Discrete rough paths and limit theorems

Samy Tindel

Purdue University

Durham Symposium - 2017

Joint work with Yanghui Liu

Samy T. (Purdue)

Rough paths and limit theorems

Durham 2017 1 / 27

Preliminaries on Breuer-Major type theorems

2 General framework

3 Applications

- Breuer-Major with controlled weights
- Limit theorems for numerical schemes

1 Preliminaries on Breuer-Major type theorems

2 General framework

Applications

- Breuer-Major with controlled weights
- Limit theorems for numerical schemes

Definition of fBm

Definition 1.

A 1-d fBm is a continuous process $B = \{B_t; t \ge 0\}$ such that $B_0 = 0$ and for $\nu \in (0, 1)$:

• *B* is a centered Gaussian process

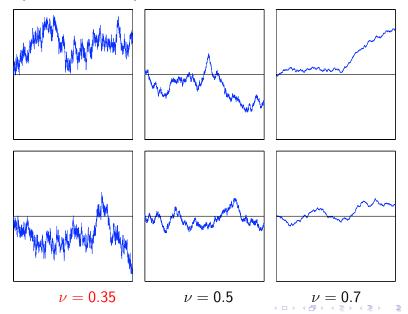
•
$$\mathbf{E}[B_t B_s] = \frac{1}{2}(|s|^{2\nu} + |t|^{2\nu} - |t - s|^{2\nu})$$

m-dimensional fBm: $B = (B^1, \ldots, B^m)$, with B^i independent 1-d fBm

Variance of increments:

$$\mathbf{E}[|B_t^j - B_s^j|^2] = |t - s|^{2\nu}$$

Examples of fBm paths



Samy T. (Purdue)

Rough paths and limit theorems

Durham 2017 5 / 27

Some notation

Uniform partition of [0, 1]: For $n \ge 1$ we set

$$t_k = \frac{k}{n}$$

Increment of a function: For $f : [0,1] \to \mathbb{R}^d$, we write

$$\delta f_{st} = f_t - f_s$$

Hermite polynomial of order q: defined as

$$H_q(t) = (-1)^q e^{rac{t^2}{2}} rac{d^q}{dt^q} e^{-rac{t^2}{2}}$$

- 4 回 ト 4 三 ト 4 三 ト

Hermite rank

Definition 2.

Consider

•
$$\gamma = \mathcal{N}(0, 1).$$

• $f \in L^2(\gamma)$ such that f is centered.

Then there exist:

- *d* ≥ 1
- A sequence $\{c_q; q \ge d\}$

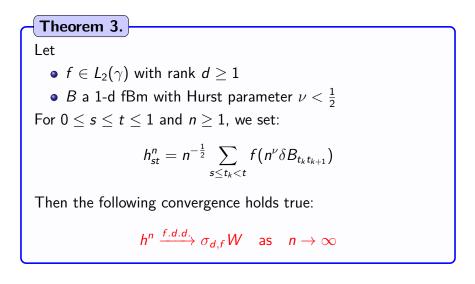
such that f admits the expansion:

$$f=\sum_{q=d}^{\infty}c_q\,H_q.$$

The parameter d is called Hermite rank of f.

< 47 ▶

Breuer-Major's theorem for fBm increments



Breuer-Major with weights (1)

Motivation for the introduction of weights:

- Analysis of numerical schemes
- Parameter estimation based on quadratic variations
- Convergence of Riemann sums in rough contexts

Weighted sums (or discrete integrals): For a function g, we set

$$\mathcal{J}_{s}^{t}(g(B); h^{n}) = \sum_{s \leq t_{k} < t} g(B_{t_{k}}) h_{t_{k}t_{k+1}}^{n} \\ = n^{-\frac{1}{2}} \sum_{s \leq t_{k} < t} g(B_{t_{k}}) f(n^{\nu} \delta B_{t_{k}t_{k+1}})$$

Breuer-Major with weights (2)

Recall:

$$\mathcal{J}_{s}^{t}(g(B);h^{n}) = n^{-\frac{1}{2}} \sum_{s \leq t_{k} < t} g(B_{t_{k}}) f(n^{\nu} \delta B_{t_{k}t_{k+1}})$$

Expected limit result: For W as in Breuer-Major,

$$\lim_{n\to\infty} \mathcal{J}_s^t(g(B);h^n) = \sigma_{d,f} \int_s^t g(B_u) \, dW_u \tag{1}$$

Unexpected phenomenon:

The limits of $\mathcal{J}_s^t(g(B); h^n)$ can be quite different from (1)

< 回 > < 回 > < 回 >

Breuer-Major with weights (3)

Theorem 4.

