The dynamic Φ_{3}^{4} model comes down from infinity

Hendrik Weber
Mathematics Institute
University of Warwick

11 July 2017
 LMS - EPSRC Durham Symposium on Stochastic Analysis

Joint with J.-C. Mourrat and P. Tsatsoulis

Main result

Aim of talk:
Good a priori bound for Φ_{3}^{4} equation on torus \mathbb{T}^{3}

$$
\begin{equation*}
\partial_{t} X=\Delta X-\left(X^{3}-\infty X\right)+\xi \tag{4}
\end{equation*}
$$

Main result

Aim of talk:
Good a priori bound for Φ_{3}^{4} equation on torus \mathbb{T}^{3}

$$
\partial_{t} X=\Delta X-\left(X^{3}-\infty X\right)+\xi
$$

- Short time theory: Hairer '14, Catellier-Chouk '14.

Main result

Aim of talk:
Good a priori bound for Φ_{3}^{4} equation on torus \mathbb{T}^{3}

$$
\partial_{t} X=\Delta X-\left(X^{3}-\infty X\right)+\xi
$$

- Short time theory: Hairer '14, Catellier-Chouk '14.
- Show non-explosion!

Main result

Aim of talk:
Good a priori bound for Φ_{3}^{4} equation on torus \mathbb{T}^{3}

$$
\partial_{t} X=\Delta X-\left(X^{3}-\infty X\right)+\xi
$$

- Short time theory: Hairer '14, Catellier-Chouk '14.
- Show non-explosion!
- Uniform control over solutions at large times \Rightarrow Construction of invariant measure.

Main result

Aim of talk:
Good a priori bound for Φ_{3}^{4} equation on torus \mathbb{T}^{3}

$$
\partial_{t} X=\Delta X-\left(X^{3}-\infty X\right)+\xi
$$

- Short time theory: Hairer '14, Catellier-Chouk '14.
- Show non-explosion!
- Uniform control over solutions at large times \Rightarrow Construction of invariant measure.

Main result:
X_{0} initial datum, $\varepsilon>0, p<\infty$

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty .
$$

Discussion

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty .
$$

Discussion

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

- $\mathcal{B}_{\infty}^{\alpha}=\mathcal{B}_{\infty, \infty}^{\alpha}=C^{\alpha}=$ Besov spaces.

Discussion

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

- $\mathcal{B}_{\infty}^{\alpha}=\mathcal{B}_{\infty, \infty}^{\alpha}=C^{\alpha}=$ Besov spaces.
- Regularity $-\frac{3}{5}$ for X_{0} is arbitrary - anything $>-\frac{2}{3}$ is OK.

Discussion

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

- $\mathcal{B}_{\infty}^{\alpha}=\mathcal{B}_{\infty, \infty}^{\alpha}=C^{\alpha}=$ Besov spaces.
- Regularity $-\frac{3}{5}$ for X_{0} is arbitrary - anything $>-\frac{2}{3}$ is OK.
- Prefactor \sqrt{t} is optimal.

Discussion

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty .
$$

- $\mathcal{B}_{\infty}^{\alpha}=\mathcal{B}_{\infty, \infty}^{\alpha}=C^{\alpha}=$ Besov spaces.
- Regularity $-\frac{3}{5}$ for X_{0} is arbitrary - anything $>-\frac{2}{3}$ is OK.
- Prefactor \sqrt{t} is optimal.

Compare to ODE

Solution of $\dot{x}=-x^{3}$ with initial datum x_{0}

$$
x(t)=\frac{1}{\sqrt{2 t+x_{0}^{-2}}} \leq \frac{1}{\sqrt{2 t}}
$$

Bound uniform over initial datum \Rightarrow Coming down from ∞.

Discussion cont'd

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

Uniform control over large times
For $t+1 \geq 1$ restrict dynamics to $[t, t+1]$ and use

$$
\|X(t+1)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}} \leq \sup _{0<s \leq 1} \sup _{X(t) \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{s}\|X(t+s)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)
$$

Discussion cont'd

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

Uniform control over large times
For $t+1 \geq 1$ restrict dynamics to $[t, t+1]$ and use

$$
\|X(t+1)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}} \leq \sup _{0<s \leq 1} \sup _{X(t) \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{s}\|X(t+s)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)
$$

\Rightarrow uniform-in- t bound on moments.

