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Introduction

1. As a first result we show that from Schauder or Sobolev-space estimates
for the one-dimensional heat equation one gets their multidimensional
analogs for equations with time-dependent coefficients with the same
constants as in the case of the one-dimensional heat equation.

2. In particular constants in the parabolic estimates do not depend on the
dimension.

3. The method is quite general and is based on using the Poisson stochastic
process.

4. We can also treat equations involving non-local operators and other class
of equations and systems.

5. It seems to be a challenging problem to find a purely analytic approach
to proving such results.

6. I will only mention some general results of paper. Rather I will try to
show how the method works and the basic idea.
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Some function spaces

Cα(Rd), α ∈ (0, 1), is the space of all f : Rd → R for which the following norm

‖f‖Cα(Rd) = sup
x∈Rd

|f (x)|+ [f ]Cα(Rd)

is finite, where [f ]Cα(Rd) = supx,y
|f(x)−f(y)|
|x−y|α .

By C2+α(Rd) we mean the space of real-valued twice continuously
differentiable functions f on Rd having finite norm

‖f‖C2+α(Rd) = sup
x∈Rd

(|f (x)|+ |Df (x)|+ |D2f (x)|) + [D2f ]Cα(Rd),

where Df is the gradient of f and D2f is its Hessian.

For a real-valued function f (t, x), t ∈ (0, T), x ∈ Rd, write

f ∈ Bc((0, T), C∞
0 (Rd))

if f is a Borel bounded function, such that f (t, ·) ∈ C∞
0 (Rd) for any t ∈ (0, T);

for any n = 0, 1, ..., the Cn(Rd)-norms of f (t, ·) are bounded on (0, T), and the
supports of f (t, ·) belong to the same ball.
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Parabolic estimates for the one dimensional heat equation

∂tu(t, x) = D2u(t, x) + f (t, x), u(0, ·) = 0 (1)

for t ∈ (0, T), x ∈ R. We treat the problem in the integral form:

u(t, x) =
∫ t

0
(D2u(s, x) + f (s, x))ds, t ∈ [0, T], x ∈ R.

Fix α ∈ (0, 1) and p ∈ (1,∞). One knows (see for instance
Ladyzhenskaya-Solonnikov-Uraltseva 1968):
if f ∈ Bc((0, T), C∞

0 (R)), then there is a unique solution u(t, x) such that
u is continuous in [0, T]×R; u(t, ·) ∈ C2+α(R), for any t ∈ [0, T], and

sup
t∈[0,T]

‖u(t, ·)‖C2+α(R) 6 N0(T,α) sup
t∈(0,T)

‖f (t, ·)‖Cα(R),

furthermore:
sup

(t,x)∈[0,T]×R
|u(t, x)| 6 T sup

(t,x)∈(0,T)×R
|f (t, x)|, (2)

sup
t∈[0,T]

[D2u(t, ·)]Cα(R) 6 N0(α) sup
t∈(0,T)

[f (t, ·)]Cα(R), (3)

‖D2u‖p
Lp((0,T)×R) 6 Np‖f‖p

Lp((0,T)×R), (4)

where Lp-spaces are defined with respect to Lebesgue measure and N0(α), Np are
some constants. The previous (2), (3) and (4) are parabolic estimates.
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I Theorem in [Krylov, P.]

Let a(t) = (aij(t)) be a d× d symmetric matrix-valued locally bounded Borel
measurable function on (0, T) such that

aij(t)λiλj > |λ|2, t ∈ (0, T), λ ∈ Rd.