For $d \geq 1$ and g smooth enough we set

 $V_{st}^{n,d}(g) = \mathcal{J}_{s}^{t}(g(B);h^{n,d}) = n^{-\frac{1}{2}} \sum_{s \le t_{k} < t} g(B_{t_{k}}) H_{d}(n^{\nu} \delta B_{t_{k}t_{k+1}})$

Then the following limits hold true:

If
$$d > \frac{1}{2\nu}$$
 then
$$V_{st}^{n,d}(g) \xrightarrow{(d)} c_{d,\nu} \int_{s}^{t} g(B_{u}) dW_{u}$$
If $d = \frac{1}{2\nu}$ then
$$V_{st}^{n,d}(g) \xrightarrow{(d)} c_{1,d,\nu} \int_{s}^{t} g(B_{u}) dW_{u} + c_{2,d,\nu} \int_{s}^{t} f^{(d)}(B_{u}) du$$
If $1 \le d < \frac{1}{2\nu}$ then
$$n^{-(\frac{1}{2}-\nu d)} V_{st}^{n,d}(g) \xrightarrow{\mathbf{P}} c_{d} \int_{s}^{t} f^{(d)}(B_{u}) du$$

Breuer-Major with weights (3)

Remarks on Theorem 4:

- Obtained in a series of papers by Corcuera, Nualart, Nourdin, Podolskij, Réveillac, Swanson, Tudor
- Extensions to p-variations, Itô formulas in law

Limitations of Theorem 4:

- One integrates w.r.t $h^{n,d}$, in a fixed chaos
- Results available only for 1-d fBm
- Weights of the form y = g(B) only

Aim of our contribution:

• Generalize in all those directions

Preliminaries on Breuer-Major type theorems

2 General framework

Applications

- Breuer-Major with controlled weights
- Limit theorems for numerical schemes

< 47 ▶

Rough path

Notation: We consider

- $\nu \in (0,1)$, Hölder continuity exponent
- $\ell = \lfloor \frac{1}{\nu} \rfloor$, order of the rough path
- p > 1, integrability order
- \mathbb{R}^m , state space for a process x

•
$$\mathcal{S}_2\equiv ext{simplex in } [0,1]^2=\{(s,t); \ 0\leq s\leq t\leq 1\}$$

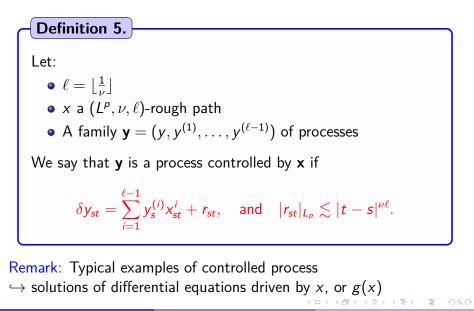
Rough path: Collection $\mathbf{x} = \{x^i; i \leq \ell\}$ such that

•
$$x^{i} = \{x_{st}^{i} \in (\mathbb{R}^{m})^{\otimes i}; (s, t) \in \mathcal{S}_{2}\}$$

• $x_{st}^{i} = \int_{s \leq s_{1} < \cdots < s_{i} \leq t} dx_{s_{1}} \otimes \cdots \otimes dx_{s_{i}}$ (to be defined rigorously)
• We have

$$|x^{i}|_{p,\nu} \equiv \sup_{(u,v)\in\mathcal{S}_{2}} \frac{|x_{uv}^{\prime}|_{L_{p}}}{|v-u|^{\nu i}} < \infty$$

Controlled processes (incomplete definition)



Samy T. (Purdue)

Abstract transfer theorem: setting

Objects under consideration: Let

- α limiting regularity exponent. Typically $\alpha = \frac{1}{2}$ or $\alpha = 1$
- **x** rough path of order ℓ
- h^n such that uniformly in n:

$$|\mathcal{J}_s^t(x^i;h^n)|_{L_2} \leq K(t-s)^{lpha+
u i}$$

 $\bullet~$ y controlled process of order ℓ

• $(\omega^i, i \in \mathcal{I})$ family of processes independent of $x \hookrightarrow$ Typically $\omega_t^i =$ Brownian motion, or $\omega_t^i = t$

(2)

Abstract transfer theorem (1)

Recall: *h*^{*n*} satisfies:

 $|\mathcal{J}_s^t(x^i;h^n)|_{L_2} \leq K(t-s)^{lpha+
u i}$

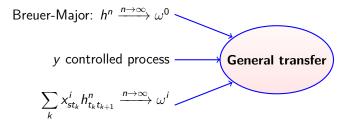
Illustration:

Abstract transfer theorem (1)

Recall: *h*^{*n*} satisfies:

$$|\mathcal{J}_s^t(x^i;h^n)|_{L_2} \leq K(t-s)^{lpha+
u i}$$

Illustration:

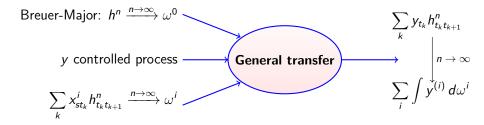


Abstract transfer theorem (1)

Recall: *h*^{*n*} satisfies:

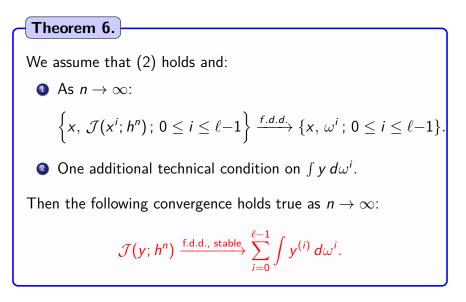
$$|\mathcal{J}_s^t(x^i;h^n)|_{L_2} \leq K(t-s)^{lpha+
u i}$$