Discussion cont'd

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

Uniform control over large times
For $t+1 \geq 1$ restrict dynamics to $[t, t+1]$ and use

$$
\|X(t+1)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}} \leq \sup _{0<s \leq 1} \sup _{X(t) \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{s}\|X(t+s)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right) .
$$

\Rightarrow uniform-in- t bound on moments.
\Rightarrow Tightness for Krylov-Bogoliubov approximations of invariant measure

$$
\mu_{T}(A)=\frac{1}{T} \int_{0}^{T} \mathbb{P}(X(t) \in A) \mathrm{d} t
$$

Discussion cont'd

$$
\mathbb{E}\left[\sup _{0<t \leq 1} \sup _{X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{t}\|X(t)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)^{p}\right]<\infty
$$

Uniform control over large times
For $t+1 \geq 1$ restrict dynamics to $[t, t+1]$ and use

$$
\|X(t+1)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}} \leq \sup _{0<s \leq 1} \sup _{X(t) \in \mathcal{B}_{\infty}^{-\frac{3}{5}}}\left(\sqrt{s}\|X(t+s)\|_{\mathcal{B}_{\infty}^{-\frac{1}{2}-\varepsilon}}\right)
$$

\Rightarrow uniform-in- t bound on moments.
\Rightarrow Tightness for Krylov-Bogoliubov approximations of invariant measure

$$
\mu_{T}(A)=\frac{1}{T} \int_{0}^{T} \mathbb{P}(X(t) \in A) \mathrm{d} t
$$

\Rightarrow Alternative construction of Φ_{3}^{4} Euclidean Field Theory.

Euclidean Φ_{3}^{4} theory

Classical Problem:

Euclidean Φ_{3}^{4} theory

Classical Problem:

- Construct the measure

$$
\mu \propto \exp \left(-2 \int\left[\frac{1}{2}|\nabla \varphi(x)|^{2}-\frac{1}{4} \varphi(x)^{4}+\frac{1}{2} \infty \varphi(x)^{2}\right] d x\right) \prod_{x} d \varphi(x)
$$

Euclidean Φ_{3}^{4} theory

Classical Problem:

- Construct the measure

$$
\mu \propto \exp \left(-2 \int\left[\frac{1}{2}|\nabla \varphi(x)|^{2}-\frac{1}{4} \varphi(x)^{4}+\frac{1}{2} \infty \varphi(x)^{2}\right] d x\right) \prod_{x} d \varphi(x)
$$

- Verify the so called Osterwalder-Schrader axioms.

Euclidean Φ_{3}^{4} theory

Classical Problem:

- Construct the measure
$\mu \propto \exp \left(-2 \int\left[\frac{1}{2}|\nabla \varphi(x)|^{2}-\frac{1}{4} \varphi(x)^{4}+\frac{1}{2} \infty \varphi(x)^{2}\right] d x\right) \prod_{x} d \varphi(x)$.
- Verify the so called Osterwalder-Schrader axioms.

Solution:

- Glimm-Jaffe '73, Feldman and Osterwalder '76, . . . Phase-cell cluster expansion.
- Benfatto et al. '80, Gawędzki and Kupiainen '85, Brydges et al. '94, . . . Renormalisation group.
- Brydges-Fröhlich-Sokal '83, ... Skeleton inequalities.

Euclidean Φ_{3}^{4} theory

Classical Problem:

- Construct the measure
$\mu \propto \exp \left(-2 \int\left[\frac{1}{2}|\nabla \varphi(x)|^{2}-\frac{1}{4} \varphi(x)^{4}+\frac{1}{2} \infty \varphi(x)^{2}\right] d x\right) \prod_{x} d \varphi(x)$.
- Verify the so called Osterwalder-Schrader axioms.

Solution:

- Glimm-Jaffe '73, Feldman and Osterwalder '76, . . . Phase-cell cluster expansion.
- Benfatto et al. '80, Gawędzki and Kupiainen '85, Brydges et al. '94, . . . Renormalisation group.
- Brydges-Fröhlich-Sokal '83, ... Skeleton inequalities.

OS axioms tricky - closely related to stability/uniqueness.

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.
- $\exists \lambda>0$ such that for $t \geq 1$

$$
\sup _{x}\left\|P_{t}(x)-\mu\right\|_{\mathrm{TV}} \leq(1-\lambda)^{t}
$$

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.
- $\exists \lambda>0$ such that for $t \geq 1$

$$
\sup _{x}\left\|P_{t}(x)-\mu\right\|_{\mathrm{TV}} \leq(1-\lambda)^{t}
$$

Comments:

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.
- $\exists \lambda>0$ such that for $t \geq 1$

$$
\sup _{x}\left\|P_{t}(x)-\mu\right\|_{\mathrm{TV}} \leq(1-\lambda)^{t}
$$

Comments:

- Uniqueness already shown by Röckner-Zhu-Zhu '16.

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.
- $\exists \lambda>0$ such that for $t \geq 1$

$$
\sup _{x}\left\|P_{t}(x)-\mu\right\|_{\mathrm{TV}} \leq(1-\lambda)^{t} .
$$

Comments:

- Uniqueness already shown by Röckner-Zhu-Zhu '16.
- Convergence to equilibrium uniform over all initial data. Due to strong non-linear damping.

