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1 General mathematical context

Interface between “stochastic processes” and
“deterministic world”.

Benchmark situation: bridge between semilinear PDEs
and BSDEs.
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PDE:
{
∂su(s, x) + Lsu(s, x) + f(s, x, u(s, x), σ∂xu(s, x)) = 0

u(T, x) = g(x), s ∈ [0, T ], x ∈ E = R
d,

(1)

where Ls is the generator of a diffusion of the type

dXs = σ(s,Xs)dWs + b(t,Xs)ds,Xt = x. (2)
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BSDE: (2) is coupled with

Ys = g(XT ) +

∫ T

s

f(s,Xr, Yr, Zr)dr −

∫ T

s

ZrdWr. (3)

The link is the following.
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1. If u is a classical solution of (1) then

Ys = u(s,Xs), Zs = σ(s,Xs)∇u(s,Xs)

provide a solution to (3).

2. Viceversa if, given (t, x) ∈ [0, T ]× E and X t,x is given
by (2), (X t,x, Y t,x, Zt,x) is a solution to (3), then
u(t, x) := Y t,x

t is a viscosity solution to (1).
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What about v(t, x) := Zt,x
t ?

If u is of class C0,1 then v(t, x) = σ(t, x)∇u(t, x).

What happens in general? Only partial answers even
in the Brownian case.

This talk and the mentioned references discuss some
issues related to this problem when W is replaced by a
cadlag martingale.
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2 Financial Motivations

2.1 Hedging in a complete market

Let T > 0, (Ω,F ,P) a complete probability space with a
filtration (Ft)t∈[0,T ], F0 being the trivial σ-algebra.

S price of a risky asset.

B price of a riskless asset.
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Complete market.

For any random variable h, there exists a self-financing
strategy (νt)t∈[0,T ] perfectly replicating h, i.e. a trading
strategy that starts from an initial wealth V0 and re-invests
the gain/loss from S on the riskless asset B.

If we suppose that the riskless asset price is constant, this
reduces to

V0 +

∫ T

0

νudSu = h.
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2.2 Hedging in the presence of basis risk

Basis risk.

Risk arising when a derivative product h is based on a
non-traded or illiquid underlying, but observable, and the
replicating (hedging) portfolio is constituted of traded and
liquid additional assets which are correlated with the
original one.
Example:

Basket option hedged with a subset of the composing
assets.

Airline companies hedging kerosene exposure with
correlated contacts, as crude oil or heating oil.
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Consider a pair of processes (X,S) and a contingent claim
of the type h := g(XT , ST ).

X is a non traded or illiquid, but observable asset.

S is a traded asset, correlated to X.

B is riskless asset. We suppose B to be constant.

Hedging problem : construct a trading strategy on the
assets (B, S) in order to replicate the random variable h.

BSDEs, martingale problems, pseudo-PDEs and applications. – p. 14/68



In this case, the market is incomplete: perfect replication
with a self-financing strategy is not possible. One should
define a risk aversion criterion, for example the following.

Utility-based criterion.

Quadratic risk criteria : local risk minimization and
mean-variance minimization.
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2.3 Quadratic hedging: local and global risk

minimization.

Introduced by Föllmer and Sondermann [1985], for S
being a (local) martingale. In this case, the unique
(local) risk-minimizing strategy is determined by the
Kunita-Watanabe (K-W) representation of martingales.

Extension to the semimartingale case is more delicate,
and was handled by Schweizer [1988, 1991]. Its
existence is linked to the existence of the so-called
Föllmer-Schweizer (F-S) decomposition, a
generalization of the (K-W) representation.

Global risk minimization. Again F-S decomposition.
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2.4 Föllmer-Schweizer decomposition

Mean-variance hedging is closely related to the so called
Föllmer-Schweizer (F-S) decomposition.
Definition 1 Let S = MS + V S, V S

0 = 0 be a special
semimartingale. A square integrable random variable h
admits an F-S decomposition if

h = h0 +

∫ T

0

ZudSu +OT ,

where h0 ∈ R, Z ∈ Θ and O is a square integrable
martingale, strongly orthogonal to MS.
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Definition 2 Let L and N be two Ft-local martingales, with
null initial value. L and N are said to be strongly
orthogonal if LN is a local martingale.

