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Main result
Aim of talk:
Good a priori bound for Φ4

3 equation on torus T3

∂tX = ∆X − (X 3 −∞X ) + ξ. (Φ4)

I Short time theory: Hairer ’14, Catellier-Chouk ’14.
I Show non-explosion!
I Uniform control over solutions at large times ⇒ Construction

of invariant measure.

Main result:
X0 initial datum, ε > 0, p <∞

E
[

sup
0<t≤1

sup
X0∈B

− 3
5∞

(√
t ‖X (t)‖

B
− 1

2−ε∞

)p]
<∞.
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Discussion

E
[
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0<t≤1

sup
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I Bα∞ = Bα∞,∞ = Cα = Besov spaces.
I Regularity −3

5 for X0 is arbitrary - anything > −2
3 is OK.

I Prefactor
√
t is optimal.

Compare to ODE
Solution of ẋ = −x3 with initial datum x0

x(t) =
1√

2t + x−20

≤ 1√
2t
.

Bound uniform over initial datum ⇒ Coming down from ∞.
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Discussion cont’d

E
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(√
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)p]
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Uniform control over large times
For t + 1 ≥ 1 restrict dynamics to [t, t + 1] and use

‖X (t + 1)‖
B
− 1

2−ε∞
≤ sup

0<s≤1
sup

X (t)∈B
− 3

5∞

(√
s ‖X (t + s)‖

B
− 1

2−ε∞

)
.

⇒ uniform-in-t bound on moments.
⇒ Tightness for Krylov-Bogoliubov approximations of invariant

measure

µT (A) =
1
T

∫ T

0
P(X (t) ∈ A) dt.

⇒ Alternative construction of Φ4
3 Euclidean Field Theory.
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Euclidean Φ4
3 theory

Classical Problem:

I Construct the measure

µ ∝ exp
(
− 2

∫ [1
2
|∇ϕ(x)|2− 1

4
ϕ(x)4 +

1
2
∞ϕ(x)2

]
dx
)∏

x

dϕ(x).

I Verify the so called Osterwalder-Schrader axioms.

Solution:
I Glimm-Jaffe ’73, Feldman and Osterwalder ’76, . . . Phase-cell cluster
expansion.

I Benfatto et al. ’80, Gawȩdzki and Kupiainen ’85, Brydges et al. ’94, . . .
Renormalisation group.

I Brydges-Fröhlich-Sokal ’83, . . . Skeleton inequalities.

OS axioms tricky - closely related to stability/uniqueness.
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2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. ’16)
Pt = transition kernel for (Φ4) over two-dimensional torus.

I There exists a unique invariant measure µ associated to (Φ4).
I ∃ λ > 0 such that for t ≥ 1

sup
x
‖Pt(x)− µ‖TV ≤ (1− λ)t .

Comments:
I Uniqueness already shown by Röckner-Zhu-Zhu ’16.
I Convergence to equilibrium uniform over all initial data. Due

to strong non-linear damping.
I Important that we work on finite volume.
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Strategy for exponential equilibration
Doeblin criterion:
Pt = transition kernel for (Φ4). Show that ∃ λ > 0 such that

sup
x ,y
‖P3(x)− P3(y)‖TV ≤ (1− λ) .

Three ingredients:

I Non-linear dissipative bound: Coming back from ∞ in finite
time - exactly 2-dimensional version of our 3-d result.

I Support theorem: Transition probabilities have full support.
I Strong Feller property: Regularity of transition probabilities.

3-d case:
I Strong Feller property Hairer-Mattingly ’16.
I Support theorem: Work in progress Hairer-Schönbauer.

p.7
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Why is the a priori bound true?
Scaling argument (general dimension d)

∂tX = ∆X − X 3 + ξ.

Rescaling t̂ = λ2t, x̂ = λx , ξ̂ = λ
d+2
2 ξ, X̂ = λ

2−d
2 X yields

∂t̂X̂ = ∆X̂ − λ4−d X̂ 3 + ξ̂.

I Small scales λ→ 0: cubic term disappears ⇒ Subcriticality
of equation.

I Large scales λ→∞: cubic term dominates.

Strategy

I Use Schauder theory (aka Regularity structures, paracontrolled
distributions) for small scales.

I Use energy estimates on large scales.
I Difficulty: Combine the two.

p.8
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The 2-d case- Da Prato-Debussche trick
Stochastic step:
solution of stochastic heat equation:

∂t = ∆ + ξ.

Can construct 2  and 3  . All , , distributions in C0−.

Deterministic step:
u = X − .

∂tu = ∆u − ( + u)3

= ∆u −
(
u3 + 3 u2 + 3 u +

)
.

Multiplicative inequality: If α < 0 < β with α + β > 0∥∥τ u∥∥Bα∞ . ∥∥τ∥∥Bα∞ ∥∥u∥∥Bβ∞ .
⇒ Short time existence, uniqueness.
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Renormalised powers

E
[
〈 3
δ , η〉2

]
=

∫
T

∫
T
η(x) η(y)E

[
3
δ(x) 3

δ(y)
]
dx dy .

Gaussian moments

E
[

3
δ(x) 3

δ(y)
]

= 6E
[
δ(x) δ(y)

]3
+ 9E

[
δ(x) δ(y)

]
E
[
δ(x) δ(x)

]2
.
∣∣ log(x − y)

∣∣3 +
∣∣ log(δ)

∣∣2∣∣ log(x − y)
∣∣.

I
∣∣ log(x − y)

∣∣ term is integrable.
∣∣ log(δ)

∣∣ term diverges.
⇒ E

[
〈 3
δ , η〉2

]
diverges for δ → 0.
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Renormalised powers cont’d

: 3
δ(x) := 3

δ(x)− 3Cδ δ(x) where Cδ = E
[
δ(x)2

]
∼ | log(δ)|.