2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)
$P_{t}=$ transition kernel for (Φ^{4}) over two-dimensional torus.

- There exists a unique invariant measure μ associated to $\left(\Phi^{4}\right)$.
- $\exists \lambda>0$ such that for $t \geq 1$

$$
\sup _{x}\left\|P_{t}(x)-\mu\right\|_{\mathrm{TV}} \leq(1-\lambda)^{t}
$$

Comments:

- Uniqueness already shown by Röckner-Zhu-Zhu '16.
- Convergence to equilibrium uniform over all initial data. Due to strong non-linear damping.
- Important that we work on finite volume.

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

- Non-linear dissipative bound: Coming back from ∞ in finite time - exactly 2 -dimensional version of our 3-d result.

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

- Non-linear dissipative bound: Coming back from ∞ in finite time - exactly 2-dimensional version of our 3-d result.
- Support theorem: Transition probabilities have full support.

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

- Non-linear dissipative bound: Coming back from ∞ in finite time - exactly 2-dimensional version of our 3-d result.
- Support theorem: Transition probabilities have full support.
- Strong Feller property: Regularity of transition probabilities.

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

- Non-linear dissipative bound: Coming back from ∞ in finite time - exactly 2-dimensional version of our 3-d result.
- Support theorem: Transition probabilities have full support.
- Strong Feller property: Regularity of transition probabilities.

3-d case:

- Strong Feller property Hairer-Mattingly '16.

Strategy for exponential equilibration

Doeblin criterion:
$P_{t}=$ transition kernel for $\left(\Phi^{4}\right)$. Show that $\exists \lambda>0$ such that

$$
\sup _{x, y}\left\|P_{3}(x)-P_{3}(y)\right\|_{\mathrm{TV}} \leq(1-\lambda)
$$

Three ingredients:

- Non-linear dissipative bound: Coming back from ∞ in finite time - exactly 2-dimensional version of our 3-d result.
- Support theorem: Transition probabilities have full support.
- Strong Feller property: Regularity of transition probabilities.

3-d case:

- Strong Feller property Hairer-Mattingly '16.
- Support theorem: Work in progress Hairer-Schönbauer.

Why is the a priori bound true?
Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi
$$

Why is the a priori bound true?
Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi .
$$

Rescaling $\hat{t}=\lambda^{2} t, \hat{x}=\lambda x, \hat{\xi}=\lambda^{\frac{d+2}{2}} \xi, \hat{X}=\lambda^{\frac{2-d}{2}} X$ yields

$$
\partial_{\hat{t}} \hat{X}=\Delta \hat{X}-\lambda^{4-d} \hat{X}^{3}+\hat{\xi}
$$

Why is the a priori bound true?

Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi .
$$

Rescaling $\hat{t}=\lambda^{2} t, \hat{x}=\lambda x, \hat{\xi}=\lambda^{\frac{d+2}{2}} \xi, \hat{X}=\lambda^{\frac{2-d}{2}} X$ yields

$$
\partial_{\hat{t}} \hat{X}=\Delta \hat{X}-\lambda^{4-d} \hat{X}^{3}+\hat{\xi} .
$$

- Small scales $\lambda \rightarrow 0$: cubic term disappears \Rightarrow Subcriticality of equation.
- Large scales $\lambda \rightarrow \infty$: cubic term dominates.

Why is the a priori bound true?

Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi .
$$

Rescaling $\hat{t}=\lambda^{2} t, \hat{x}=\lambda x, \hat{\xi}=\lambda^{\frac{d+2}{2}} \xi, \hat{X}=\lambda^{\frac{2-d}{2}} X$ yields

$$
\partial_{\hat{t}} \hat{X}=\Delta \hat{X}-\lambda^{4-d} \hat{X}^{3}+\hat{\xi}
$$

- Small scales $\lambda \rightarrow 0$: cubic term disappears \Rightarrow Subcriticality of equation.
- Large scales $\lambda \rightarrow \infty$: cubic term dominates.

Strategy

- Use Schauder theory (aka Regularity structures, paracontrolled distributions) for small scales.

Why is the a priori bound true?

Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi .
$$

Rescaling $\hat{t}=\lambda^{2} t, \hat{x}=\lambda x, \hat{\xi}=\lambda^{\frac{d+2}{2}} \xi, \hat{X}=\lambda^{\frac{2-d}{2}} X$ yields

$$
\partial_{\hat{t}} \hat{X}=\Delta \hat{X}-\lambda^{4-d} \hat{X}^{3}+\hat{\xi}
$$

- Small scales $\lambda \rightarrow 0$: cubic term disappears \Rightarrow Subcriticality of equation.
- Large scales $\lambda \rightarrow \infty$: cubic term dominates.

