Weyl calculus with respect to the Gaussian measure and $L^{p}-L^{q}$ boundedness of the OU semigroup in complex time Jan van Neerven, Pierre Portal

LMS-EPSRC Durham Symposium "Stochastic Analysis", 14.07.2017

Overview of the talk

1. Motivation
2. The Ornstein-Uhlenbeck semigroup
3. Position and momentum
4. The Weyl calculus
5. Work in progress

TUDelft

1. Motivation

- γ - the standard Gaussian measure in \mathbb{R}^{d},

$$
\gamma(\mathrm{d} x):=(2 \pi)^{-d / 2} \exp \left(-|x|^{2} / 2\right) \mathrm{d} x
$$

- L - the Ornstein-Uhlenbeck operator

$$
L:=\nabla^{*} \nabla
$$

with ∇ the Malliavin derivative: the realisation of the gradient in $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$.

Integrating by parts, we obtain

$$
L=-\Delta+x \cdot \nabla .
$$

TUDelft

Consider the Dirac operator on $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)$:

$$
D=\left[\begin{array}{cc}
0 & \nabla^{*} \\
\nabla & 0
\end{array}\right]
$$

TUDelft

Consider the Dirac operator on $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)$:

$$
D=\left[\begin{array}{cc}
0 & \nabla^{*} \\
\nabla & 0
\end{array}\right]
$$

Then

$$
D^{2}=\left[\begin{array}{cc}
\nabla^{*} \nabla & 0 \\
0 & \nabla \nabla^{*}
\end{array}\right]=\left[\begin{array}{ll}
L & 0 \\
0 & L
\end{array}\right]
$$

with $\underline{L}:=\nabla \nabla^{*}$.

TUDelft

Consider the Dirac operator on $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)$:

$$
D=\left[\begin{array}{cc}
0 & \nabla^{*} \\
\nabla & 0
\end{array}\right]
$$

Then

$$
D^{2}=\left[\begin{array}{cc}
\nabla^{*} \nabla & 0 \\
0 & \nabla \nabla^{*}
\end{array}\right]=\left[\begin{array}{ll}
L & 0 \\
0 & L
\end{array}\right]
$$

with $\underline{L}:=\nabla \nabla^{*}$.
Key observation:
L does not belong to the functional calculus of ∇,
but $\left[\begin{array}{ll}L & 0 \\ 0 & \underline{L}\end{array}\right]$ belongs to the functional calculus of D.

In a more general (infinite-dimensional, non-symmetric) setting this enabled us to prove:

Theorem. (Maas, vN '09) For $1<p<\infty$ TFAE:

1. The Riesz transform ∇ / \sqrt{L} is bounded on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$
2. \underline{L} has a bounded H^{∞}-calculus on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$

In a more general (infinite-dimensional, non-symmetric) setting this enabled us to prove:

Theorem. (Maas, vN '09) For $1<p<\infty$ TFAE:

1. The Riesz transform ∇ / \sqrt{L} is bounded on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$
2. \underline{L} has a bounded H^{∞}-calculus on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$

Observation: In terms of annihilation and creation operators:

$$
\nabla=\left(a_{1}, \ldots, a_{d}\right), \quad \nabla^{*}=\left(a_{1}^{\dagger}, \ldots, a_{d}^{\dagger}\right)
$$

Associated with these are the position and momentum operators

$$
q_{j}=\frac{1}{\sqrt{2}}\left(a_{j}+a_{j}^{\dagger}\right), \quad p_{j}=\frac{1}{i \sqrt{2}}\left(a_{j}-a_{j}^{\dagger}\right)
$$

TUDelft

In a more general (infinite-dimensional, non-symmetric) setting this enabled us to prove:

Theorem. (Maas, vN '09) For $1<p<\infty$ TFAE:

1. The Riesz transform ∇ / \sqrt{L} is bounded on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$
2. \underline{L} has a bounded H^{∞}-calculus on $L^{p}\left(\mathbb{R}^{d}, \gamma_{d}\right)$

Observation: In terms of annihilation and creation operators:

$$
\nabla=\left(a_{1}, \ldots, a_{d}\right), \quad \nabla^{*}=\left(a_{1}^{\dagger}, \ldots, a_{d}^{\dagger}\right)
$$

