2)\right]$ as $a \to 0+$.

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Theore	em 4.2			
Pathwi	se uniqueness l	holds for (1.2) in t	he following cases	s:
(1) Un	der conditions (3.a,b), and $ \sigma(x) $	$ -\sigma(\mathbf{y}) ^2 \le \rho(\mathbf{x}-\mathbf{y}) ^2$	<i>y</i>).

(2) Under conditions (3.a), (4.a,b), and $|\sigma(x) - \sigma(y)|^2 \le |f(x) - f(y)|$ for some increasing and bounded function *f*.

Proof: (1) Let X^1, X^2 be the solutions to (1.2) with respect to the same Brownian Motion, then

$$\mathbb{E}\left[\int_{0}^{t} \rho(X_{s}^{1}-X_{s}^{2})^{-1} \mathbf{1}_{(X_{s}^{1}>X_{s}^{2})} d[X^{1}-X^{2},X^{1}-X^{2}]_{s}^{c}\right] \\ = \mathbb{E}\left[\int_{0}^{t} \rho(X_{s}^{1}-X_{s}^{2})^{-1} \left(\sigma(X_{s}^{1})-\sigma(X_{s}^{2})\right)^{2} \mathbf{1}_{(X_{s}^{1}>X_{s}^{2})} ds\right] \leq t.$$

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

To apply Lemma 4.2, we will consider A_t with $\rho(x) = x$ and $X_t = X_t^1 - X_t^2$. We consider

$$\mathbb{E} \quad \left[\int_0^t (X_s^1 - X_s^2)^{-1} d[X^1 - X^2, X^1 - X^2]_s^c \right] \\ \leq \quad \mathbb{E} \left[\int_0^t \left(f(X_s^1) - f(X_s^2) \right) (X_s^1 - X_s^2)^{-1} ds \right] =: K(f)_t$$

Let

$$f_n(x) = \mathbb{E}f(x+\xi_n), \quad \xi_n \sim N(0,\frac{1}{n}).$$

It is easy to verify that f_n is of bounded and increasing. It follows that $K(f)_t = \lim_{n \to \infty} K(f_n)_t$ for almost all $s \le t$.

Weak existence

Weak uniqueness

Strong uniqueness

Application

$$\begin{split} \mathcal{K}(f_n)_t &= \int_0^1 \mathbb{E}\left[\int_0^t f'_n(Z^v_s) ds\right] dv \\ &= \int_0^1 \mathbb{E}\left[\int_0^t f'_n(Z^v_s) \sigma^v(Z^v_{s-})^{-2} d[Z^v, Z^v]^c_s\right] dv \\ &\leq \frac{1}{\sigma_0^2} \int_0^1 \mathbb{E}\left[\int_0^t f'_n(Z^v_s) d[Z^v, Z^v]^c_s\right] dv \\ &\leq \frac{1}{\sigma_0^2} \int_0^1 \mathbb{E}\left[\int_{\mathbb{R}} f'_n(a) \mathcal{L}^a_t(Z^v) da\right] dv. \end{split}$$
(4.1)

We have

$$\sup_{a,v} E\left[L_t^a(Z^v)\right] = C < \infty.$$

It follows from (4.1) that

$$K(f_n)_t \leq \sigma_0^{-2} C \sup_n \|f_n\|.$$

36/43

æ

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Conclu	usion			
• E/	$A^{arepsilon}_t < \infty + \lim_{a o 0+} \mathbb{I}_{t}$	$\mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)]$	$X)] \Rightarrow L^0(X) = 0$	
				S

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Conclusion

• $\mathbb{E}A_t^{\varepsilon} < \infty + \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)] \Rightarrow L^0(X) = 0$

• Lemma 4.2 $\Rightarrow \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)]$

• Theorem 4.2 $\Rightarrow \mathbb{E}A_t^{\varepsilon} < \infty$

• Weak uniqueness + $L^0(X) = 0 \Rightarrow$ Pathwise uniqueness

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Conclusion

•
$$\mathbb{E}A_t^{\varepsilon} < \infty + \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)] \Rightarrow L^0(X) = 0$$

• Lemma 4.2
$$\Rightarrow \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)]$$

• Theorem 4.2
$$\Rightarrow \mathbb{E} A_t^{\varepsilon} < \infty$$

• Weak uniqueness + $L^0(X) = 0 \Rightarrow$ Pathwise uniqueness

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application

Conclusion

•
$$\mathbb{E}A_t^{\varepsilon} < \infty + \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)] \Rightarrow L^0(X) = 0$$

• Lemma 4.2
$$\Rightarrow \lim_{a \to 0+} \mathbb{E}[L_t^a(X)] = \mathbb{E}[L_t^0(X)]$$

• Theorem 4.2
$$\Rightarrow \mathbb{E} A_t^{arepsilon} < \infty$$

• Weak uniqueness + $L^0(X) = 0 \Rightarrow$ Pathwise uniqueness

Introduction	Weak existence	Weak uniqueness	Strong uniqueness	Application
Outline				

- Introduction

 Literature review
- 2 Weak existence
- **3 Weak uniqueness**
- 4 Strong uniqueness

The following equation defines the so-called refracted Lévy process

$$dU_t = \left((\mu - \delta) \mathbf{1}_{U_t \ge b} + \mu \mathbf{1}_{U_t < b} \right) dt + \sigma dB_t + dJ_t.$$
 (5.1)

 δ is the rate of dividend, i.e., the insurance company will pay dividend when the surplus is higher than a certain level.