Strategy

- Use Schauder theory (aka Regularity structures, paracontrolled distributions) for small scales.
- Use energy estimates on large scales.

Why is the a priori bound true?

Scaling argument (general dimension d)

$$
\partial_{t} X=\Delta X-X^{3}+\xi .
$$

Rescaling $\hat{t}=\lambda^{2} t, \hat{x}=\lambda x, \hat{\xi}=\lambda^{\frac{d+2}{2}} \xi, \hat{X}=\lambda^{\frac{2-d}{2}} X$ yields

$$
\partial_{\hat{t}} \hat{X}=\Delta \hat{X}-\lambda^{4-d} \hat{X}^{3}+\hat{\xi}
$$

- Small scales $\lambda \rightarrow 0$: cubic term disappears \Rightarrow Subcriticality of equation.
- Large scales $\lambda \rightarrow \infty$: cubic term dominates.

Strategy

- Use Schauder theory (aka Regularity structures, paracontrolled distributions) for small scales.
- Use energy estimates on large scales.
- Difficulty: Combine the two.

The 2-d case- Da Prato-Debussche trick
Stochastic step:
i solution of stochastic heat equation:

$$
\partial_{t} \uparrow=\Delta \uparrow+\xi
$$

The 2-d case- Da Prato-Debussche trick
Stochastic step:
i solution of stochastic heat equation:

$$
\partial_{t} \uparrow=\Delta \uparrow+\xi
$$

 Deterministic step: $u=X-\uparrow$.

$$
\begin{aligned}
\partial_{t} u & =\Delta u-(\uparrow+u)^{3} \\
& =\Delta u-\left(u^{3}+3 \uparrow u^{2}+3 v u+v\right) .
\end{aligned}
$$

The 2-d case- Da Prato-Debussche trick
Stochastic step:
i solution of stochastic heat equation:

$$
\partial_{t} \uparrow=\Delta \uparrow+\xi
$$

Deterministic step:
$u=X-$.

$$
\begin{aligned}
\partial_{t} u & =\Delta u-(\uparrow+u)^{3} \\
& =\Delta u-\left(u^{3}+3 \uparrow u^{2}+3 v u+v\right) .
\end{aligned}
$$

Multiplicative inequality: If $\alpha<0<\beta$ with $\alpha+\beta>0$

$$
\|\tau u\|_{\mathcal{B}_{\infty}^{\alpha}} \lesssim\|\tau\|_{\mathcal{B}_{\infty}^{\alpha}}\|u\|_{\mathcal{B}_{\infty}^{\beta}} .
$$

The 2-d case- Da Prato-Debussche trick

Stochastic step:
i solution of stochastic heat equation:

$$
\partial_{t} \boldsymbol{\imath}=\Delta \boldsymbol{\imath}+\xi
$$

Can construct $\mathrm{t}^{2} \rightsquigarrow \vee$ and $\mathrm{t}^{3} \rightsquigarrow \stackrel{\rightharpoonup}{ }$. All $\boldsymbol{\top}, \boldsymbol{v}, \boldsymbol{v}$ distributions in \mathcal{C}^{0-}.
Deterministic step:
$u=X-$.

$$
\begin{aligned}
\partial_{t} u & =\Delta u-(\uparrow+u)^{3} \\
& =\Delta u-\left(u^{3}+3 \uparrow u^{2}+3 v u+\vee\right) .
\end{aligned}
$$

Multiplicative inequality: If $\alpha<0<\beta$ with $\alpha+\beta>0$

$$
\|\tau u\|_{\mathcal{B}_{\infty}^{\alpha}} \lesssim\|\tau\|_{\mathcal{B}_{\infty}^{\alpha}}\|u\|_{\mathcal{B}_{\infty}^{\beta}} .
$$

\Rightarrow Short time existence, uniqueness.

Renormalised powers

$$
\mathbb{E}\left[\left\langle{ }_{\delta}^{3}, \eta\right\rangle^{2}\right]=\int_{\mathbb{T}} \int_{\mathbb{T}} \eta(x) \eta(y) \mathbb{E}\left[\cdot{ }_{\delta}^{3}(x) \stackrel{\tau}{\delta}^{3}(y)\right] d x d y
$$

Renormalised powers

$$
\mathbb{E}\left[\left\langle\iota_{\delta}^{3}, \eta\right\rangle^{2}\right]=\int_{\mathbb{T}} \int_{\mathbb{T}} \eta(x) \eta(y) \mathbb{E}\left[\vdash_{\delta}^{3}(x) \stackrel{\tau}{\delta}_{\delta}^{3}(y)\right] d x d y
$$

Gaussian moments

$$
\begin{aligned}
\mathbb{E}\left[\mathfrak{\imath}_{\delta}^{3}(x)\right. & \left.\mathfrak{\imath}_{\delta}^{3}(y)\right] \\
& =6 \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \mathfrak{\imath}_{\delta}(y)\right]^{3}+9 \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \uparrow_{\delta}(y)\right] \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \mathfrak{\imath}_{\delta}(x)\right]^{2} \\
& \lesssim|\log (x-y)|^{3}+|\log (\delta)|^{2}|\log (x-y)| .
\end{aligned}
$$

- $|\log (x-y)|$ term is integrable. $|\log (\delta)|$ term diverges.