⇒E
[

: 3
δ(x) : : 3

δ(y) :
]

= 6E
[
δ(x) δ(y)

]3
.

⇒E
[
〈: 3

δ :, η〉2
]
remains bounded.

Theorem (Glimm, Jaffe, Nelson, Gross... 70s)
: 3
δ : converges to a random distribution : in B−α∞ for all α > 0.

I : called third Wick power.
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The paracontrolled approach II - The 3-d case
Da Prato-Debussche trick does not work.

Stochastic step:
, , can still be constructed but lower regularity: ∈ C−

1
2−,

∈ C−1−, ∈ C−
3
2−.

Deterministic step:

I Equation for u = X −

∂tu = ∆u −
(
u3 + 3 u2 + 3 u +

)
cannot be solved by Picard iteration.

I Next order expansion u = X − + gives

∂tu = ∆u −
(
u3 + 3 u2 + 3 u − 3 + . . .

)
.

Still cannot be solved, because of u. Expanding further does
not solve the problem.

p.12
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The paracontrolled approach III - A system of equations
Catellier-Chouk: Split up remainder equation: u = v + w

(∂t −∆)v = −3(v + w − )

<

,

(∂t −∆)w = −(v + w)3 − 3(v + w − ) = + . . .

I v ∈ C1− is the most irregular component of u.
I w ∈ C

3
2− more regular remainder.

I < paraproduct.
I Term v = can be rewritten as

v = = −3
[
(v + w − ) <

]
= + com1(v ,w) =

= −3(v + w − )
=

+ com2(v + w) + com1(v ,w).
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Main result

(∂t −∆)v = F (v + w)− cv ,

(∂t −∆)w = G (v ,w) + cv .

Theorem
I For τ = , , ,

=
,

=
,

=
assume

sup
0≤t≤1

‖τ(t)‖Bατ∞ ≤ K , sup
0≤s<t≤1

‖ (t)− (s)‖
B

1
4−ε∞

|t − s|
1
8

≤ K .

I Assume c = c0K
30p, set v0 := 0, w0 = X0 ∈ B

− 3
5∞ .

⇒ for t ∈ (0, 1]

‖w(t)‖L3p−2 ≤
CKκ

√
t
, and ‖v(t)‖B−3ε

2p
≤ CKκ.
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Discussion of terms

(∂t −∆)v = − 3(v + w − ) < − cv ,

(∂t −∆)w = − (v + w)3 − 3com1(v ,w) = − 3w = + . . . .

I v ∈ C−1− most irregular term, but r.h.s. linear.

I −(v + w)3 good term! v term can be absorbed in w term if
c large enough.

↪→ dominates large scales!

I com1(v ,w) = ∈ C
1
2− linear in v ,w . Time regularity of v ,w

needed to control this.

↪→ small scale problem!

I w = linear in w , but derivative or order 1+ needed to control
this.

↪→ small scale problem!

p.15
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Elements of proof
The irregular term v

(∂t −∆)v = −3(v + w − ) < .

Duhamel (parabolic regularity) and “Gronwall” give for β < 1−

‖v(t)‖Bβq . · · · ‖v0‖+ K

∫ t

0

e−c(t−u)

(t − u)σ
(‖w(u)‖Lp + K ) du. (1)

Control for w =

Duhamel (parabolic regularity) gives for γ < 3
2−

‖w(t)‖Bγp . ‖e
t∆w0‖Bγp +

(∫ t

0
‖w(s)‖3p

L3p ds
) 1

p

+
(∫ t

0
‖w(s)‖pB1+4ε

p
ds
) 1

p
+ ‖v0‖3B−3ε

2p
+ . . . . (2)
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Elements of proof cont’d
Testing the equation
If c ≥ c0K

30p , p large enough.

‖w(t)‖3p−2
L3p−2 +

∫ t

0
‖w(s)‖3p

L3p ds

. ‖w0‖3p−2L3p−2 + (cK )κ
[
1 + ‖v0‖3pB−3ε

2p
+

∫ t

0
‖w(s)‖pB1+4ε

p
ds
]
. (3)

Conclusion
Combining (2) and (3), using γ = 1 + 5ε we get

‖w(t)‖3p−2
L3p−2 +

∫ t

s
F (r)λ dr . Kκ

[
1 + ‖v(s)‖3p

B−3ε
2p

+ F (s)
]
.

for F (s) = ‖w(s)‖3p−2
L3p−2 + ‖w(s)‖

3p−2
3
B1+5ε
p

and λ = 3p
3p−2 > 1.

⇒ Conclusion by "ODE comparison" and "stopping for v".
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Combining (2) and (3), using γ = 1 + 5ε we get

‖w(t)‖3p−2
L3p−2 +

∫ t

s
F (r)λ dr . Kκ

[
1 + ‖v(s)‖3p

B−3ε
2p

+ F (s)
]
.

for F (s) = ‖w(s)‖3p−2
L3p−2 + ‖w(s)‖

3p−2
3
B1+5ε
p

and λ = 3p
3p−2 > 1.

⇒ Conclusion by "ODE comparison" and "stopping for v".
p.17



Summary and outlook
Main result
I Strong a priori bound for solutions of Φ4 equation on T3.

I Strong enough to construct invariant measures (Φ4
3 theory on

finite volume).

I On T2 we have exponential convergence to equilibrium.
Ingredients seem to be there for T3 as well.

Method
I Catellier-Chouk’s paracontrolled ansatz. Work with a system.
I Parabolic regularity to control small scales. Energy estimate

for large scales.

Outlook
I How about infinite volume? Uniqueness for invariant measure

not (always) expected.
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