For any f ∈ Bc((0, T), C∞
0 (Rd)) there exists a unique continuous in [0, T]×Rd

solution u(t, x) of the equation

∂tu(t, x) = aij(t)Diju(t, x) + f (t, x), u(0, ·) = 0

in (0, T)×Rd such that, for any t ∈ [0, T], u(t, ·) ∈ C2+α(Rd) and, for any
i, j = 1, ..., d and unit vector l ∈ Rd, we have:

sup
(t,x)∈[0,T]×Rd

|u(t, x)| 6 T sup
(t,x)∈(0,T)×Rd

|f (t, x)| (Max. Principle),

sup
t∈[0,T]

[Diju(t, ·)]Cα(Rd) 6 N ′(α)N0(α) sup
t∈(0,T)

[f (t, ·)]Cα(Rd), (5)

sup
(t,x)∈[0,T]×Rd

[D2
l u(t, x + l ·)]Cα(R) 6 N0(α) sup

(t,x)∈(0,T)×Rd
[f (t, x + l ·)]Cα(R), (6)

‖D2
l u‖p

Lp((0,T)×Rd)
6 Np‖f‖p

Lp((0,T)×Rd)
, (7)

where N0(α), Np are the previous one-dimensional constants.
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Idea of proof when aij(t) = δij

We are considering in (0, T)×Rd:

∂tv(t, x) = ∆v(t, x) + f (t, x), u(0, ·) = 0 (8)

and show that parabolic estimates hold true with the same one-dimensional
constants.

No analytic methods are available up to now.

We use the Poisson process and random PDEs

Take a sequence τ1 = τ1(ω), τ2 = τ2(ω), ... of independent random variables
defined on a probability space (Ω,F, P) with common exponential
distribution with parameter λ > 0, so that P(τn > t) = e−λt for t > 0 and
n = 1, 2..... Define

σ0 = 0, σn =

n∑
i=1

τi, n = 1, 2, ..., πt = πt(ω) =

∞∑
n=1

Iσn6t

(where Iσn6t denotes the indicator function of the event {σn 6 t}). We see that
πt is the number of consecutive sums of τi which lie on [0, t].

The counting process πt is known as a Poisson process with parameter λ.
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The Poisson process
For 0 6 s 6 t <∞ and k = 0, 1, ... it holds that

P(πt − πs = k) =
[λ(t − s)]k

k!
e−λ(t−s),

λ > 0 and moreover, for any t > s > 0, πt − πs is independent of the σ-algebra
generated by all πr, when r ∈ [0, s].

Let πs− = limt↑s πt, s > 0.

Let h ∈ R. We do first some elementary computations related to the generator
of hπt (below in the picture h = 1):

Af (x) = λ(f (x + h) − f (x)), x ∈ R.

t
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Generator of hπt with parameter λ > 0
Let u0 ∈ Cb(R) be a bounded continuous function. Letω ∈ Ω such that
n = πt(ω). We have, for x ∈ R, t > 0, omittingω,

u0(x + hπt) − u0(x)
= u0(x + hπσn− + h) − u0(x + hπσn−) + u0(x + hπσn−1− + h) − u0(x + hπσn−1−)

... + u0(x + hπσ1− + h) − u0(x + hπσ1−)

=

n∑
k=1

(
u0(x + hπσk− + h) − u0(x + hπσk−)

)
=

∑
σk6t

∫ t

0

(
u0(x + hπs− + h) − u0(x + hπs−)

)
δσk(ds)

=

∫ t

0

(
u0(x + hπs− + h) − u0(x + hπs−)

)
dπs (Lebesgue-Stieltjes integral).

Applying expectation:

E
[ ∫ t

0

(
u0(x + hπs− + h) − u0(x + hπs−)

)
dπs
]
= λ

∫ t

0
E
[
u0(x + hπs + h) − u0(x + hπs)

]
ds

Set vt(x) = v(t, x) = E[ut(x + hπt)]. Then

vt(x) − u0(x) = λ
∫ t

0

[
vs(x + h) − vs(x)

]
ds,

i.e., ∂tvt(x) = λ(vt(x + h) − vt(x)) �
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The proof for ∂tv(t, x) = ∆v(t, x) + f (t, x) in (0, T)×Rd

We consider d = 2. The general case comes from induction. Thus we need to
pass from parabolic estimates with d = 1 to estimates with d = 2.

I step. Take a function f (t, x, y) in Bc((0, T), C∞
0 (R2)) and for eachω ∈ Ω and

y ∈ R solve:

∂tu(t, x, y,ω) = D2
xu(t, x, y,ω) + f (t, x, y − hπt(ω)) (9)

with zero initial data, where h ∈ R is a parameter. We often do not indicate
the dependence onω. Moreover, we also drop the dependence on h.