Renormalised powers

$$
\mathbb{E}\left[\left\langle\iota_{\delta}^{3}, \eta\right\rangle^{2}\right]=\int_{\mathbb{T}} \int_{\mathbb{T}} \eta(x) \eta(y) \mathbb{E}\left[\vdash_{\delta}^{3}(x) \stackrel{\tau}{\delta}_{\delta}^{3}(y)\right] d x d y
$$

Gaussian moments

$$
\begin{aligned}
\mathbb{E}\left[\mathfrak{\imath}_{\delta}^{3}(x)\right. & \left.\mathfrak{\imath}_{\delta}^{3}(y)\right] \\
& =6 \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \mathfrak{\imath}_{\delta}(y)\right]^{3}+9 \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \mathfrak{\imath}_{\delta}(y)\right] \mathbb{E}\left[\mathfrak{\imath}_{\delta}(x) \mathfrak{\imath}_{\delta}(x)\right]^{2} \\
& \lesssim|\log (x-y)|^{3}+|\log (\delta)|^{2}|\log (x-y)| .
\end{aligned}
$$

- $|\log (x-y)|$ term is integrable. $|\log (\delta)|$ term diverges.
$\Rightarrow \mathbb{E}\left[\left\langle\left\langle_{\delta}^{3}, \eta\right\rangle^{2}\right]\right.$ diverges for $\delta \rightarrow 0$.

Renormalised powers cont'd

$$
: t_{\delta}^{3}(x):=\vdash_{\delta}^{3}(x)-3 C_{\delta} \imath_{\delta}(x) \text { where } C_{\delta}=\mathbb{E}\left[\uparrow_{\delta}(x)^{2}\right] \sim|\log (\delta)| .
$$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left[: \upharpoonright_{\delta}^{3}(x):: \upharpoonright_{\delta}^{3}(y):\right]=6 \mathbb{E}\left[\upharpoonright_{\delta}(x) \mathfrak{\imath}_{\delta}(y)\right]^{3} \\
& \Rightarrow \mathbb{E}\left[\left\langle: \upharpoonright_{\delta}^{3}:, \eta\right\rangle^{2}\right] \text { remains bounded. }
\end{aligned}
$$

Renormalised powers cont'd

$$
:\left.\right|_{\delta} ^{3}(x):=\vdash_{\delta}^{3}(x)-3 C_{\delta} \imath_{\delta}(x) \text { where } C_{\delta}=\mathbb{E}\left[\uparrow_{\delta}(x)^{2}\right] \sim|\log (\delta)| .
$$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left[: \upharpoonright_{\delta}^{3}(x):: \upharpoonright_{\delta}^{3}(y):\right]=6 \mathbb{E}\left[\uparrow_{\delta}(x) \uparrow_{\delta}(y)\right]^{3} . \\
& \Rightarrow \mathbb{E}\left[\left\langle:\left.\right|_{\delta} ^{3}:, \eta\right\rangle^{2}\right] \text { remains bounded. }
\end{aligned}
$$

Theorem (Glimm, Jaffe, Nelson, Gross... 70s)
: $\upharpoonright_{\delta}^{3}$: converges to a random distribution $\boldsymbol{*}$: in $\mathcal{B}_{\infty}^{-\alpha}$ for all $\alpha>0$.

Renormalised powers cont'd

$$
:\left.\right|_{\delta} ^{3}(x):=\vdash_{\delta}^{3}(x)-3 C_{\delta} \imath_{\delta}(x) \text { where } C_{\delta}=\mathbb{E}\left[\uparrow_{\delta}(x)^{2}\right] \sim|\log (\delta)| .
$$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left[: \upharpoonright_{\delta}^{3}(x):: \upharpoonright_{\delta}^{3}(y):\right]=6 \mathbb{E}\left[\uparrow_{\delta}(x) \uparrow_{\delta}(y)\right]^{3} . \\
& \Rightarrow \mathbb{E}\left[\left\langle: \upharpoonright_{\delta}^{3}:, \eta\right\rangle^{2}\right] \text { remains bounded. }
\end{aligned}
$$

Theorem (Glimm, Jaffe, Nelson, Gross... 70s)
: $\upharpoonright_{\delta}^{3}$: converges to a random distribution $\boldsymbol{*}$: in $\mathcal{B}_{\infty}^{-\alpha}$ for all $\alpha>0$.

