
Control of evolution equations with Lévy noise

Control of evolution equations with Lévy
noise

Jerzy Zabczyk

Joint work with A. Święch and E. Priola

July 8, 2017

Jerzy Zabczyk Control of evolution equations with Lévy noise



Control of evolution equations with Lévy noise

Program

1. Durham 1974
2. Controlled system
3. HJB equation. Viscosity solutions
4. Value function as viscosity solution
5. Uniqueness of viscosity solutions
6. Mild solutions of HJB equations
7. BSDE approach
8. Main tools of the proofs
9. Heuristics of viscosity solutions
10. References

Jerzy Zabczyk Control of evolution equations with Lévy noise



Control of evolution equations with Lévy noise

Durham Symposium 1974

2nd Durham Symposium July 22 - August1, 1974
Functional Analysis and Stochastic Processes
Organizer D.J.H. Garling

1. J-P Kahane and P-A. Meyer.

Can all sets of Lebesgue measure zero be polar or semi-polar
for a Lévy process?

Problem ∶

For an integrable function f construct a singular measure µ
such that the convolution f ∗ µ is a bounded continuous
function.

2. C. Dellacherie

Stochastic integral representations of Poissonian martingales.
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Controlled system

Controlled system

(1)
dX (s) = (AX (s) + g(X (s), a(s)))ds +G(X (s−), a(s))dZ(s),

X (t) = x ∈ H , s ∈ [t,T ], Z Lévy process on U

a(s), s ∈ [t,T ], control, a(s) ∈ Λ-set of control parameters
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Controlled system

A is a linear operator, with domain D(A) ⊂ H ,

dX (t)

dt
= AX (t), X (0) = x ∈ H ,

has unique, weak solution:

X (t) = etAx , t ≥ 0.

H = L2(O), A = ∆, D(A) = H2
0(O).
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Controlled system

dx(s, ξ) = y(s, ξ)ds

dy(s, ξ) = (∆x(s, ξ) + k(x(s, ξ), a(s))) ds + h(ξ)dZ(s).

A = (
0, I
∆, 0) , X (s) = (

x(s, ⋅)
y(s, ⋅)

)

Z , α− stable, real process.

Jerzy Zabczyk Control of evolution equations with Lévy noise



Control of evolution equations with Lévy noise

Controlled system

Lévy processes

E [e i⟨u,Z(t2)−Z(t1)⟩U ] = e−(t2−t1)ψ(u),

where

ψ(u) = −i⟨a,u⟩U +
1
2
⟨Qu,u⟩U

+∫
U∖{0}

(1 − e i⟨u,z⟩U + 1{∥z∥U<1}i⟨u, z⟩U)ν(dz).(2)

π([t, s],B) = ∑
t<τ≤s

1B(L(τ)−L(τ−)), B ∈ B(U), L(τ−) = lim
r↑τ

L(r),

π̂(dτ,dz) = π(dτ,dz) − dτ ν(dz).
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Controlled system

(3) Z(s) = a s +W (s) + Z0(s) + Z1(s),

where a ∈ U W is a Wiener process, Z0,Z1 are independent
Lévy processes,

Z0(s) = ∫
s

t
∫

0<∥z∥<1
z π̂(dτ,dz), Z1(s) = ∫

s

t
∫
∥z∥≥1

zπ(dτ,dz),

(4)
dX (s) = (AX (s)+g(X (s), a(s)))ds+∫

U
G(X (s−), z , a(s)) π̂(ds,dz),

X (t) = x , s ∈ [t,T ]
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Controlled system

V (t, x) = inf
a(⋅)

E(∫

T

t
f (X (s), a(s))ds + h(X (T ))) ,(5)

t ∈ [0,T ], x ∈ H , value function.
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HJB equation:

HJB equation:

∂u

∂t
(t, x) + inf

a∈Λ
(Lau(t, x) + f (x , a)) = 0,

u(T , x) = h(x), x ∈ H ,

Lav(x) = ⟨Ax ,Dv(x)⟩ + ⟨g(x , a),Dv(x)⟩
(6)

+ ∫
U
[v(x +G(x , a)z) − v(x) − ⟨Dv(x),G(x , a)z⟩]ν(dz)

Lav(x) = ⟨Ax ,Dv(x)⟩ + La0v(x),
(7)

Jerzy Zabczyk Control of evolution equations with Lévy noise



Control of evolution equations with Lévy noise

HJB equation:

∂u

∂t
(t, x) + ⟨Ax ,Du(t, x)⟩ + inf

a∈Λ
(La0u(t, x) + f (x , a)) = 0,(8)

u(T , x) = h(x).
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Meta theorem:

Meta theorem:

V is the unique solution to (6) and the minimizer:
â(t, x), t ∈ [0,T ], x ∈ H ,

inf
a∈Λ

(LaV (t, x) + f (x , a)) = Lâ(t,x)V (t, x) + f (x , â(t, x))

is the optimal feedback strategy.
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Meta theorem:

Process X̂ :

dX̂ (s) = [AX̂ (s) + g(X̂ (s), â(s, X̂ (s)))] ds

+G(X̂ (s−), â(s, X̂ (s−)))dZ(s),

X̂ (t) = x

is an optimal one.
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Gaussian noise

(9)
dX (s) = (AX (s)+g(X (s), a(s)))ds +G(X (s−), a(s))dW (s),

Stochastic Optimal Control in Infinite Dimensions: Dynamic
Programming and HJB Equations, Springer, 2017
G. Fabbri, F. Gozzi and A. Święch, with Chapter VI by M.
Fuhrman and G. Tessitore

HJB equation:
1. viscosity solutions
2. mild solutions
3. solutions through BSDEs
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Gaussian noise

(9)
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Plan

1. Viscosity solutions: based on A. Święch, J. Zabczyk,

Uniqueness for integro-PDE in Hilbert spaces, Potential Anal.,
38 (2013), no. 1, 233–255.

Integro-PDE in Hilbert spaces: Existence of viscosity
solutions,Potential Anal., 45 (2016), 703–736

2.Mild solutions: based on E. Priola and J. Zabczyk,

Structural properties of semilinear SPDEs driven by cylindrical
stable processes, PTRF, 149 (2011), 97–137.

3. Solutions through BSDEs: only comments
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Viscosity solutions

Test functions

Test functions

Lav(x) = ⟨Ax ,Dv(x)⟩ + ⟨g(x , a),Dv(x)⟩

+∫
U
[v(x +G(x , a)z) − v(x) − ⟨Dv(x),G(x , a)z⟩]ν(dz)

(10)
∂u

∂t
(t, x) + inf

a∈Λ
[Lau(t, x) + f (x , a)] = 0,

u(T , x) = h(x), t ∈ [0,T ], x ∈ H .

ϕ(t, x), t ∈ [0,T ], x ∈ H is a test function if ϕ is continuous
on (0,T ) ×H and
ϕt , Dϕ, A∗Dϕ D2ϕ are uniformly continuous on (ε,T − ε)×H
for every ε > 0 and locally bounded.
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Viscosity solutions

Subsolution

Subsolution

A continuous function u ∶ (0,T ] ×H → R is a viscosity
subsolution to (10) if u(T , x) ≤ h(x) and whenever u − ϕ has
a global maximum at a point (t, x) for a test function ϕ then

(11)
∂ϕ

∂t
(t, x) + inf

a∈Λ
[Laϕ(t, x) + f (x , a)] ≥ 0.
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Viscosity solutions

Supersolution and viscosity solution

Supersolution and viscosity solution

A continuous function u ∶ (0,T ] ×H → R is a viscosity
supersolution to (10) if u(T , x) ≥ h(x) and whenever u −ϕ has
a global minimum at a point (t, x) for a test function ϕ then

(12)
∂ϕ

∂t
(t, x) + inf

a∈Λ
[Laϕ(t, x) + f (x , a)] ≤ 0.

