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Literature review

Bass [4] and Komatsu [10] show that the following SDE

dXt = F (Xt−)dLt , t ≥ 0 (1.1)

admits pathwise uniqueness If {Lt} is a symmetric stable
process with exponent α ∈ (1,2), |F (x)− F (y)| ≤ ρ(|x − y |)
and if z → ρ(z) satisfying∫

0+

1
ρ(z)α

dz =∞.
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Literature review

It is well-known that if the coefficients are assumed to be
Lipschitz continuous, the pathwise uniqueness can be
obtained by Gronwall’s inequality and the results on
continuous-type equations; see e.g. Ikeda and Watanabe
[7].

This condition has been improved by Fu and Li [6]. They
proved the pathwise uniqueness for non-negative càdlàg
solutions driven by spectrally positive Lévy noises under
Lipschitz and non-Lipschitz conditions.
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Literature review

Weak uniqueness + Local time⇒ Pathwise uniqueness

Advantages
Get rid of the continuous restriction on coefficients;
The Jumps could be both positive and negative jumps.
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Literature review

Let N(ds,du) be the Poisson random measures associated
with {pt}. In this paper, we will study the solution to the
stochastic differential equation (1.2) given below. By a solution
of the stochastic equation

Xt = X0 +

∫ t

0
b(Xs−)ds +

∫ t

0
σ(Xs−)dBs +

∫ t

0

∫
U

g(Xs−,u)N(ds,du),

(1.2)

•{Bt}, {pt} are independent of each other;

• σ(x), b(x) and g(x ,u) are Borel functions on R, which have at
most countably many discontinuous points.
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Since martingale problem⇐⇒ weak existence,

then we just need to prove that

M f
t = f (Xt )−

∫ t

0

(
b(Xs)f ′(Xs) +

1
2

f ′′(Xs)σ(Xs)2
)

ds

−
∫ t

0

∫
U

(f (Xs + g(Xs,u))− f (Xs))µ(du)ds (2.1)

is a martingale.

(2.a) There is a constant K ≥ 0 such that

b(x)2 + σ(x)2 +

∫
U
|g(x ,u)|µ(du) ≤ K , ∀x ∈ R;

(2.b) There is a constant σ0 > 0 such that

|σ(x)| ≥ σ0, ∀x ∈ R.
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Let

bn(x) = E (b(x + ξn)) ,

where ξn ∼ N(0, 1
n ). Let σn and gn be defined similarly.

For every n ≥ 1, by a well-known result on SDE, there is a
unique strong solution to

X n
t = X0 +

∫ t

0
bn(X n

s )ds +

∫ t

0
σn(X n

s )dBs +

∫ t

0

∫
U

gn(X n
s ,u)N(du,ds).
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Mn,f
t = f (X n

t )−
∫ t

0

(
bn(X n

s )f ′(X n
s ) +

1
2

f ′′(X n
s )σ2

n(X n
s )

)
ds

−
∫ t

0

∫
U

(
f (X n

s + gn(X n
s ,u))− f (X n

s )
)
µ(du)ds

is a martingale.
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lim
n→∞

Mn,f
t

= lim
n→∞

f (X n
t )− lim

n→∞

∫ t

0

(
bn(X n

s )f ′(X n
s ) +

1
2

f ′′(X n
s )σ2

n(X n
s )

)
ds

− lim
n→∞

∫ t

0

∫
U

(
f (X n

s + gn(X n
s ,u))− f (X n

s )
)
µ(du)ds (2.2)

? = f (Xt )−
∫ t

0

(
b(Xs)f ′(Xs) +

1
2

f ′′(Xs)σ(Xs)2
)

ds

−
∫ t

0

∫
U

(f (Xs + g(Xs,u))− f (Xs))µ(du)ds (2.3)

i.e.
lim

n→∞
bn(X n

s−)? =b(Xs−),
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lim
n→∞

bn(X n
s−)? =b(Xs−),

Proposition 2.1
The sequence {X n} is tight in the Skorohod space D([0,∞),R).

{X nk
t : t ≥ 0} → {Xt : t ≥ 0},a.s.

Lemma 2.2
The level set of the process X at level C is defined as
{t : Xt = C}. Then the level set has Lebesgue measure 0 for
any C.