Example 3 If L and N are locally square integrable, then
they are strongly orthogonal if and only if 〈L,N〉 = 0.
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2.5 F-S decomposition via a backward SDE

If (h0, Z,O) is an F-S decomposition, then the process
Yt := h0 +

∫ t

0
ZudSu +Ot verifies

Yt := h−

∫ T

t

ZudM
S
u −

∫ T

t

ZudV
S
u − (OT −Ot),

which is a Backward Stochastic Differential Equation,
driven by a local martingale, where the final condition
YT = h is known.
The resolution of the BSDE is a method to determine the
F-S decomposition.
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3 Backward Stochastic Differential

Equations

3.1 BSDEs driven by a Brownian motion

BSDEs were introduced by Pardoux and Peng [1990].
Pioneering work by Bismut [1973].

Given a pair (h, f̂) called terminal condition and driver.

One looks for a pair of (adapted) processes (Y, Z),
satisfying
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Yt = h+

∫ T

t

f̂(ω, s, Ys, Zs)ds−

∫ T

t

ZsdWs, (4)

and

E

∫ T

0

|Zt|
2dt < ∞.

BSDEs, martingale problems, pseudo-PDEs and applications. – p. 21/68



3.2 Existence and uniqueness

Pardoux and Peng [1990] showed existence and
uniqueness when f̂ is globally Lipschitz with respect to
(y, z) and h being square integrable.

Conditions on the driver f̂ were first relaxed to a
monotonicity condition on y, later to a quadratic growth
condition and other generalizations, see e.g.
Hamadene [1996], Lepeltier and San Martín [1998],
Kobylanski [2000], Briand and Hu [2006, 2008].

Applications to finance: El Karoui et al. [1997].

Extension to reflected BSDEs...
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3.3 BSDEs and semi-linear parabolic PDEs

Consider the BSDE

Y t,x
s = g(X t,x

T )+

∫ T

s

f(s,X t,x
r , Y t,x

r , Zt,x
r )dr−

∫ T

s

Zt,x
r dWr, (5)

where {X t,x
s , t ≤ s ≤ T} is a solution of the SDE

X t,x
s = x+

∫ s

t

b(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr, t ≤ s ≤ T.
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Link with the semi-linear parabolic PDE.
{
∂tu(t, x) + Ltu(t, x) + f(t, x, u(t, x), σ∂xu(t, x)) = 0

u(T, x) = g(x), t ∈ [0, T ], x ∈ R.
(6)
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3.4 From semi-linear parabolic PDEs to

BSDEs

Theorem 4 (Pardoux and Peng [1992]) Let
u ∈ C1,2([0, T ]×R,R) be a classical solution of (6) such that

|∂xu(t, x)| ≤ c(1 + |x|q), for some c, q > 0.

Then, ∀(t, x), (u(s,X t,x
s ), (σ∂xu)(s,X

t,x
s ))s∈[t,T ] is solution of

the BSDE (5).
In particular, under the conditions of well-posedness of the
BSDE

u(t, x) = Y t,x
t .
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3.5 From BSDEs to semi-linear parabolic

PDEs

Theorem 5 (Pardoux and Peng [1992]) Let
(Y t,x

s , Zt,x
s )s∈[t,T ] be the solution of the BSDE (5), then

u(t, x) := Y t,x
t is a continuous function and it is a viscosity

solution of the PDE (6).

This representation theorem can be seen as an extension
of Feynman-Kac formula.
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3.6 Extensions of BSDEs driven by Brownian

Motion

BSDE driven by a Brownian motion and a
compensated random measure.

BSDE driven by a càdlàg martingale.
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3.7 BSDEs driven by a càdlàg Martingale
Given a càdlàg (local) martingale MS and a bounded
variation process V S, one looks for a triplet (Y, Z,O)
verifying

Yt = h+

∫ T

t

f̂(ω, s, Ys−, Zs)dV
S
s −

∫ T

t

ZsdM
S
s −(OT−Ot), (7)

where O is (local) martingale strongly orthogonal to MS.
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First contribution by Buckdahn [1993].