- v : called third Wick power.

The paracontrolled approach II - The 3-d case
Da Prato-Debussche trick does not work.

The paracontrolled approach II - The 3-d case

Da Prato-Debussche trick does not work.
Stochastic step:
f, \vee, \vee can still be constructed but lower regularity: $\uparrow \in \mathcal{C}^{-\frac{1}{2}-}$, $v \in \mathcal{C}^{-1-}, \stackrel{\rightharpoonup}{*} \in \mathcal{C}^{-\frac{3}{2}-}$.

The paracontrolled approach II - The 3-d case

Da Prato-Debussche trick does not work.
Stochastic step:
f, \vee, \vee can still be constructed but lower regularity: $\uparrow \in \mathcal{C}^{-\frac{1}{2}-}$,
$v \in \mathcal{C}^{-1-}, v \in \mathcal{C}^{-\frac{3}{2}-}$.
Deterministic step:

- Equation for $u=X-1$

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \cdot u^{2}+3 v u+v\right)
$$

cannot be solved by Picard iteration.

The paracontrolled approach II - The 3-d case

Da Prato-Debussche trick does not work.
Stochastic step:
f, \vee, \vee can still be constructed but lower regularity: $\uparrow \in \mathcal{C}^{-\frac{1}{2}-}$,
$v \in \mathcal{C}^{-1-}, v \in \mathcal{C}^{-\frac{3}{2}-}$.
Deterministic step:

- Equation for $u=X-1$

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \cdot u^{2}+3 v u+v\right)
$$

cannot be solved by Picard iteration.

- Next order expansion $u=X-\uparrow+\Psi$ gives

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \uparrow u^{2}+3 v u-3 \Psi v+\ldots\right) .
$$

The paracontrolled approach II - The 3-d case

Da Prato-Debussche trick does not work.
Stochastic step:
\uparrow, v, \downarrow can still be constructed but lower regularity: $\uparrow \in \mathcal{C}^{-\frac{1}{2}-}$,
$v \in \mathcal{C}^{-1-}, v \in \mathcal{C}^{-\frac{3}{2}-}$.
Deterministic step:

- Equation for $u=X-1$

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \cdot u^{2}+3 v u+v\right)
$$

cannot be solved by Picard iteration.

- Next order expansion $u=X-\uparrow+\Psi$ gives

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \uparrow u^{2}+3 v u-3 \Psi v+\ldots\right)
$$

Still cannot be solved, because of $v u$. Expanding further does not solve the problem.

The paracontrolled approach III - A system of equations
Catellier-Chouk: Split up remainder equation: $u=v+w$

The paracontrolled approach III - A system of equations
Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\left(\partial_{t}-\Delta\right) v=-3(v+w-\Psi) \quad \vee,
$$

- $v \in \mathcal{C}^{1-}$ is the most irregular component of u.

The paracontrolled approach III - A system of equations

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{align*}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \quad \vee \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}
\end{align*}
$$

- $v \in \mathcal{C}^{1-}$ is the most irregular component of u.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.

The paracontrolled approach III - A system of equations

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{align*}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \odot v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}
\end{align*}
$$

- $v \in \mathcal{C}^{1-}$ is the most irregular component of u.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.
- © paraproduct.

The paracontrolled approach III - A system of equations

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3(v+w-\Psi) \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{1-}$ is the most irregular component of u.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.
- © paraproduct.

The paracontrolled approach III - A system of equations
Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{aligned}
& \left(\partial_{t}-\Delta\right) v=-3(v+w-\Psi) \odot v, \\
& \left(\partial_{t}-\Delta\right) w=-(v+w)^{3}-3(v+w-\psi) \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{1-}$ is the most irregular component of u.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.
- \otimes paraproduct.
- Term $v \ominus \vee$ can be rewritten as

$$
\begin{aligned}
v \ominus v & =-3[(v+w-\Psi) \ominus Y] \ominus v+\operatorname{com}_{1}(v, w) \ominus v \\
& =-3(v+w-\Psi) \&+\operatorname{com}_{2}(v+w)+\operatorname{com}_{1}(v, w) .
\end{aligned}
$$

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v, \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Theorem

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Theorem

- For $\tau=\imath, \vee, \Psi, \dot{\mathcal{W}}, \mathbb{\Psi}, \mathcal{W}$ assume

$$
\sup _{0 \leq t \leq 1}\|\tau(t)\|_{\mathcal{B}_{\infty}^{\alpha_{\tau}}} \leq K, \quad \sup _{0 \leq s<t \leq 1} \frac{\| t-\left.s\right|^{\frac{1}{8}}}{\mathcal{B}_{\infty}^{\frac{1}{4}-\varepsilon}} \leq K .
$$