There exists a unique solution u(t, x, y), depending on y, h andω as
parameters, such that main estimates (2), (3), and (4) hold for eachω, h and
y ∈ R with the same constants if we replace u(t, x) and f (t, x) with u(t, x, y) and
f (t, x, y − hπt), respectively.

Furthermore, since f ∈ Bc((0, T), C∞
0 (R2)), one can prove that u(t, x, y) is

uniformly continuous with respect to y uniformly with respect toω, t, h, and x

Let us see what equation is verified by

u(t, x, y + hπt)
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By considering u(t, x, y + hπt) on each interval [σn,σn+1) on which hπt is
constant, one easily derives that

u(t, x, y + hπt) =

∫ t

0
[D2

xu(s, x, y + hπs) + f (s, x, y)] ds +
∫
(0,t]

g(s, x, y) dπs (10)

=

∫ t

0
[D2

xu(s, x, y + hπs) + f (s, x, y)] ds +
∑
σn6t

g(σn, x, y),

where
g(s, x, y) = u(s, x, y + h + hπs−) − u(s, x, y + hπs−) (11)

is the jump of u(t, x, y+ hπt) as a function of t at moment s if πt has a jump at s.

Recall πs− = limt↑s πt, s > 0.
For instance, if t ∈ [σ1,σ2) we have

u(t, x, y + hπt) = u(t, x, y + h) =
∫ t

σ1

[D2
xu(s, x, y + h) + f (s, x, y)] ds

+u(σ1, x, y + h) − u(σ1, x, y) +
∫σ1

0
[D2

xu(s, x, y) + f (s, x, y)] ds.
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Let
v(t, x, y) := E[u(t, x, y + hπt)].

We get, for any t ∈ (0, T), x, y ∈ R,

v(t, x, y) =
∫ t

0

(
D2

xv(s, x, y) + λ[v(s, x, y + h) − v(s, x, y)] + f (s, x, y)
)
ds.

II step. Let f ∈ Bc((0, T), C∞
0 (R2)), h ∈ R and λ > 0. Then there exists a unique

bounded continuous function v(t, x, y), t ∈ [0, T], x, y ∈ R, satisfying

∂tv(t, x, y) = D2
xv(t, x, y) + λ[v(t, x, y + h) − v(t, x, y)] + f (t, x, y) (12)

for t ∈ (0, T), x, y ∈ R, with zero initial condition and such that v(t, ·, y) ∈ C2+α(R)
for any t ∈ (0, T), y ∈ R and

sup
(t,y)∈[0,T]×R

‖v(t, ·, y)‖C2+α(R) 6 N0(T,α) sup
(t,y)∈(0,T)×R

‖f (t, ·, y)‖Cα(R).

Furthermore with N0(α) and Np as in (3) and (4):

sup
(t,z)∈[0,T]×R2

|v(t, z)| 6 T sup
(t,z)∈(0,T)×R2

|f (t, z)|,

sup
(t,y)∈[0,T]×R

[D2
xv(t, ·, y)]Cα(R) 6 N0(α) sup

(t,y)∈(0,T)×R
[f (t, ·, y)]Cα(R), (13)

‖D2
xv‖p

Lp((0,T)×R2)
6 Np‖f‖p

Lp((0,T)×R2)

11



Recall that by uniqueness v(t, x, y) := E[u(t, x, y + hπt)].

Let us only check

‖D2
xv‖p

Lp((0,T)×R2)
6 Np‖f‖p

Lp((0,T)×R2)
.

We compute, using also Jensen inequality and the Fubini theorem,

‖D2
xv‖p

Lp
=

∫
[0,T]×R2

∣∣∣E[D2
xu(t, x, y + hπt)

]
|pdtdxdy

6
∫T

0
dt
∫
R2

E
[
|D2

xu(t, x, y + hπt)|
p
]
dxdy

=

∫T

0
dt
∫
R2

E
[
|D2

xu(t, x, z|p
]
dxdz

=

∫
R

dz
∫T

0
dt
∫
R

E
[
|D2

xu(t, x, z|p
]
dx

6 Np

∫
R

dz
∫T

0
dt
∫
R

|f (t, x, z|pdx.