Other contributions, e.g. El Karoui and Huang [1997].
See also Briand et al. [2002], as side-effect of a
convergence scheme.

More recent setting for sufficient conditions for
existence and uniqueness for (7) has been given by
Carbone et al. [2007].

BSDEs with partial information driven by càdlàg
martingales were investigated by Ceci, Cretarola,
Russo in Ceci et al. [2014a,b].
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4 Contributions of the work

A forward BSDE, where the forward process solves a
strong martingale problem. We focus on four tasks.

Characterize forward-backward SDEs via the solution
of a deterministic problem generalizing the classical
PDE appearing in the case of Brownian martingales.

Give applications to the hedging problem in the case of
basis risk via the Föllmer-Schweizer decomposition.
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Give explicit expressions when the pair of processes
(X,S) is an exponential of additive processes.

Extensions to the case when the forward process is
given in law: strict and generalized solutions of the
deterministic problem.
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5 Strong Martingale Problem

5.1 Definition

Definition 6 Let O be an open set of R2 and (At) be an
Ft-adapted b.v. continuous process, such that, a.s.
dAt ≪ dρt, for some b.v. function ρ, and A a map

A : D(A) ⊂ C([0, T ]×O,C) −→ L.
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We say that (X,S) is a solution of the strong martingale
problem related to (D(A),A, A) , if for any g ∈ D(A),
(g(t,Xt, St))t is a semimartingale such that

t 7−→ g(t,Xt, St)−

∫ t

0

A(g)(u,Xu−, Su−)dAu

is an Ft- local martingale.
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Notations 7 id : (t, x, s) 7−→ s, s2 : (t, x, s) 7−→ s2.

For any y ∈ C([0, T ]×O), ỹ := y × id.

Suppose that id ∈ D(A). For y ∈ D(A) such that
ỹ ∈ D(A), we set Ã(y) := A(ỹ)− yA(id)− idA(y).
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Proposition 8 Suppose that id, s2 ∈ D(A). Then S is a
special semimartingale with decomposition MS + V S given
below.

1. V S
t =

∫ t

0
A(id)(u,Xu−, Su−)dAu.

2. 〈MS〉t =
∫ t

0
Ã(id)(u,Xu−, Su−)dAu.
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Proof.

Item 2. follows from the following more general result.

Lemma 9 If Yt = y(t,Xt, St), y, y × id ∈ D(A), then

〈MY ,MS〉t =

∫ t

0

Ã(y)(u,Xu−, Su−)dAu.

BSDEs, martingale problems, pseudo-PDEs and applications. – p. 36/68



5.2 Examples

Diffusion process: the operator A has the form

A(f) = ∂tf + bS∂sf + bX∂xf

+
1

2

{
|σS|

2∂ssf + |σX |
2∂xxf + 2〈σS, σX〉∂sxf

}
,

S is a Markov process, with related Markov semigroup
of generator L: the operator A has the form

A(g)(t, s) =
∂g

∂t
(t, s) + Lg(t, ·)(s).
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5.3 Exponential of additive processes

Definition 10 (Z1, Z2) is said to be an additive process if
(Z1, Z2)0 = 0, (Z1, Z2) is continuous in probability and it
has independent increments. The generating function of
(Z1, Z2) is defined by

exp(κt(z1, z2)) = Eez1Z
1

t
+z2Z

2

t , ∀(z1, z2) ∈ D,

where D := {z = (z1, z2) ∈ C
2| EeRe(z1)Z1

T
+Re(z2)Z2

T < ∞}.
We denote also, for (z1, z2), (y1, y2) ∈ D/2

ρt(z1, z2, y1, y2) := κt(z1 + y1, z2 + y2)− κt(z1, z2)− κt(y1, y2),

ρSt := κt(0, 2)− 2κt(0, 1), if (0, 1) ∈ D/2.
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We always suppose the validity of the following.