A viscosity solution to (10) is a function which is both
subsolution and supersolution.
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Viscosity solutions

Assumptions

Assumptions

(A3) ∥g(x , a) − g(y , a)∥ + ∥G(x , a) −G(y , a)∥ ≤ C∥x − y∥,
(A4) ∥g(0, a)∥ + ∥G(0, a)∥ ≤ C ,
(A5) ∣f (x , a) − f (y , a)∥ + ∥h(x) − h(y)∥ ≤ σ(∥x − y∥),

f ,h continuous, σ modulus of confinity

(A6) ∫
U
(∥z∥2 ∧ ∥z∥)ν(dz) < +∞.
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Viscosity solutions

Existence theorem

Existence theorem

Theorem 1
Under (A3)–(A6) the value function V is a viscosity solution
to (10).
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Uniqueness of viscosity solutions

B-continuity

B-continuity

Let B-positive definite, bounded operator on H such that for
some c0:

⟨(−A∗B + c0B)x , x⟩ ≥ 0, for all x ∈ B .

Define
∥x∥B = ∥B1/2x∥ = ⟨Bx , x⟩1/2,

u is B-continuous on (0,T ] ×H if whenever tn → t, Bxn → Bx
and xn bounded, u(tn, xn)→ u(t, x).
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Uniqueness of viscosity solutions

Uniqueness

Uniqueness

(A3)′ ∥g(x , a)− g(y , a)∥+ ∥G(x , a)−G(y , a)∥ ≤ C∥x − y∥B

(A5)′ ∣f (x , a) − f (y , a)∣ + ∥h(x) − h(y)∣ ≤ σ(∥x − y∥B)

B-test functions, B-viscosity solution is B-continuous.

Jerzy Zabczyk Control of evolution equations with Lévy noise



Control of evolution equations with Lévy noise

Uniqueness of viscosity solutions

Uniqueness

B-test functions

ψ = ϕ + δ(t, x)h(∥x∥),

(i) ϕt ,Dϕ,D2ϕ,A∗Dϕ, δt ,Dδ,D2δ,A∗Dδ are uniformly
continuous on (ε,T − ε) ×H for every ε > 0, δ ≥ 0 and is
bounded, ϕ is B-lower semicontinuous, δ is B-continuous.

(ii) h is even, h′,h′′ are uniformly continuous on R, h′(r) ≥ 0
for r ∈ (0,+∞).

Viscosity subsolutions are requiered to be B- upper
semicontinous.
Viscosity supersolutions are required to be B- lower
semicontinous
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Uniqueness of viscosity solutions

Uniqueness

Theorem 2
Under (A3)′, (A4), (A5)′, (A6) equation (10) has unique
B-viscosity solution. It is identical with the value function.
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Controlled wave equation

Wave equation

Wave equation

∂2x

∂s2 = (∆x(s, ξ) + ḡ(x(s, ξ), a(s))) ds +G(x(s−, ξ), a(s))dZ(s).

Initial and boundary conditions, s ∈ [t,T ]:

x(t, ξ) = x̄(ξ),
∂x

∂t
(s, ξ) = y(s, ξ) = 0, ξ ∈ ∂O,

x(s, ξ) – position, ∂x∂s (s, ξ) = y(s, ξ) – velocity

X (s) = (
x(s, ⋅)
y(s, ⋅)

) ∈ H =
⎛
⎜
⎝

H1
0(O)

×

L2(O)

⎞
⎟
⎠
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Controlled wave equation

Wave equation

A = (
0, I
∆, 0) , D(A) =

⎛
⎜
⎝

H1
0(O) ∩H2(O)

×

H1
0(O)