Illustration:



< ロ > < 同 > < 回 > < 回 > < 回 > <

Abstract transfer theorem



Preliminaries on Breuer-Major type theorems

2 General framework

3 Applications

- Breuer-Major with controlled weights
- Limit theorems for numerical schemes

Preliminaries on Breuer-Major type theorems

2 General framework

3 Applications

• Breuer-Major with controlled weights

Limit theorems for numerical schemes

Notation

Setting: We consider

- A 1-d fractional Brownian motion B
- Hurst parameter: $\nu < \frac{1}{2}$
- 1-d rough path: $\mathbf{B}_{st}^i = \frac{(\delta B_{st})^i}{i!}$
- y controlled process
- f smooth enough with Hermite rank d
- W Wiener process independent of B

Quantity under consideration:

$$\mathcal{J}_{s}^{t}(y;h^{n,d}) = n^{-\frac{1}{2}} \sum_{s \leq t_{k} < t} y_{t_{k}} f(n^{\nu} \delta B_{t_{k}t_{k+1}})$$

Breuer-Major with controlled weights

Theorem 7.

For f smooth with Hermite rank d and y controlled we set

$$\mathcal{J}_{s}^{t}(y;h^{n,d}) = n^{-\frac{1}{2}} \sum_{s \le t_{k} < t} y_{t_{k}} f(n^{\nu} \delta B_{t_{k}t_{k+1}})$$

Then the following limits hold true:

If
$$d > \frac{1}{2\nu}$$
 then
$$\mathcal{J}_{s}^{t}(y; h^{n,d}) \xrightarrow{(d)} c_{d,\nu} \int_{s}^{t} y_{u} dW_{u}$$
If $d = \frac{1}{2\nu}$ then
$$\mathcal{J}_{s}^{t}(y; h^{n,d}) \xrightarrow{(d)} c_{1,d,\nu} \int_{s}^{t} y_{u} dW_{u} + c_{2,d,\nu} \int_{s}^{t} y_{u}^{(d)} du$$
If $1 \leq d < \frac{1}{2\nu}$ then
$$n^{-(\frac{1}{2} - \nu d)} \mathcal{J}_{s}^{t}(y; h^{n,d}) \xrightarrow{\mathbf{P}} c_{d} \int_{s}^{t} y_{u}^{(d)} du$$

Breuer-Major with controlled weights (2)

Improvements of Theorem 7:

- One integrates w.r.t a general $f(n^{\nu}\delta B_{t_kt_{k+1}})$ \hookrightarrow with f smooth enough
- Results can be generalized to d-dim situations
- General controlled weights y

Other applications:

- Itô formulas in law, convergence of Riemann sums
- Asymptotic behavior of *p*-variations

Preliminaries on Breuer-Major type theorems

2 General framework

3 Applications

- Breuer-Major with controlled weights
- Limit theorems for numerical schemes

Setting

Equation under consideration:

$$dy_t = \sum_{i=1}^m V_i(y_t) dB_t^i, \qquad y_0 \in \mathbb{R}^d,$$
(3)

where:

- V_i smooth vector fields
- *B* is a *m*-dimensional fBm with $\frac{1}{3} < \nu \leq \frac{1}{2}$
- Note: a drift could be included

Modified Euler scheme: for the uniform partition $\{t_k; k \leq n\}$,

$$y_{t_{k+1}}^{n} = y_{t_{k}}^{n} + \sum_{i=1}^{m} V_{i}(y_{t_{k}}^{n}) \delta B_{t_{k}t_{k+1}}^{i} + \frac{1}{2} \sum_{j=1}^{m} \partial V_{j} V_{j}(y_{t_{k}}^{n}) \frac{1}{n^{2H}}$$
(4)

CLT for the modified Euler scheme

Theorem 8.

Under the previous assumptions let

- y be the solution to (3)
- y^n be the modified Euler scheme defined by (4)

Let U be the solution to

$$U_t = +\sum_{j=1}^m \int_0^t \partial V_j(y_s) U_s dB_s^j + \sum_{i,j=1}^m \int_0^t \partial V_i V_j(y_s) dW_s^{ij}$$

Then the following weak convergence in D([0,1]) holds true:

$$n^{2H-\frac{1}{2}}(y-y^n) \xrightarrow{n \to \infty} U$$

Remarks on proofs

Convergence of Euler scheme: Reduced to a CLT for weighted sum

$$\sum_{i,j=1}^{m} \sum_{k=0}^{\lfloor \frac{nt}{T} \rfloor - 1} \partial V_{j} V_{i}(y_{t_{k}}^{n}) \left[\mathbf{B}_{t_{k}t_{k+1}}^{2,ij} - \frac{1}{2} (t_{k+1} - t_{k})^{2H} \right]$$

We are thus back to our general framework

Method of proof:

- Get rid of negligible terms with rough paths expansions
- 2 Main contributions treated with
 - 4th moment method
 - Integration by parts