Assumption 11 (Basic assumption) (0, 2) ∈ D. This is
equivalent to the existence of the second order moment of
S = eZ

2

.
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5.4 First decomposition

We consider two processes X = exp(Z1), S = exp(Z2).
Lemma 12 Let λ : [0, T ]× C

2 → C such that, for any
(z1, z2) ∈ D, dλ(t, z1, z2) ≪ dρSt . Then for any (z1, z2) ∈ D,

t 7→ Mλ
t (z1, z2) := Xz1

t Sz2
t λ(t, z1, z2)

−

∫ t

0

Xz1
u−S

z2
u−

{dλ(u, z1, z2)

dρSu
+ λ(u, z1, z2)

dκu(z1, z2)

dρSu

}
ρSdu,

is a martingale. Moreover, if (z1, z2) ∈ D/2 then Mλ(z1, z2)
is a square integrable martingale.
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5.5 Strong Martingale Problem for

exponential of additive processes

Theorem 13 Under some technical assumptions, (X,S) is
a solution of the strong martingale problem related to
(D(A),A, ρS) where, D(A) is the set of

f : (t, x, s) 7→

∫

C2

dΠ(z1, z2)x
z1sz2λ(t, z1, z2),

where Π is a finite Borel measure on C
2,

λ : [0, T ]× C
2 → C Borel verifying a set of conditions,
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A(f)(t, x, s) =

∫

C2

dΠ(z1, z2)x
z1sz2

{
dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

}
.
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6 Deterministic problem related to

BSDEs driven by a martingale

6.1 Forward-backward SDE

We consider a pair of Ft-adapted processes (X,S) fulfilling
the martingale problem related to (D(A),A, A). We are
interested in the BSDE

Yt = g(XT , ST ) +

∫ T

t

f(r,Xr−, Sr−, Yr−, Zr)dAr −

∫ T

t

ZrdM
S
r

− (OT −Ot),

where
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1. (Yt) is Ft-adapted, (Zt) is Ft-predictable

2.
∫ T

0
|Zs|

2d〈MS〉s < ∞ a.s.

3.
∫ t

0
|f(s,Xs−, Ss−, Ys−, Zs)|d‖A‖s < ∞ a.s.

4. (Ot) is an Ft-local martingale such that 〈O,MS〉 = 0
and O0 = 0 a.s.
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6.2 Related deterministic analysis

Goal. Look for solutions (Y, Z,O) of the BSDE for which
there is a function y ∈ D(A) such that ỹ = y × id ∈ D(A)
and a locally bounded Borel function z : [0, T ]×O −→ C,
such that

Yt = y(t,Xt, St),

Zt = z(t,Xt−, St−), ∀t ∈ [0, T ].

When MS is a Brownian motion, y is a solution of a
semilinear PDE.

General case ?
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6.3 Deterministic problem (Pseudo-PDE)

Theorem 14 Suppose the existence of a function y, such
that y, ỹ := y × id belong to D(A), and a Borel locally
bounded function z, solving the system

{
A(y)(t, x, s) = −f(t, x, s, y(t, x, s), z(t, x, s))

Ã(y)(t, x, s) = z(t, x, s)Ã(id)(t, x, s),

with the terminal condition y(T, ., .) = g(., .).
Then the triplet (Y, Z,O) defined by

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−)

is a solution to the BSDE (8).
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7 Special case of the

Föllmer-Schweizer decomposition.

7.1 Weak F-S decomposition

Definition 15 We say that a square integrable
FT -measurable random variable h admits a weak F-S
decomposition (h0, Z,O) with respect to S if it can be written
as

h = h0 +

∫ T

0

ZsdSs +OT ,P−a.s., (8)
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where h0 is an F0-measurable r.v., Z is a predictable
process such that

∫ T

0
|Zs|

2d〈MS〉s < ∞ a.s.,
∫ T

0
|Zs|d‖V

S‖s < ∞ a.s. and O is a local martingale such
that 〈O,MS〉 = 0 with O0 = 0.
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7.2 Link to BSDEs

Finding a weak F-S decomposition (h0, Z,O) for some r.v.
h is equivalent to provide a solution (Y, Z,O) of the BSDE

Yt = h−

∫ T

t

ZsdSs − (OT −Ot).

The link is given by Y0 = h0. Here the driver f is linear in z,
of the form

f(t, x, s, y, z) = −A(id)(t, x, s)z.