We have also used invariance by translation of the Lebesgue measure.
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III step. By repeating the above argument, we see that

w(t, x, y) := Ev(t, x, y − hπt)

satisfies
∂tw(t, x, y) = D2

xw(t, x, y)

+ λ[w(t, x, y + h) − 2w(t, x, y) + w(t, x, y − h)] + f (t, x, y) (14)

and admits the same parabolic estimates as before (with the same constants)

Then we take λ = h−2 in (13) and let h ↓ 0.

By using Ascoli-Arzela, one can show that the solutions w = wh of (13) with
λ = h−2 converge to a function v(t, x, y), that is infinitely differentiable with respect
to (x, y) for any t with any derivative continuous and bounded on [0, T]×R2,
(equals zero for t = 0); it satisfies

∂tv(t, x, y) = ∆xyv(t, x, y) + f (t, x, y) (15)

in (0, T)×R2 and for which all the parabolic estimates hold true with the
same constants.

Bounded continuous in [0, T]×R2 solutions of (14) having continuous second-order
derivatives with respect to (x, y) and vanishing at t = 0 are unique, and we get that, for
any such solution the previous parabolic estimates hold true with the same constants.
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IV step. Take a unit vector l1 ∈ R2 and a unit vector l2 ∈ R2 orthogonal to l1.
Let S be an orthogonal transformation of R2 such that Sei = li, i = 1, 2, where
e1, e2 is the standard basis in R2, and set f (t, xe1 + ye2) = f (t, x, y),
v(t, xe1 + ye2) = v(t, x, y),

S(x, y) = xl1 + yl2, g(t, x, y) = f (t, S(x, y)), w(t, x, y) = v(t, S(x, y)).

Since the Laplacian is rotation invariant, we have

∂tw(t, x, y) = ∆w(t, x, y) + g(t, x, y)

and, since g is as regular as f , we conclude by defining

K = sup
(t,y)∈(0,T)×R

sup
x1 ,x2∈R,x1,x2

|g(t, x1, y) − g(t, x2, y)|
|x1 − x2|α

that

sup
(t,y)∈[0,T]×R

sup
x1,x2

|D2
xw(t, x1, y) − D2

xw(t, x2, y)|
|x1 − x2|α

6 N0(α)K. (16)

Observe that

D2
xw(t, x, y) = (D2

l1 v)(t, S(x, y)) = (D2
l1 v)(t, xl1 + yl2),

where D2
l = liljDij and Di = ∂/∂xi, Dij = DiDj.
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Therefore, the left-hand side of (15) equals

sup
(t,y)∈[0,T]×R

sup
x,ν,µ∈R,µ,ν

|D2
l1

v(t,µl1 + xl1 + yl2) − D2
l1

v(t,νl1 + xl1 + yl2)|

|µ− ν|α

= sup
(t,z)∈[0,T]×R2

sup
µ,ν

|D2
l1

v(t,µl1 + z) − D2
l1

v(t,νl1 + z)|
|µ− ν|α

.

Similarly the right-hand side of (15) is transformed and we get that for the
bounded continuous in [0, T]×R2 solution v of (14) having continuous
second-order derivatives with respect to (x, y) and vanishing at t = 0 and any
unit vector l ∈ R2:

sup
(t,z)∈[0,T]×R2

sup
µ,ν

|D2
l v(t,µl + z) − D2

l v(t,νl + z)|
|µ− ν|α

6 N0(α) sup
(t,z)∈(0,T)×R2

sup
µ,ν

|f (t,µl + z) − f (t,νl + z)|
|µ− ν|α

.