Associated with these are the position and momentum operators

$$
q_{j}=\frac{1}{\sqrt{2}}\left(a_{j}+a_{j}^{\dagger}\right), \quad p_{j}=\frac{1}{i \sqrt{2}}\left(a_{j}-a_{j}^{\dagger}\right)
$$

$\Longrightarrow \quad$ Study L in terms of $Q=\left(q_{1}, \ldots, q_{d}\right)$ and $P=\left(p_{1}, \ldots, p_{d}\right)$

TUDelft

2. The Ornstein-Uhlenbeck semigroup

- $-L$ generates a C_{0}-semigroup of contractions on $L^{P}\left(\mathbb{R}^{d}, \gamma\right)$ for all $p \in[1, \infty)$, the so-called Ornstein-Uhlenbeck semigroup, given by

$$
\begin{aligned}
P(t) f(x) & =\int_{\mathbb{R}^{d}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) \mathrm{d} \gamma(y) \\
& =\int_{\mathbb{R}^{d}} M_{t}(x, y) g(y) \mathrm{d} y
\end{aligned}
$$

2. The Ornstein-Uhlenbeck semigroup

- $-L$ generates a C_{0}-semigroup of contractions on $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ for all $p \in[1, \infty)$, the so-called Ornstein-Uhlenbeck semigroup, given by

$$
\begin{aligned}
P(t) f(x) & =\int_{\mathbb{R}^{d}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) \mathrm{d} \gamma(y) \\
& =\int_{\mathbb{R}^{d}} M_{t}(x, y) g(y) \mathrm{d} y
\end{aligned}
$$

with

$$
M_{t}(x, y)=\frac{1}{\left(2 \pi\left(1-e^{-2 t}\right)\right)^{d / 2}} \exp \left(-\frac{\left|e^{-t} x-y\right|^{2}}{2\left(1-e^{-2 t}\right)}\right)
$$

the so-called Mehler kernel.

Probabilistic interpretation:

$$
e^{-\frac{1}{2} t L}=\mathbb{E} f\left(X_{t}^{X}\right)
$$

with X_{t}^{\times}the solution of the stochastic differential equation

$$
\left\{\begin{aligned}
\mathrm{d} X_{t} & =-\frac{1}{2} X_{t} \mathrm{~d} t+\mathrm{d} B_{t} \\
X_{0} & =x
\end{aligned}\right.
$$

with $\left(B_{t}\right)_{t \geq 0}$ a standard Brownian motion.

TUDelft

Analyticity:

- The OU is an analytic C_{0}-semigroup of contractions on $L^{P}\left(\mathbb{R}^{d}, \gamma\right)$ for all $p \in(1, \infty)$, of angle ϕ_{p}, where

$$
\cos \phi_{p}=\left|\frac{2}{p}-1\right|
$$

TUD ${ }^{T}$ ft

Analyticity:

- The OU is an analytic C_{0}-semigroup of contractions on $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ for all $p \in(1, \infty)$, of angle ϕ_{p}, where

$$
\cos \phi_{p}=\left|\frac{2}{p}-1\right|
$$

- The angle ϕ_{p} is optimal [Chill-Fašangová-Metafune-Pallara 05]

Analyticity:

- The OU is an analytic C_{0}-semigroup of contractions on $L^{P}\left(\mathbb{R}^{d}, \gamma\right)$ for all $p \in(1, \infty)$, of angle ϕ_{p}, where

$$
\cos \phi_{p}=\left|\frac{2}{p}-1\right|
$$

- The angle ϕ_{p} is optimal [Chill-Fašangová-Metafune-Pallara 05]
- The domain of analyticity of $e^{-z L}$ in $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ equals the Epperson region

$$
E_{p}=\left\{x+i y \in \mathbb{C}:|\sin (y)|<\tan \left(\phi_{p}\right) \sinh (x)\right\}
$$

and $e^{-z L}$ is contractive there.
[Epperson 89], [García Cuerva-Mauceri-Meda-Sjögren-Torrea 01]

The region E_{p} for $p=4 / 3$ (red)
and the sector of angle ϕ_{p} (orange)
TUDelft

Hypercontractivity:

- $e^{-t L}$ is contractive from $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ to $L^{q}\left(\mathbb{R}^{d}, \gamma\right)$ if and only if

$$
e^{-2 t} \leq \frac{p-1}{q-1}
$$

[Nelson 66]

TUDelft

Hypercontractivity:

- $e^{-t L}$ is contractive from $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ to $L^{q}\left(\mathbb{R}^{d}, \gamma\right)$ if and only if

$$
e^{-2 t} \leq \frac{p-1}{q-1}
$$

[Nelson 66]

- $e^{-z L}$ is contractive from $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ to $L^{q}\left(\mathbb{R}^{d}, \gamma\right)$ if and only if for all $w \in \mathbb{C}$

$$
\left(\operatorname{Im}\left(w e^{-z}\right)\right)^{2}+(q-1)\left(\operatorname{Re}\left(w e^{-z}\right)\right)^{2} \leq(\operatorname{Im} w)^{2}+(p-1)(\operatorname{Re} w)^{2}
$$

[Epperson 89]

3. Position and momentum

On $L^{2}\left(\mathbb{R}^{d}\right)$, consider the position and momentum operators

$$
X=\left(x_{1}, \ldots, x_{d}\right), \quad D=\left(\frac{1}{i} \partial_{1}, \ldots, \frac{1}{i} \partial_{d}\right) .
$$

TUDelft

3. Position and momentum

On $L^{2}\left(\mathbb{R}^{d}\right)$, consider the position and momentum operators

$$
X=\left(x_{1}, \ldots, x_{d}\right), \quad D=\left(\frac{1}{i} \partial_{1}, \ldots, \frac{1}{i} \partial_{d}\right) .
$$

They satisfy the commutation relations

$$
\begin{equation*}
\left[x_{j}, x_{k}\right]=\left[D_{j}, D_{k}\right]=0 \quad\left[x_{j}, D_{k}\right]=i \delta_{j k} . \tag{1}
\end{equation*}
$$

TUD ${ }^{3}$ Ift

3. Position and momentum

On $L^{2}\left(\mathbb{R}^{d}\right)$, consider the position and momentum operators

$$
X=\left(x_{1}, \ldots, x_{d}\right), \quad D=\left(\frac{1}{i} \partial_{1}, \ldots, \frac{1}{i} \partial_{d}\right) .
$$

They satisfy the commutation relations

$$
\begin{equation*}
\left[x_{j}, x_{k}\right]=\left[D_{j}, D_{k}\right]=0 \quad\left[x_{j}, D_{k}\right]=i \delta_{j k} . \tag{1}
\end{equation*}
$$

Note:

$$
\sum_{j}\left(D_{j}^{2}+x_{j}^{2}\right)=-\Delta+|x|^{2}
$$

Let $m(\mathrm{~d} x)=(2 \pi)^{-d / 2} \mathrm{~d} x$ denote the normalised Lebesgue measure on \mathbb{R}^{d}.

- The pointwise multiplier

$$
E f(x):=e(x) f(x)
$$

with $e(x):=\exp \left(-\frac{1}{4}|x|^{2}\right)$, is unitary from $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$ onto $L^{2}\left(\mathbb{R}^{d}, m\right)$.

Let $m(\mathrm{~d} x)=(2 \pi)^{-d / 2} \mathrm{~d} x$ denote the normalised Lebesgue measure on \mathbb{R}^{d}.

- The pointwise multiplier

$$
E f(x):=e(x) f(x)
$$

with $e(x):=\exp \left(-\frac{1}{4}|x|^{2}\right)$, is unitary from $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$ onto $L^{2}\left(\mathbb{R}^{d}, m\right)$.

- The dilation

$$
\delta f(x):=(\sqrt{2})^{d} f(\sqrt{2} x)
$$

is unitary on $L^{2}\left(\mathbb{R}^{d}, m\right)$.

Let $m(\mathrm{~d} x)=(2 \pi)^{-d / 2} \mathrm{~d} x$ denote the normalised Lebesgue measure on \mathbb{R}^{d}.

- The pointwise multiplier

$$
E f(x):=e(x) f(x)
$$

with $e(x):=\exp \left(-\frac{1}{4}|x|^{2}\right)$, is unitary from $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$ onto $L^{2}\left(\mathbb{R}^{d}, m\right)$.

- The dilation

$$
\delta f(x):=(\sqrt{2})^{d} f(\sqrt{2} x)
$$

is unitary on $L^{2}\left(\mathbb{R}^{d}, m\right)$.
Consequently,

- The operator

$$
U:=\delta \circ E
$$

is unitary from $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$ onto $L^{2}\left(\mathbb{R}^{d}, m\right)$.