⇒ The weak F-S decomposition can be linked to a
deterministic problem (Pseudo-PDE).
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7.3 Weak Vs True F-S decomposition

Remark 16 Setting h0 = y(0, X0, S0), the triplet (h0, Z,O) is
a candidate for a true F-S decomposition. Sufficient
conditions for this are the following.

1. h = g(XT , ST ) ∈ L2(Ω).

2. (z(t,Xt−, St−))t ∈ Θ i.e.

E
∫ T

0
|z(t,Xt−, St−)|

2 Ã(id)(t,Xt−, St−)dAt < ∞.

E

(∫ T

0
|z(t,Xt−, St−)| ‖A(id)(t,Xt−, St−)dA‖t

)2

< ∞.

3.
(
y(t,Xt, St)−

∫ t

0
A(y)(u,Xu−, Su−)dAu

)
t

is an

Ft-square integrable martingale.
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Corollary 17 (Application of the theorem for general BSDEs)
Let y (resp. z): [0, T ]×O → C. We suppose the following.

1. y, ỹ := y × id belong to D(A).

2.
∫ T

0
z2(r,Xr−, Sr−)Ã(id)(r,Xr−, Sr−)dAr < ∞ a.s.

3. (y, z) solves the problem

{
A(y)(t, x, s) = A(id)(t, x, s)z(t, x, s),

Ã(y)(t, x, s) = Ã(id)(t, x, s)z(t, x, s),
(9)

with the terminal condition y(T, ., .) = g(., .).
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Then the triplet (Y0, Z,O), where

Yt = y(t,Xt, St), Zt = z(t,Xt−, St−), Ot = Yt−Y0−

∫ t

0

ZsdSs,

is a weak F-S decomposition of h.
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7.4 Application 1: exponential of additive

processes

(X,S) = (eZ
1

, eZ
2

) is an exponential of additive processes.
Example 18 Goal. Use the Pseudo-PDE to give explicit
expressions of a weak F-S of an FT -measurable random
variable h of the form h := g(XT , ST ) for a function g of the
form

g(x, s) =

∫

C2

dΠ(z1, z2)x
z1sz2 ,

where Π is finite Borel complex measure.
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Existence and uniqueness.

Proposition 19 Suppose the validity of the
Basic assumption and

∫ T

0

(
dκt(0, 1)

dρSt

)2

dρSt < ∞.

Then any square integrable variable admits a unique true
F-S decomposition.
The proof makes use of a general existence and
uniqueness theorem by Monat and Stricker [1995].
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Idea.
In agreement with the definition of D(A), we select y of the
form

y(t, x, s) =

∫

C2

dΠ(z1, z2)x
z1sz2λ(t, z1, z2),

where Π is the same finite complex measure as in the
definition of h and λ : [0, T ]× C

2 → C.

The deterministic equations in the corollary write as
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



∫

C2

dΠ(z1, z2)x
z1sz2

{
dλ(t, z1, z2)

dρSt
+ λ(t, z1, z2)

dκt(z1, z2)

dρSt

}

= s
dκt(0, 1)

dρSt
z(t, x, s)

∫

C2

dΠ(z1, z2)λ(t, z1, z2)x
z1sz2+1dρt(z1, z2, 0, 1)

dρSt
= s2z(t, x, s)

y(T, ·, ·) = g.

Unknown : λ ⇒ can be determined through the resolution
of an ODE in t.

BSDEs, martingale problems, pseudo-PDEs and applications. – p. 56/68



Theorem 20 (Weak F-S decomposition) Let λ be defined

as λ(t, z1, z2) = exp
(∫ T

t
η(z1, z2, du)

)
, ∀(z1, z2) ∈ D/2,

where

η(z1, z2, t) = κt(z1, z2)−

∫ t

0

dρu(z1, z2, 0, 1)

dρSu
κdu(0, 1).