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Theorem

- For $\tau=\imath, \vee, \Psi, \mathscr{\mathcal { K }}, \mathcal{W}, \mathcal{W}$ assume

$$
\sup _{0 \leq t \leq 1}\|\tau(t)\|_{\mathcal{B}_{\infty}^{\alpha}} \leq K, \quad \sup _{0 \leq s<t \leq 1} \frac{\|\Psi(t)-\ddot{Y}(s)\|_{\mathcal{B}_{\infty}^{\frac{1}{4}-\varepsilon}}}{|t-s|^{\frac{1}{8}}} \leq K
$$

- Assume $c=c_{0} K^{30 p}$,

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Theorem

- For $\tau=\imath, \vee, \Psi, \dot{\mathcal{V}}, \mathbb{W}, \mathcal{W}$ assume

$$
\sup _{0 \leq t \leq 1}\|\tau(t)\|_{\mathcal{B}_{\infty}^{\alpha_{\tau}}} \leq K, \quad \sup _{0 \leq s<t \leq 1} \frac{\|(L)}{|t-s|^{\frac{1}{8}}} \leq K .
$$

- Assume $c=c_{0} K^{30 p}$, set $v_{0}:=0, w_{0}=X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}$.

Main result

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =F(v+w)-c v \\
\left(\partial_{t}-\Delta\right) w & =G(v, w)+c v
\end{aligned}
$$

Theorem

- For $\tau=\imath, v, \Psi, \Psi, \mathcal{W}, \mathcal{W}$ assume

$$
\frac{\|\Psi(t)-\Psi(s)\|_{\mathcal{B}_{\infty}^{\frac{1}{\infty}-\varepsilon}}}{|t-s|^{\frac{1}{8}}} \leq K .
$$

- Assume $c=c_{0} K^{30 p}$, set $v_{0}:=0, w_{0}=X_{0} \in \mathcal{B}_{\infty}^{-\frac{3}{5}}$.
\Rightarrow for $t \in(0,1]$

$$
\|w(t)\|_{L^{3 \rho-2}} \leq \frac{C K^{\kappa}}{\sqrt{t}}, \quad \text { and } \quad\|v(t)\|_{\mathcal{B}_{2 \rho}^{-3 \varepsilon}} \leq C K^{\kappa}
$$

Discussion of terms

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \oplus v-c v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \ominus v-3 w \ominus v+\ldots
\end{aligned}
$$

Discussion of terms

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \ominus v-c v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \ominus v-3 w \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.

Discussion of terms

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \oplus v-c v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \ominus v-3 w \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
- $-(v+w)^{3}$ good term! v term can be absorbed in w term if c large enough.
\hookrightarrow dominates large scales!

Discussion of terms

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \oplus v-c v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \ominus v-3 w \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
- $-(v+w)^{3}$ good term! v term can be absorbed in w term if c large enough.
- $\operatorname{com}_{1}(v, w) \Theta v \in \mathcal{C}^{\frac{1}{2}-}$ linear in v, w. Time regularity of v, w needed to control this.
\hookrightarrow small scale problem!

Discussion of terms

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) v & =-3(v+w-\Psi) \oplus v-c v \\
\left(\partial_{t}-\Delta\right) w & =-(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \ominus v-3 w \ominus v+\ldots
\end{aligned}
$$

- $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
- $-(v+w)^{3}$ good term! v term can be absorbed in w term if c large enough.
- $\operatorname{com}_{1}(v, w) \Theta v \in \mathcal{C}^{\frac{1}{2}-}$ linear in v, w. Time regularity of v, w needed to control this.
- $w \ominus v$ linear in w, but derivative or order $1+$ needed to control this.
\hookrightarrow small scale problem!

Elements of proof

The irregular term v

$$
\left(\partial_{t}-\Delta\right) v=-3(v+w-\Psi) \oplus v .
$$

Duhamel (parabolic regularity) and "Gronwall" give for $\beta<1$ -

$$
\begin{equation*}
\|v(t)\|_{\mathcal{B}_{q}^{\beta}} \lesssim \cdots\left\|v_{0}\right\|+K \int_{0}^{t} \frac{e^{-\underline{c}(t-u)}}{(t-u)^{\sigma}}\left(\|w(u)\|_{L^{p}}+K\right) \mathrm{d} u . \tag{1}
\end{equation*}
$$

Elements of proof

The irregular term v

$$
\left(\partial_{t}-\Delta\right) v=-3(v+w-\psi) \odot v .
$$

Duhamel (parabolic regularity) and "Gronwall" give for $\beta<1-$

$$
\begin{equation*}
\|v(t)\|_{\mathcal{B}_{q}^{\beta}} \lesssim \cdots\left\|v_{0}\right\|+K \int_{0}^{t} \frac{e^{-c(t-u)}}{(t-u)^{\sigma}}\left(\|w(u)\|_{L^{p}}+K\right) \mathrm{d} u . \tag{1}
\end{equation*}
$$