By [Segal 56] the operator U establishes a unitary equivalence

$$
\mathscr{W}=U^{-1} \circ \mathscr{F} \circ U
$$

of the Fourier-Plancherel transform \mathscr{F} as a unitary operator on $L^{2}\left(\mathbb{R}^{d}, m\right)$,

$$
\mathscr{F} f(y)=\int_{\mathbb{R}^{d}} f(x) \exp (-i x \cdot y) \mathrm{d} m(x),
$$

with the unitary operator \mathscr{W} on $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, defined for polynomials f by

$$
\mathscr{W} f(y):=\int_{\mathbb{R}^{d}} f(-i y+\sqrt{2} x) \mathrm{d} \gamma(x) .
$$

TUDelft

By [Segal 56] the operator U establishes a unitary equivalence

$$
\mathscr{W}=U^{-1} \circ \mathscr{F} \circ U
$$

of the Fourier-Plancherel transform \mathscr{F} as a unitary operator on $L^{2}\left(\mathbb{R}^{d}, m\right)$,

$$
\mathscr{F} f(y)=\int_{\mathbb{R}^{d}} f(x) \exp (-i x \cdot y) \mathrm{d} m(x),
$$

with the unitary operator \mathscr{W} on $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, defined for polynomials f by

$$
\mathscr{W} f(y):=\int_{\mathbb{R}^{d}} f(-i y+\sqrt{2} x) \mathrm{d} \gamma(x) .
$$

We have the following representation of this operator in terms of the second quantisation functor Γ :

$$
\mathscr{W}=\Gamma(-i)
$$

By [Segal 56] the operator U establishes a unitary equivalence

$$
\mathscr{W}=U^{-1} \circ \mathscr{F} \circ U
$$

of the Fourier-Plancherel transform \mathscr{F} as a unitary operator on $L^{2}\left(\mathbb{R}^{d}, m\right)$,

$$
\mathscr{F} f(y)=\int_{\mathbb{R}^{d}} f(x) \exp (-i x \cdot y) \mathrm{d} m(x),
$$

with the unitary operator \mathscr{W} on $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, defined for polynomials f by

$$
\mathscr{W} f(y):=\int_{\mathbb{R}^{d}} f(-i y+\sqrt{2} x) \mathrm{d} \gamma(x) .
$$

We have the following representation of this operator in terms of the second quantisation functor Γ :

$$
\mathscr{W}=\Gamma(-i) .
$$

NB.: Without the dilation δ, this identity would not come out right.

TUDelft

Gaussian position and momentum

On $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, consider the Gaussian position and Gaussian momentum operators

$$
Q=\left(q_{1}, \ldots, q_{d}\right), \quad P=\left(p_{1}, \ldots, p_{d}\right),
$$

where

$$
q_{j}:=U^{-1} \circ x_{j} \circ U, \quad p_{j}:=U^{-1} \circ D_{j} \circ U .
$$

TUDelft

Gaussian position and momentum

On $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, consider the Gaussian position and Gaussian momentum operators

$$
Q=\left(q_{1}, \ldots, q_{d}\right), \quad P=\left(p_{1}, \ldots, p_{d}\right),
$$

where

$$
q_{j}:=U^{-1} \circ x_{j} \circ U, \quad p_{j}:=U^{-1} \circ D_{j} \circ U .
$$

They satisfy the Heisenberg commutation relations

$$
\left[p_{j}, p_{k}\right]=\left[q_{j}, q_{k}\right]=0, \quad\left[q_{j}, p_{k}\right]=i \delta_{j k} .
$$

Gaussian position and momentum

On $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$, consider the Gaussian position and Gaussian momentum operators

$$
Q=\left(q_{1}, \ldots, q_{d}\right), \quad P=\left(p_{1}, \ldots, p_{d}\right),
$$

where

$$
q_{j}:=U^{-1} \circ x_{j} \circ U, \quad p_{j}:=U^{-1} \circ D_{j} \circ U .
$$

They satisfy the Heisenberg commutation relations

$$
\left[p_{j}, p_{k}\right]=\left[q_{j}, q_{k}\right]=0, \quad\left[q_{j}, p_{k}\right]=i \delta_{j k} .
$$

We have

$$
\frac{1}{2}\left(P^{2}+Q^{2}\right)=L+\frac{d}{2} I,
$$

with L the OU operator (in the physics literature: L is the 'boson number operator', $\frac{1}{2}\left(P^{2}+Q^{2}\right)$ the 'quantum harmonic oscillator', and $\frac{d}{2}$ the 'ground state energy').