Kyprianou and Loeffen [12] investigates the ruin problem of (5.1).

Note that the company with higher reserve has less risk.

We consider the following SDE:

$$dX_{t} = (\mu_{1} \mathbf{1}_{X_{t} \ge p} + \mu_{2} \mathbf{1}_{X_{t} < p}) dt + (\sigma_{1} \mathbf{1}_{X_{t} \ge q} + \sigma_{2} \mathbf{1}_{X_{t} < q}) dB_{t} + dJ_{t}(5.2)$$

where J_t is pure jump spectrally negative Lévy process. p, q, σ_1 and σ_2 are positive constants.

For simplicity of notation, we denote

$$b(x) = \mu_1 \mathbf{1}_{x \ge p} + \mu_2 \mathbf{1}_{x < p}, \quad \sigma(x) = \sigma_1 \mathbf{1}_{x \ge q} + \sigma_2 \mathbf{1}_{x < q}.$$

It is easy to verify that (5.2) satisfies weak uniqueness. To prove the pathwise uniqueness, let

$$f(\mathbf{x}) = (\sigma_1 - \sigma_2)^2 \mathbf{1}_{(\mathbf{x} > q)}.$$

Then,

$$|\sigma(x) - \sigma(y)|^2 \le |f(x) - f(y)|.$$

<ロ> < (回) < ((u) < (u) < ((u) < (((u) < (((u) < ((u) < ((u) < (((u) < ((u) < ((u) < ((u) < ((u

Introduction	Weak existence	Weak uniqueness	Strong uniqueness

Thank you for your attention!

Application

- D. Aldous. Stopping times anf tightness. Ann. Probab. 6, 335-340, 1978.
- [2] M.T. Barlow and E. Perkins, One-dimensional stochastic differential equations involving a singular increasing process. Stochastics 12, 229-242, 1984.
- [3] R.F. Bass, K. Burdzy and Z. Q. Chen. Stochastic differential equations driven by stable processes for which pathwise uniqueness fails. Stochastic Process. Appl. 111. 1-15, 2004.
- [4] R.F. Bass. Stochastic differential equations driven by symmetric stable processes. Séminaire de Probabilités, Vol. XXXVI. Springer, New York, pp. 302-313, 2003.
- [5] S. Bouhadou and Y. Ouknine. Stochastic equations of processes with jumps. Stochastics and Dynamics. Vol. 14, No, 1, 2014.

- [6] Z.F. Fu, Z.H. Li. Stochastic equations of non-negative processes with jumps. Stochastic Processes and their applications, 3: 306-330, 2010.
- [7] N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd. North-Holland, 1989.
- [8] J. Jacod and A. N. Shiryaev. Limit theorems for Stochastic Processes. Springer-Verlag, 1987.
- [9] T.G. Kurtz. The Yamada-watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab., 12:915-965, 2007.
- [10] T. Komatsu. On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc. Japan Acad. Ser. A Math. Sci., 58, pp. 353-356, 1982.

- [11] T.G. Kurtz and D.L. Ocone. Unique characterization of conditional distributions in nonlinear filtering. The annals of probability, Vol. 16, No. 1, 80-107, 1988.
- [12] A. E. Kyprianou and R. L. Loeffen. Refracted Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 24-44, 2010.
- [13] J.F. Le Gall, Applications du temps local aux équations différentielles stochastiques unidimensionnelles. (French) [Local time applications to one-dimensional stochastic differential equations] Seminar on Probability, Vol. XVII, Lecture Notes in Math., Vol. 986, pp. 15-31, 1983.
- [14] Z. Li and L. Mytnik. Strong solutions for stochastic differential equations with jumps. Ann. Inst. Henri Poincaré Probab. Stat. 47, 1055-1067, 2011.

[15] S. Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 513-518, 1972.

- [16] P.E. Protter. Stochastic integration and differential equations, 2nd edn. Applications of Mathematics (New York), Vol. 21. Stochastic Modelling and Applied Probability, Springer-Verlag, 2004.
- [17] H. Ren. Pathwise uniqueness of one-dimensional SDEs driven by one-side stable processes, 2013.
- [18] D. Revuz, M. Yor. Continous martingales and Brownian motion. Springer-Verlag, Berlin, 1999.
- [19] T. Yamada, S. Watanabe. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155-167. MR0278420, 1971.