Then weak existence holds.
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In this section, we impose the following conditions:

(3.a) There exists a constant K ≥ 0, ∀x ∈ R , such that

|b(x)|+
∫

U
|g(x ,u)|µ(du) ≤ Kσ(x)2,

(3.b) 0 < |σ(x)| ≤ K , ∀x ∈ R.
Let A be an operator on B(R). The domain of A is denoted by
D(A) and the range of A is denoted by R(A). A measurable
stochastic process X is a solution of the martingale problem for
A if there exists a filtration {Ft} such that

f (Xt )−
∫ t

0
Af (Xt )ds

is an {Ft}-martingale for each f ∈ D(A).
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Now we use the following proposition which is given by Kurtz
and Ocone [11] to prove the weak uniqueness in general.

Proposition 3.1
Suppose R(λ− A) is separating for each λ > 0. If {vt} and
{µt} satisfy

vt f = v0f +

∫ t

0
vsAfds, f ∈ D(A)

are weakly right continuous and v0 = µ0, then vt = µt for all
t ≥ 0.

Suppose Xt and Yt are two solutions of (1.2),
vt : the distribution of Xt , µt : the distribution of Yt
Proposition 3.1⇒ vt = µt (Weak uniqueness holds)
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We say that M ⊂ B(R) is separating (for P(R)) if v , µ ∈P(R)
and vf = µf for all f ∈ M implies v = µ.
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Note that (1.2) is

Xt =X0 +

∫ t

0
b(Xs−)ds +

∫ t

0
σ(Xs−)dBs +

∫ t

0

∫
U

g(Xs−,u)N(du,ds).

Let

Wt =

∫ τ−1
t

0
σ(Xs−)dBs.

Then Wt is a Brownian motion.
Hence,

X̃t = X0 + Wt +

∫ t

0
(σ−2b)(X̃s−)ds +

∫ τ−1
t

0

∫
U

g(X̃s−,u)N(du,ds)
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Define the semigroup of the Brownian motion as follows

Tt f (x) =

∫
R

pt (x − y)f (y)dy , ∀ f ∈ B,

where pt (x − y) is the transition density, and T0f (x) = f (x).
Let A = A0 + B + C, where

Af (x) =
1
2

f
′′

(x) +
b(x)

σ(x)2 f ′(x) +
1

σ(x)2

∫
U

(f (x + g(x ,u))− f (x))µ(du),

A0f (x) =
1
2

f
′′

(x),

Bf (x) =
1

σ(x)2

∫
U

(f (x + g(x ,u))− f (x))µ(du),

and
Cf (x) =

b(x)

σ(x)2 f ′(x).
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By Itô’s formula, we get that for any f ∈ D(A),

Ef (X̃t ) = Ef (X̃0) +

∫ t

0
EAf (X̃s)ds. (3.1)

Let D(A) = D(A0) = {f : f , f ′, f ′′ ∈ B}

Theorem 3.1
Under condition (3.a,b), the weak uniqueness holds for the
equation (3.1), and hence, also for the time changed SDE.
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We proceed to proving that R(λ− A) is separating. Let λ > 0
be arbitrary, define Rλf =

∫∞
0 e−λtTt fdt . Let g ∈ B. We hope to

show that there exists f ∈ D(A) such that (λ− A)f = g.

R(λ− A) ⊇ B

Namely, we need to solve

(λ− A0)f = g + (B + C)f . (3.2)

Actually, Rλ = (λ− A0)−1

We first solve

f = Rλ(g + Bf + Cf ) ≡ Γ(f ). (3.3)
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f = Rλ(g + Bf + Cf ) ≡ Γ(f ).

Γ : B1 → B1

(λ− A0)f = g + (B + C)f .

m

λl(x)− 1
2

l ′′(x) = h(x) (3.4)

Applying Rλ to both sides of (3.4), we have

f = l

.
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To prove that f is the solution of (3.2), we denote
h = g + Bf + Cf . We now consider the following ODE:

λl(x)− 1
2

l ′′(x) = h(x) (3.5)

It is well-known that the above ODE has a solution

l(x) = e
√

2λx
∫ ∞

x

h(y)√
2λ

e−
√

2λydy + e−
√

2λx
∫ x

−∞

h(y)√
2λ

e
√

2λydy .
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Applying Rλ to both sides of (3.5), we have

Rλ(λl − 1
2

l ′′) = Rλh

Since Rλh = f , and

Rλ(λl − 1
2

l ′′) = λ

∫ ∞
0

e−λtTt l(x)dt − 1
2

∫ ∞
0

e−λtTt l ′′(x)dt

= λ

∫ ∞
0

e−λtTt l(x)dt −
∫ ∞

0
e−λt d

dt
(Tt l(x)) dt

= l ,

Then f = l .
There exists f ∈ D(A) such that (λ− A)f = g
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Suppose Xt and Yt are two solutions of the original SDE,
τt =

∫ t
0 σ(Xs)2ds and λt =

∫ t
0 σ(Ys)2ds. The distributions of the

time changed processes X̃t = X
τ−1

t
and Ỹt = Y

λ−1
t

satisfy (3.1).