TUUDelft

4. The Weyl calculus

For Schwartz functions $a: \mathbb{R}^{2 d} \rightarrow \mathbb{C}$ define

$$
a(X, D) f(x):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \widehat{a}(u, v) \exp (i(u X+v D)) f(x) m(\mathrm{~d} u) m(\mathrm{~d} v) .
$$

Here

- \hat{a} is the Fourier-Plancherel transform of a,

4. The Weyl calculus

For Schwartz functions $a: \mathbb{R}^{2 d} \rightarrow \mathbb{C}$ define

$$
a(X, D) f(x):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \widehat{a}(u, v) \exp (i(u X+v D)) f(x) m(\mathrm{~d} u) m(\mathrm{~d} v) .
$$

Here

- \widehat{a} is the Fourier-Plancherel transform of a,
- the unitary operators $\exp (i(u X+v D))$ on $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$ are defined through the action

$$
\exp (i(u X+v D)) f(x):=\exp \left(i u x+\frac{1}{2} i u v\right) f(v+x)
$$

(formally apply the Baker-Campbell-Hausdorff formula and use the commutator relations, or note that it gives a unitary representation of the Heisenberg group; see [Hall 13]).

The Gaussian Weyl calculus
For Schwartz functions $a: \mathbb{R}^{2 d} \rightarrow \mathbb{C}$ define

$$
a(Q, P):=U^{-1} \circ a(X, D) \circ U .
$$

TUDelft

The Gaussian Weyl calculus

For Schwartz functions $a: \mathbb{R}^{2 d} \rightarrow \mathbb{C}$ define

$$
a(Q, P):=U^{-1} \circ a(X, D) \circ U .
$$

By explicit computation,

$$
a(Q, P) f(x)=\int_{\mathbb{R}^{d}} K_{a}(x, y) f(y) \mathrm{d} y,
$$

where

$$
\begin{array}{rl}
K_{a}(x, y):=\frac{1}{(2 \sqrt{2} \pi)^{d}} \int_{\mathbb{R}^{d}} & a\left(\frac{x+y}{2 \sqrt{2}}, \xi\right) \\
& \times \exp \left(i \xi\left(\frac{x-y}{\sqrt{2}}\right)\right) \exp \left(\frac{1}{4}|x|^{2}-\frac{1}{4}|y|^{2}\right) \mathrm{d} \xi .
\end{array}
$$

TUDelft

Recall the identity $\frac{1}{2}\left(P^{2}+Q^{2}\right)=L+\frac{1}{2} I$. Thus one would expect

$$
e^{-z L}=e^{-\frac{1}{2} z} \exp \left(-\frac{1}{2} z\left(P^{2}+Q^{2}\right)\right) .
$$

But this ignores the commutation relations of P and Q.

Recall the identity $\frac{1}{2}\left(P^{2}+Q^{2}\right)=L+\frac{1}{2} l$. Thus one would expect

$$
e^{-z L}=e^{-\frac{1}{2} z} \exp \left(-\frac{1}{2} z\left(P^{2}+Q^{2}\right)\right) .
$$

But this ignores the commutation relations of P and Q.
Rather, the Weyl calculus gives:

Theorem 1.

$$
e^{-z L}=\left(1+\frac{1-e^{-z}}{1+e^{-z}}\right)^{d} \exp \left(-\frac{1-e^{-z}}{1+e^{-z}}\left(P^{2}+Q^{2}\right)\right)
$$

NB.: The RHS can be computed explicitly using the integral representation for the Weyl calculus.

Recall the identity $\frac{1}{2}\left(P^{2}+Q^{2}\right)=L+\frac{1}{2} l$. Thus one would expect

$$
e^{-z L}=e^{-\frac{1}{2} z} \exp \left(-\frac{1}{2} z\left(P^{2}+Q^{2}\right)\right) .
$$

But this ignores the commutation relations of P and Q.
Rather, the Weyl calculus gives:

Theorem 1.

$$
e^{-z L}=\left(1+\frac{1-e^{-z}}{1+e^{-z}}\right)^{d} \exp \left(-\frac{1-e^{-z}}{1+e^{-z}}\left(P^{2}+Q^{2}\right)\right) .
$$

NB.: The RHS can be computed explicitly using the integral representation for the Weyl calculus.