Then, under some technical assumptions, (Y0, Z,O) is a weak
F-S decomposition of h, where
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Yt =

∫

C2

dΠ(z1, z2)X
z1
t Sz2

t λ(t, z1, z2),

Zt =

∫

C2

dΠ(z1, z2)X
z1
t−S

z2−1
t− λ(t, z1, z2)γt(z1, z2),

Ot = Yt − Y0 −

∫ t

0

ZsdSs and

γt(z1, z2) =
dρt(z1, z2, 0, 1)

dρSt
, ∀(z1, z2) ∈ D/2, t ∈ [0, T ],
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Proposition 21 (True F-S decomposition) Under slightly
stronger assumptions as in Theorem above, the weak F-S
decomposition of

h =

∫

C2

dΠ(z1, z2)X
z1
T Sz2

T

above is a true F-S decomposition.
Moreover, if h is real-valued then the decomposition
(h0, Z,O) is real-valued and it is therefore the unique F-S
decomposition.
Example 22 This statement is a generalization of the
results of [Oudjane, Goutte and Russo, 2014] to the case
of hedging under basis risk.
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7.5 Application 2: diffusion processes

Let (X,S) be a diffusion process with drift (bX , bS) and
volatility (σX , σS).

Assumption 23 bX , bS, σX and σS are continuous and
globally Lipschitz.

g : O → R is continuous.
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(X,S) solve the strong martingale problem related to
(D(A),A, A) where At = t,
D(A) = C1,2([0, T [×O) ∩ C1([0, T ]×O) and

A(y) = ∂ty + bS∂sy + bX∂xy

+
1

2

{
|σS|

2∂ssy + |σX |
2∂xxy + 2〈σS, σX〉∂sxy

}
,

Ã(y) = |σS|
2∂sy + 〈σS, σX〉∂xy.

Example 24 Goal. characterize the (weak) F-S
decomposition of h := g(XT , ST ).
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Theorem 25 (Weak F-S decomposition) We suppose the
validity of Assumption 23. and that |σS| is always strictly
positive. If (y, z) is a solution of the system





∂ty +B∂xy +
1

2

(
|σS|

2∂ssy + |σX |
2∂xxy + 2〈σS, σX〉∂sxy

)
= 0,

y(T, ., .) = g(., .), where B = bX − bS
〈σS, σX〉

|σS|2
,

z = ∂sy +
〈σS, σX〉

|σS|2
∂xy,

(10)
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such that y ∈ D(A), then (Y0, Z,O) is a weak F-S
decomposition of g(XT , ST ), where

Yt = y(t,Xt, St), Zt = z(t,Xt, St), Ot = Yt − Y0 −

∫ t

0

ZsdSs.

Remark 26 1. Under slightly stronger assumption one
can give conditions for the existence of a true
Föllmer-Schweizer decomposition.

2. Black-Scholes was treated by Hulley and McWalter
[2008].
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8 Extensions: BSDE vs Pseudo-PDE

Until now we have essentially shown that a solution to
a blue Pseudo-PDE provide solutions to BSDEs driven by
cadlag martingales.

More problematic is the converse implication.

Barrasso and Russo [2017a,b].

BSDEs, martingale problems, pseudo-PDEs and applications. – p. 64/68



Let E be a Polish space. Let Pt,x be a Markov class family of
probability measures under which the canonical process X
on D([0, T ];E) solves a martingale problem to D(A),A, ρ).
Let us denote MS := M id,t

s := Ss − x−
∫ s

t
A(id)(Sr)dρ(r).

We consider BSDE(f, g(ST ),M), i.e.

Ys = g(ST ) +

∫ T

s

f(r, Sr−, Yr−, Zr)dρr −

∫ T

s

ZrdM
S
r

(11)

− (OT −Os), s ∈ [t, T ],

under Pt,x.
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Let us suppose the following.

id ∈ D(A).

〈MS〉 is absolutely continuous with respect to ρ.

Let us suppose suitable growth condition on g and
Lipschitz on f .
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“Theorems”

Then (11) admits a unique solution (Y t,x, Zt,x, Ot,x) in
some suitable spaces.

There is a “unique” couple (y, z) of Borel functions such
that y(t, x) = Y t,x, and Zt,x

s = z(s,Xs) a.s. under Pt,x.

The couple (y, z) is a so called decoupled mild solution of
the system.

There is a unique decoupled mild solution of
Pseudo-PDE(f, g).
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Thank you for your attention!
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