Hence, L(X̃ ) = L(Ỹ ). It is easy to show that

τ−1
t =

∫ t

0

1

σ(X̃s)2
ds ≡ G(X̃ ),

and

λ−1
t =

∫ t

0

1

σ(Ỹs)2
ds ≡ G(Ỹ ).

As Xt = X̃τt and Yt = Ỹλt , we have

L(X ) = L(Y ).

That is, the weak uniqueness of the original SDE holds.
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We force the following conditions:

(4.a) For any fixed u, g(x ,u) + x is non-decreasing ;

(4.b) There exist constants σ0,K ≥ 0, such that
0 < σ0 ≤ |σ(x)| ≤ K for all x .
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Tanaka’s Formula

Let X be a semimartingale and let La be its local time at a. Then

(Xt − a)+ − (X0 − a)+ =

∫ t

0+
1{Xs−>a}dXs +

∑
0<s≤t

1{Xs−>a}(Xs − a)−

+
∑

0<s≤t

1{Xs−≤a}(Xs − a)+ +
1
2

La
t

where La denotes the local time process of X at a. and

(Xt − a)− − (X0 − a)− =−
∫ t

0+
1{Xs−≤a}dXs +

∑
0<s≤t

1{Xs−>a}(Xs − a)−

+
∑

0<s≤t

1{Xs−≤a}(Xs − a)+ +
1
2

La
t ,
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X 1
t ∨ X 2

t =X 1
t + (X 2

t − X 1
t )+

=X 1
t +

∫ t

0+
1(X 2

s−>X 1
s−)

d(X 2 − X 1)s

+
∑

0<s≤t

1(X 2
s−>X 1

s−)
(X 2

s − X 1
s )−

+
∑

0<s≤t

1(X 2
s−≤X 1

s−)
(X 2

s − X 1
s )+ +

1
2

L0
t (X 2 − X 1).

By the non-decreasing property of x + g(x ,u) in x , we get∑
0<s≤t

1(X 2
s−>X 1

s−)
(X 2

s − X 1
s )− = 0,

∑
0<s≤t

1(X 2
s−≤X 1

s−)
(X 2

s − X 1
s )+ = 0.

29 / 43



Introduction Weak existence Weak uniqueness Strong uniqueness Application

Then

X 1
t ∨ X 2

t =X 1
0 ∨ X 2

0 +

∫ t

0
σ(X 1

s− ∨ X 2
s−)dBs +

∫ t

0
b(X 1

s− ∨ X 2
s )dBs

+

∫ t

0+

∫
U

g(X 1
s− ∨ X 2

s−,u)N(du,ds)

+
1
2

L0
t (X 1 − X 2),

Under condition (4.a), if X 1 and X 2 are two solutions of (1.2)
such that X 1

0 = X 2
0 a.s., then X 1 ∨ X 2 is a solution if and only if

L0(X 1 − X 2) vanishes identically.
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Proposition 4.2

If uniqueness in law holds for (1.2) and L0(X 1 − X 2) = 0 for any
pair (X 1,X 2) of solutions such that X 1

0 = X 2
0 a.s., then pathwise

uniqueness holds for (1.2).

Proof: If X 1 and X 2 are two solutions, and L0(X 1 − X 2) = 0,
then X 1 ∨ X 2 is also a solution. Since the weak uniqueness
holds, then we have

L(X 1) = L(X 2) = L(X 1 ∨ X 2)

and X 1 ∨ X 2 − X 1 is a non-negative random variable, then

E[X 1 ∨ X 2 − X 1] = 0

so X 1 ∨ X 2 = X 1 a.s.. Similarly, we have X 1 ∨ X 2 = X 2 a.s.,
which implies X 1 = X 2 a.s..
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Lemma 4.2
Let X be a semimartingale. For ε > 0 and t > 0 define

Aεt :=

∫ t

0
1(0<Xs≤ε)ρ(Xs)−1d [X ,X ]cs .