Sketch of the proof: By elementary computation, the integral representation for $a_{s}(Q, P)$, with $s=\frac{1-e^{-t}}{1+e^{-t}}$, reduces to the Mehler formula for $e^{-t L}$.

Theorem 1 suggests the study of the family of operators

$$
\exp \left(-s\left(P^{2}+Q^{2}\right)\right), \quad \text { Res }>0
$$

With

$$
a_{s}(x)=\exp \left(-s\left(|x|^{2}+|y|^{2}\right)\right)
$$

we obtain

$$
\begin{aligned}
& \exp \left(-s\left(P^{2}+Q^{2}\right)\right) f(x)=\int_{\mathbb{R}^{d}} K_{a_{s}}(x, y) f(y) \mathrm{d} y \\
& \quad=\frac{1}{2^{d}(2 \pi s)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{8 s}(1-s)^{2}\left(|x|^{2}+|y|^{2}\right)+\frac{1}{4}\left(\frac{1}{s}-s\right) x y\right) f(y) \mathrm{d} \gamma(y)
\end{aligned}
$$

Theorem 1 suggests the study of the family of operators

$$
\exp \left(-s\left(P^{2}+Q^{2}\right)\right), \quad \text { Res }>0
$$

With

$$
a_{s}(x)=\exp \left(-s\left(|x|^{2}+|y|^{2}\right)\right)
$$

we obtain

$$
\begin{aligned}
& \exp \left(-s\left(P^{2}+Q^{2}\right)\right) f(x)=\int_{\mathbb{R}^{d}} K_{a_{s}}(x, y) f(y) \mathrm{d} y \\
& \quad=\frac{1}{2^{d}(2 \pi s)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{8 s}(1-s)^{2}\left(|x|^{2}+|y|^{2}\right)+\frac{1}{4}\left(\frac{1}{s}-s\right) x y\right) f(y) \mathrm{d} \gamma(y)
\end{aligned}
$$

Note the symmetry in x and y.

Consider the Gaussian measure in \mathbb{R}^{d} with variance τ,

$$
\gamma_{\tau}(\mathrm{d} x):=(2 \pi \tau)^{-d / 2} \exp \left(-|x|^{2} / 2 \tau\right) \mathrm{d} x .
$$

Define, for $\operatorname{Re} s>0$,

$$
r_{ \pm}(s):=\frac{1}{2} \operatorname{Re}\left(\frac{1}{s} \pm s\right) .
$$

Theorem 2. Let $p, q \in[1, \infty)$ and let $\alpha, \beta>0$. If $1-\frac{2}{\alpha p}+r_{+}(s)>0$, $\frac{2}{\beta q}-1+r_{+}(s)>0$, and
$(*) \quad\left(r_{-}(s)\right)^{2} \leq\left(1-\frac{2}{\alpha p}+r_{+}(s)\right)\left(\frac{2}{\beta q}-1+r_{+}(s)\right)$,
then $\exp \left(-s\left(P^{2}+Q^{2}\right)\right)$ is bounded from $L^{p}\left(\mathbb{R}^{d}, \gamma_{\alpha}\right)$ to $L^{q}\left(\mathbb{R}^{d}, \gamma_{\beta}\right)$.

The case ' $<$ ' in (*) follows by a simple application of Hölder's inequality! To get the result with ' \leq ' in $(*)$, a Schur estimate is used instead:
Lemma. (Schur estimate) Let $p, q, r \in[1, \infty)$ be such that $\frac{1}{r}=1-\left(\frac{1}{p}-\frac{1}{q}\right)$. If $K \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$ and $\phi, \psi: \mathbb{R} \rightarrow(0, \infty)$ are integrable functions such that

$$
\sup _{y \in \mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|K(y, x)|^{r} \frac{\psi^{r / q}(y)}{\phi^{r / p}(x)} \mathrm{d} x\right)^{1 / r}=: C_{1}<\infty
$$

and

$$
\sup _{x \in \mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|K(y, x)|^{r^{r / q}(y)} \frac{\psi^{r / p}(x)}{\left.\phi^{r} y\right)^{1 / r}=: C_{2}<\infty, ~ \text {. }}\right.
$$

then

$$
T_{K} f(y):=\int_{\mathbb{R}} K(y, x) f(x) \mathrm{d} x \quad\left(f \in C_{\mathrm{c}}(\mathbb{R})\right)
$$