⎞
⎟
⎠

g ((
x

y
), a) = (

0
ḡ(x , a)

), G ((
x

y
), a) = (

0
G(y , a)

)
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Controlled wave equation

Wave equation

B = (
(−∆)−

1
2 , 0

0, (−∆)−
1
2
)

∥(
x

y
)∥

B

= (∥(−∆)−
1
4 x∥2

L2(O) + ∥(−∆)−
1
4 y∥2

L2(O))
1/2

Z – one dimensional Lévy process.
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Mild HJB equation

Additive noise

Additive noise

dX (s) = (AX (s) + g(X (s), a(s)))ds + dZ(s),(13)
∂v

∂t
(t, x) = ⟨Ax ,Dv(t, x)⟩ + ∫

H
(v(t, x + z)

− v(t, x) − ⟨Dv(t, x), z⟩)ν(dz)

+ inf
a∈Λ

⟨g(x , a),Dv(t, x)⟩.

v(0, x) = h(x)
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Mild HJB equation

Mild HJB equation

Additive noise

∂v

∂t
(t, x) = Av(t, x) +H(x ,Dv(t, x))(14)

v(0, x) = h(x)

H(x ,p) = infa∈Λ⟨g(x , a),p⟩, A generator of

dY (s) = AY (s)ds + dZ(s),

Pt transition semigroup of Y ,

(15) v(t, x) = Pth(x) + ∫
t

0
Pt−s[H(⋅),Dv(s, ⋅)]ds.
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Mild HJB equation

Existence theorem, α-Stable systems

α-Stable systems

dX (s) = (AX (s) + g(X (s), a(s)))ds + dZ(s)

Assumption (A1):

Aen = −λnen, n = 1,2, . . . Z(s) =
+∞
∑
n=1
βnZn(s)en,

Zn independent, α -stable processes .
+∞
∑
n=1

βαn
λn

< +∞,
βαn
λn

≥ c
1
λαγn

, n = 1, . . . , γ ∈ (0,1),

Assumption (A2): For some constants M ,C

∣H(x ,p) −H(x ,q)∣ ≤M∥p − q∥, p,q, x ∈ H ,

∣H(x ,p) −H(y ,p)∣ ≤ C∥x − y∥∥p∥, q, x , y ∈ H .
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Mild HJB equation

Existence theorem, α-Stable systems

Space C 1,γ, of continuous functions u(t, x), ∈ [0,T ], x ∈ H
s.t.

∥u∥C1,γ = sup
0<t≤T

[sup
x

∣u(t, x)∣ + tγ sup
x

∥Du(t, x)∥]

Theorem 3
Assume α ∈ (1,2). Under (A1), (A2) equation (15) has
unique solution in C 1,γ([0,T ],H)
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BSDE method

X (s) = x + ∫
s

t
g(X (r))dr + ∫

s

t
∫
U
G(X (r−), z)π̂(ds,dz)

Y (s) + ∫
T

s
∫
U
Z(r , z)π̂(dr ,dz)

= ∫

T

s
f (X (r),Y (r),Z(r , ⋅)dr + h(X (T )).

Then
u(t, x) = Y (t; t.x)

satisfies a nonlinear parabolic type equation. Under proper
choice of f it is a HJB equation.
The controlled equation is of the form

dX (s) = g(X (s)))ds+∫
U
G(X (s−), z)(1+R(X (s−), z , a)) π̂(ds,dz)
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Main tools

Proposition 1
Let An = nA(nI +A)−1, be the Yosida approximations of A. If a
predictable process φ(r), r ∈ [t,T ] is such that