Control for $w \ominus v$
Duhamel (parabolic regularity) gives for $\gamma<\frac{3}{2}$ -

$$
\begin{align*}
\|w(t)\|_{\mathcal{B}_{p}^{\gamma}} & \lesssim\left\|e^{t \Delta} w_{0}\right\|_{\mathcal{B}_{p}^{\gamma}}+\left(\int_{0}^{t}\|w(s)\|_{L^{3 p}}^{3 p} \mathrm{~d} s\right)^{\frac{1}{p}} \\
& +\left(\int_{0}^{t}\|w(s)\|_{\mathcal{B}_{p}^{1+4 \varepsilon}}^{p} \mathrm{~d} s\right)^{\frac{1}{p}}+\left\|v_{0}\right\|_{\mathcal{B}_{2 p}^{-3 \varepsilon}}^{3}+\ldots \tag{2}
\end{align*}
$$

Elements of proof cont'd

Testing the equation
If $c \geq c_{0} K^{30 p}, p$ large enough.

$$
\begin{align*}
& \|w(t)\|_{L^{3 p-2}}^{3 p-2}+\int_{0}^{t}\|w(s)\|_{L^{3 p}}^{3 p} \mathrm{~d} s \\
& \lesssim\left\|w_{0}\right\|_{L^{3 p-2}}^{3 p-2}+(c K)^{\kappa}\left[1+\left\|v_{0}\right\|_{\mathcal{B}_{2 p}^{-3 \varepsilon}}^{3 p}+\int_{0}^{t}\|w(s)\|_{\mathcal{B}_{p}^{1+4 \varepsilon}}^{p} \mathrm{~d} s\right] . \tag{3}
\end{align*}
$$

Elements of proof cont'd

Testing the equation
If $c \geq c_{0} K^{30 p}, p$ large enough.

$$
\begin{align*}
& \|w(t)\|_{L^{3 p-2}}^{3 p-2}+\int_{0}^{t}\|w(s)\|_{L^{3 p}}^{3 p} \mathrm{~d} s \\
& \lesssim\left\|w_{0}\right\|_{L^{3 p-2}}^{3 p-2}+(c K)^{\kappa}\left[1+\left\|v_{0}\right\|_{\mathcal{B}_{2 p}^{-3 \varepsilon}}^{3 p}+\int_{0}^{t}\|w(s)\|_{\mathcal{B}_{p}^{1+4 \varepsilon}}^{p} \mathrm{~d} s\right] . \tag{3}
\end{align*}
$$

Conclusion
Combining (2) and (3), using $\gamma=1+5 \varepsilon$ we get

$$
\|w(t)\|_{L^{3 p-2}}^{3 p-2}+\int_{s}^{t} F(r)^{\lambda} \mathrm{d} r \lesssim K^{\kappa}\left[1+\|v(s)\|_{\mathcal{B}_{2 p}^{-3 \varepsilon}}^{3 p}+F(s)\right] .
$$

for $F(s)=\|w(s)\|_{L^{3 p-2}}^{3 p-2}+\|w(s)\|_{\mathcal{B}_{p}^{1+5 \varepsilon}}^{\frac{3 p-2}{3}}$ and $\lambda=\frac{3 p}{3 p-2}>1$.
\Rightarrow Conclusion by "ODE comparison" and "stopping for v ".

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Summary and outlook

Main result

- Strong a priori bound for solutions of ϕ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Method

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Method

- Catellier-Chouk's paracontrolled ansatz. Work with a system.

Summary and outlook

Main result

- Strong a priori bound for solutions of ϕ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Method

- Catellier-Chouk's paracontrolled ansatz. Work with a system.
- Parabolic regularity to control small scales. Energy estimate for large scales.

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Method

- Catellier-Chouk's paracontrolled ansatz. Work with a system.
- Parabolic regularity to control small scales. Energy estimate for large scales.

Outlook

Summary and outlook

Main result

- Strong a priori bound for solutions of Φ^{4} equation on \mathbb{T}^{3}.
- Strong enough to construct invariant measures (Φ_{3}^{4} theory on finite volume).
- On \mathbb{T}^{2} we have exponential convergence to equilibrium. Ingredients seem to be there for \mathbb{T}^{3} as well.

Method

- Catellier-Chouk's paracontrolled ansatz. Work with a system.
- Parabolic regularity to control small scales. Energy estimate for large scales.

Outlook

- How about infinite volume? Uniqueness for invariant measure not (always) expected.