defines a bounded operator T_{K} from $L^{p}\left(\mathbb{R}^{d}, \phi(x) \mathrm{d} x\right)$ to $L^{q}\left(\mathbb{R}^{d}, \psi(x) \mathrm{d} x\right)$ with norm

$$
\left\|T_{K}\right\|_{L^{p}\left(\mathbb{R}^{d}, \phi(x) \mathrm{d} x\right) \rightarrow L^{q}\left(\mathbb{R}^{d}, \psi(x) \mathrm{d} x\right)} \leq C_{1}^{1-\frac{r}{q}} C_{2}^{\frac{r}{q}}
$$

TUD ${ }^{T}$ Ift

Proposition. Theorem 2 implies Epperson's $L^{p}-L^{q}$ boundedness criterion. Proof. Substitute $z=x+i y$ and check that Epperson's criterion implies the positivity conditions of Theorem 2.
This involves only elementary (but quite miraculous) high-school algebra.

TUDelft

Proposition. Theorem 2 implies Epperson's $L^{p}-L^{q}$ boundedness criterion.
Proof. Substitute $z=x+i y$ and check that Epperson's criterion implies the positivity conditions of Theorem 2.

This involves only elementary (but quite miraculous) high-school algebra. The crucial thing is to recognise (we used MAPLE) that

$$
\underbrace{\begin{array}{r}
(q-1)\left(\left(1-\left(x^{2}+y^{2}\right)\right)^{2}+4 y^{2}\right)^{2}+(2-p-q)\left(1-\left(x^{2}+y^{2}\right)\right)^{2}\left((1+x)^{2}+y^{2}\right)^{2} \\
-(2-p-q+p q) 4 y^{2}\left((1+x)^{2}+y^{2}\right)^{2}+(p-1)\left((1+x)^{2}+y^{2}\right)^{4}
\end{array}}_{\text {the positivity condition in Epperson's criterion }}
$$

factors as

$$
\underbrace{\left[4\left((1+x)^{2}+y^{2}\right)^{2}\right]}_{\geq 0} \times \underbrace{\left[(p-q) x\left(1+x^{2}+y^{2}\right)+(2 p+2 q-4) x^{2}-(p q-2 p-2 q+4) y^{2}\right]}_{\text {the positivity condition in Theorem } 2} .
$$

Corollary. For $p \in(1, \infty)$, the operator-valued function

$$
s \mapsto \exp \left(-s\left(P^{2}+Q^{2}\right)\right)
$$

is bounded and holomorphic on the sector $\Sigma_{\phi_{p}}$.

Corollary. For $p \in(1, \infty)$, the operator-valued function

$$
s \mapsto \exp \left(-s\left(P^{2}+Q^{2}\right)\right)
$$

is bounded and holomorphic on the sector $\Sigma_{\phi_{p}}$.
Proof. For $q=p$ and $z=x+i y$, Epperson's $L^{p}-L^{q}$ criterion reduces to

$$
p^{2}\left(\frac{x^{2}}{x^{2}+y^{2}}-1\right)+4 p-4>0
$$

which is equivalent to saying that $s \in \Sigma_{\phi_{p}}$.

Corollary. For $p \in(1, \infty)$, the operator-valued function

$$
s \mapsto \exp \left(-s\left(P^{2}+Q^{2}\right)\right)
$$

is bounded and holomorphic on the sector $\Sigma_{\phi_{p}}$.
Proof. For $q=p$ and $z=x+i y$, Epperson's $L^{p}-L^{q}$ criterion reduces to

$$
p^{2}\left(\frac{x^{2}}{x^{2}+y^{2}}-1\right)+4 p-4>0
$$

which is equivalent to saying that $s \in \Sigma_{\phi_{p}}$.
NB: $s=\frac{1-e^{-z}}{1+e^{-z}}$ maps the Epperson region E_{p} to $\Sigma_{\phi_{p}}$!
Thus we recover that E_{p} is the L^{p}-domain of holomorphy of $e^{-z L}$.

For $p=1$ the following is due to [Bakry, Bolley, Gentil 12] by very different methods (they get contractivity):

Corollary. Let $p \in[1,2]$. For all $\operatorname{Rez}>0$ the operator $\exp (-z L)$ maps $L^{p}\left(\mathbb{R}^{d}, \gamma_{2 / p}\right)$ into $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$.