E∫
T

t
∥φ(r)∥2

H dr < +∞,

then the stochastic convolution

ψ(s) = ∫
s

t
∫
U
e(s−r)Aφ(r ,u)π̂(dr ,du), t ≤ s ≤ T

has a cádlág modification and
(16)

lim
n→∞

E sup
t≤s≤T

∥∫

s

t
∫
U
(e(s−r)An − e(s−r)A)φ(r ,u)π̂(dr ,du)∥

2

= 0.
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Main tools

Proposition 2

Let (Ωi ,Fi ,F
i ,t
s ,Pi ,Li) , i = 1,2, be two reference probability

spaces and πi , i = 1,2, be the Poisson random measures for
Li , i = 1,2. and ai strategies. Let
LP1(a1(⋅),L1(⋅)) = LP2(a2(⋅),L2(⋅)) on some subset D ⊂ [0,T ]

of full measure. Denote by Xi(⋅) the unique mild solutions of
the corresponding controlled equations with a(⋅) = ai(⋅)i = 1,2.
Then LP1(X1(⋅), a1(⋅)) = LP2(X2(⋅), a2(⋅)) on D.
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Proof of Theorem 1. Main tools

Dynamic Programming Principle

Dynamic Programming Principle

Yosida approximations are needed to use Ito’s formula.
Unbounded A replaced by bounded An.

V (t, x) = inf
(a(⋅),τa(⋅))

E [∫

τa(⋅)

t
f (X (s), a(s))ds +V (τa(⋅),X (τa(⋅)))]

t ≤ τa(⋅) ≤ T , stopping time
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Proof of Theorem 2. Main tools

Dubling technique of Crandall and Lions

Dubling technique of Crandall and Lions

Show that if u, v are subsolution and supersolution then

u(t, x) − v(t, x) ≤ 0, t ∈ [0,T ], x ∈ H ,

φγ((t, x), (s, y)) = u(t, x) − v(s, y) − ψγ(t, z , s, y), γ-parameters

γ = (ε, β), ψγ(t, x , s, y) =
1
2ε

⟨B(x − y), x − y⟩ −
(t − s)2

2β
,

(t̄, x̄ , s̄, ȳ) ∈ (0,T ] ×H × (0,T ] ×H maximizer of φγ. Then
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Proof of Theorem 2. Main tools

Dubling technique of Crandall and Lions

u(t, x) − v(t, x) = φγ((t, x), (t, x)) ≤ φγ((t̄, x̄), (s̄, ȳ)).

Show that φγ((t̄, x̄), (s̄, ȳ)) is small for proper choice of γ.
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Proof of Theorem 2. Main tools

Pushing maximas

Pushing maximas

Consider map
(t, x)→ φγ((t, x), (s̄, ȳ))

which attains maximum at (t̄, x̄); subsolution property of u
gives relations between (t̄, x̄), (s̄, ȳ).
Consider map

(s, y)→ φγ((t̄, x̄), (s, y))

which attains maximum at (s̄, ȳ); supersolution property of v
gives relations between (t̄, x̄), (s̄, ȳ).
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Proof of Theorem 3. Main tools

Gradient estimates:

Gradient estimates:

Enrico Priola, J. Z. (PTRF, 149 (2011), 97–137).

dY (s) = AY (s)ds + dZ(s), Y (0) = x , Y (s, x)

Ptϕ(x) = E(ϕ(Y (s, x))),

sup
x∈H

∥DPtϕ∥ ≤ cαCt sup
x∈H

∣ϕ(x)∣, t > 0,

cα = ∫
(p′α(z))

2

pα(z)
dz , Ct = sup

n

e−λnt(λn)1/α

βn

pα , the canonical α-stable density
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Comparison property and maximum principle

Comparison property and maximum principle

(17)
d

dt
u(t, x) = A(u(t, x)), u(0, x) = x , x ∈ C(E).

Equation (17) has comparison property iff x ≤ y implies
u(t, x) ≤ u(t, y), t ≥ 0.

Operator A has maximum property iff x ≤ y and
x(ξ) = y(ξ) imply Ax(ξ) ≤ Ay(ξ), ξ ∈ E .

Fact: Comparison property and maximum principle are
equivalent.
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