If EAεt <∞ and lim
a→0+

E[La
t (X )] = E[L0

t (X )] for some ε > 0 and

all t > 0, then L0(X ) = 0.

In the sequel ρ always stands for a Borel map from [0,∞) to
itself such that

∫
0+ da/ρ(a) =∞.
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Lemma 4.1

Under conditions (2.a) and (4.a), if X 1 and X 2 are two solutions
of (1.2), then E

[
La

t (X 1 − X 2)
]
→ E

[
L0

t (X 1 − X 2)
]

as a→ 0+.
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Theorem 4.2
Pathwise uniqueness holds for (1.2) in the following cases:
(1) Under conditions (3.a,b), and |σ(x)− σ(y)|2 ≤ ρ(|x − y |).
(2) Under conditions (3.a), (4.a,b), and
|σ(x)− σ(y)|2 ≤ |f (x)− f (y)| for some increasing and
bounded function f .

Proof: (1) Let X 1,X 2 be the solutions to (1.2) with respect to
the same Brownian Motion, then

E
[∫ t

0
ρ(X 1

s − X 2
s )−11(X 1

s >X 2
s )

d [X 1 − X 2,X 1 − X 2]cs

]
= E

[∫ t

0
ρ(X 1

s − X 2
s )−1

(
σ(X 1

s )− σ(X 2
s )
)2

1(X 1
s >X 2

s )
ds
]
≤ t .
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To apply Lemma 4.2, we will consider At with ρ(x) = x and
Xt = X 1

t − X 2
t . We consider

E
[∫ t

0
(X 1

s − X 2
s )−1d [X 1 − X 2,X 1 − X 2]cs

]
≤ E

[∫ t

0

(
f (X 1

s )− f (X 2
s )
)

(X 1
s − X 2

s )−1ds
]

=: K (f )t

Let
fn(x) = Ef (x + ξn), ξn ∼ N(0,

1
n

).

It is easy to verify that fn is of bounded and increasing. It
follows that K (f )t = lim

n→∞
K (fn)t for almost all s ≤ t .
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K (fn)t =

∫ 1

0
E
[∫ t

0
f ′n(Z v

s )ds
]

dv

=

∫ 1

0
E
[∫ t

0
f ′n(Z v

s )σv (Z v
s−)−2d [Z v ,Z v ]cs

]
dv

≤ 1
σ2

0

∫ 1

0
E
[∫ t

0
f ′n(Z v

s )d [Z v ,Z v ]cs

]
dv

≤ 1
σ2

0

∫ 1

0
E
[∫

R
f ′n(a)La

t (Z v )da
]

dv . (4.1)

We have
sup
a,v

E
[
La

t (Z v )
]

= C <∞.

It follows from (4.1) that

K (fn)t ≤ σ−2
0 C sup

n
‖fn‖.
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Conclusion

EAεt <∞ + lim
a→0+

E[La
t (X )] = E[L0

t (X )]⇒ L0(X ) = 0

Lemma 4.2⇒ lim
a→0+

E[La
t (X )] = E[L0

t (X )]

Theorem 4.2⇒ EAεt <∞

Weak uniqueness + L0(X ) = 0⇒ Pathwise uniqueness
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The following equation defines the so-called refracted Lévy
process

dUt =
(
(µ− δ)1Ut≥b + µ1Ut<b

)
dt + σdBt + dJt . (5.1)

δ is the rate of dividend, i.e., the insurance company will pay
dividend when the surplus is higher than a certain level.

Kyprianou and Loeffen [12] investigates the ruin problem of
(5.1).
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Note that the company with higher reserve has less risk.

We consider the following SDE:

dXt = (µ11Xt≥p + µ21Xt<p)dt + (σ11Xt≥q + σ21Xt<q)dBt + dJt(5.2)

where Jt is pure jump spectrally negative Lévy process. p, q, σ1
and σ2 are positive constants.
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For simplicity of notation, we denote

b(x) = µ11x≥p + µ21x<p, σ(x) = σ11x≥q + σ21x<q.

It is easy to verify that (5.2) satisfies weak uniqueness. To
prove the pathwise uniqueness, let

f (x) = (σ1 − σ2)21(x>q).

Then,
|σ(x)− σ(y)|2 ≤ |f (x)− f (y)|.
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Thank you for your attention!
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