TUDelft

For $p=1$ the following is due to [Bakry, Bolley, Gentil 12] by very different methods (they get contractivity):

Corollary. Let $p \in[1,2]$. For all $\operatorname{Rez}>0$ the operator $\exp (-z L)$ maps $L^{p}\left(\mathbb{R}^{d}, \gamma_{2 / p}\right)$ into $L^{2}\left(\mathbb{R}^{d}, \gamma\right)$.
As a consequence, the semigroup generated by $-L$ extends to an analytic C_{0}-semigroup on $L^{p}\left(\mathbb{R}^{d}, \gamma_{2 / p}\right)$ of angle $\frac{1}{2} \pi$.
(Recall that $-L$ extends to an analytic C_{0}-semigroup on $L^{p}\left(\mathbb{R}^{d}, \gamma\right)$ of non-trivial angle ϕ_{p}.)

5. Work in progress

Much of this can be generalised to the setting of a Weyl pair (A, B) of two densely defined linear operators on a Banach space X such that
(a) $i A$ and $i B$ generate bounded C_{0}-groups on X
(b) $e^{i s A} e^{i t B}=e^{i s t} e^{i t B} e^{i s A}$ for all $s, t \in \mathbb{R}$

5. Work in progress

Much of this can be generalised to the setting of a Weyl pair (A, B) of two densely defined linear operators on a Banach space X such that
(a) $i A$ and $i B$ generate bounded C_{0}-groups on X
(b) $e^{i s A} e^{i t B}=e^{i s t} e^{i t B} e^{i s A}$ for all $s, t \in \mathbb{R}$

Proposition. If (A, B) be a Weyl pair,

1. $-\left(A^{2}+B^{2}\right)+\frac{1}{2}$ generates an bounded analytic semigroup on X (\leftrightarrow OU operator in $d=1$)
2. $\exp (i(u A+i B))$ is unitary for all $u, v \in \mathbb{R}$ (\leftrightarrow Schrödinger representation)

Thus a Weyl calculus $a \mapsto a(A, B)$ can be defined.

We recover the formula

$$
e^{-t L}=(1+s) \exp \left(-s\left(A^{2}+B^{2}\right)\right)
$$

with $s=\frac{1-e^{-t}}{1+e^{-t}}$.

TUDelft

We recover the formula

$$
e^{-t L}=(1+s) \exp \left(-s\left(A^{2}+B^{2}\right)\right)
$$

with $s=\frac{1-e^{-t}}{1+e^{-t}}$.
Conjecturally (work in progress),

- $A^{2}+B^{2}$ has a bounded H^{∞}-calculus
- the Weyl calculus extends to functions a in suitable symbol classes

We recover the formula

$$
e^{-t L}=(1+s) \exp \left(-s\left(A^{2}+B^{2}\right)\right)
$$

with $s=\frac{1-e^{-t}}{1+e^{-t}}$.
Conjecturally (work in progress),

- $A^{2}+B^{2}$ has a bounded H^{∞}-calculus
- the Weyl calculus extends to functions a in suitable symbol classes

Literature

- D. Bakry, F. Bolley, I. Gentil, Dimension dependent hypercontractivity for Gaussian kernels, Probab. Th. Relat. Fields 154 (2012) 845-874.
- R. Chill, E. Fašangová, G. Metafune, D. Pallara, The sector of analyticity of the OU semigroup on L^{p} spaces with respect to invariant measure, J. London Math. Soc. 71 (2005), 703-722.
- J.B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, JFA 87 (1989) 1-30.
- J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren, J.L. Torrea, Functional calculus for the OU operator, JFA 183 (2001) 413-450.
- B. Hall, Quantum mechanics for mathematicians, Springer Verlag, 2013
- J. Maas and J.M.A.M. van Neerven Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces J. Funct. Anal. 257 (2009), 2410-2475
- J.M.A.M. van Neerven, P. Portal, Weyl calculus with respect to the Gaussian measure and restricted $L^{p}-L^{q}$ boundedness of the Ornstein-Uhlenbeck semigroup in complex time, arXiv:1702.03602.
- E. Nelson, A quartic interaction in two dimensions, in: "Mathematical theory of elementary particles", pp. 69-73, MIT Press, 1966.
- I.E. Segal, Tensor algebras over Hilbert spaces I, Trans. Amer. Math. Soc. 81 (1956) 106-134.