Since the Jacobian of the above S(x, y) equals one, for any unit vector l ∈ R2∫T

0

∫
R2

|D2
l v(t, z)|p dzdt 6 Np

∫T

0

∫
R2

|f (t, z)|p dzdt. �
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A remark on the previous proof

We have considered w = wh

∂tw(t, x, y) = D2
xw(t, x, y)

+
1
h2 [w(t, x, y + h) − 2w(t, x, y) + w(t, x, y − h)] + f (t, x, y) (17)

One can apply the finite-difference operators with respect to (x, y) of any
order to (16); these operators are obtained by compositions of the first order
difference operators like

δr,iv(z) = r−1[v(z + rei) − v(z)], i = 1, 2,

where ei is the ith basis vector and r > 0.

By the Maximum Principle and the fact that any derivative of any order of f is
in Bc((0, T), C∞

0 (R2)), we conclude that any finite-difference of any order of wh

is bounded on R2 uniformly with respect to t and h.

It follows that wh is infinitely differentiable with respect to (x, y) and any
derivative of any order is bounded on [0, T]×R2.

Then equation (16) itself shows that these derivatives are Lipschitz
continuous in t.

16



Thus, the family wh is equi-Lipschitz in each compact set of [0, T]×R2 and
the same holds for any derivative with respect to (x, y) of wh.

We can apply the Arzelà-Ascoli theorem on [0, T]× {|(x, y)| 6 R}, R ∈ (0,∞),
along with any derivative with respect to (x, y) of whn and ∂twhn .

Writing (16) in the integral form and passing to the limit as n→∞, we
conclude that there exists a continuous function v(t, x, y) in [0, T]×R2, which
is infinitely differentiable with respect to (x, y) with any derivative bounded
on [0, T]×R2.

Hence, the equation

∂tu(t, x, y) = ∆x,yu(t, x, y) + f (t, x, y)

holds in integral form on (0, T)×R2. �
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On the proof for ∂tv(t, x) = Tr(a(t)D2
xv(t, x)) + f (t, x)

We have to solve

∂tv(t, x) = Tr(a(t)D2
xv(t, x)) + f (t, x), v(0, ·) = 0 or

∂tv(t, x) = 4v(t, x) + Tr(c(t)D2
xv(t, x)) + f (t, x), with c(t) = a(t) − I

We start from
∂tv(t, x) = 4v(t, x) + f (t, x) (18)

Let h ∈ R and consider the unit vector e1 ∈ Rd. We define

bt =

∫ t

0

√
c(r) e1dπr =

∑
σk6t

√
c(σk) e1.

If we replace f (t, x) with f (t, x − hbt), for eachω, in eq. (17), one derives that
u(t, x + hbt) satisfies

u(t, x + hbt) =

∫ t

0
[4u(s, x + hbs) + f (s, x)] ds +

∫
(0,t]

g(s, x) dπs,

where
g(s, x) := u(s, x + h

√
c(s) e1 + hbs−) − u(s, x + hbs−).
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Let
v(t, x) = Eu(t, x + hbt).

Then we arrive at

∂tv(t, x) = 4v(t, x) + λ[v(t, x + h
√

c(t) e1) − v(t, x)] + f (t, x).

After that we solve

∂tw(t, x) = 4w(t, x) + λ[w(t, x + h
√

c(t) e1) − w(t, x)] + f (t, x + hbt)

and repeating the previous arguments we conclude that for each h > 0 there
exists a unique solution uh(t, x) on [0, T]×Rd to

∂tuh(t, x) = 4uh(t, x) + f (t, x)

+h−2[uh(t, x + h
√

c(t) e1) − 2uh(t, x) + uh(t, x − h
√

c(t) e1)]

in (0, T)×Rd with zero initial condition and for which all estimates claimed
in the theorem hold true. Passing to the limit as before we get

∂tw(t, x) = 4w(t, x) + 〈D2w(t, x)
√

c(t) e1,
√

c(t) e1〉

By adding other terms we arrive at

∂tw(t, x) = 4w(t, x) +
d∑

k=1

〈D2w(t, x)
√

c(t) ek,
√

c(t) ek〉 �
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An example from [Krylov-P.]

Let d = 2, α ∈ (0, 1), and Lt = ∆. We know that for any

f ∈ Bc((0, T), C∞
0 (R2))

the equation (we write f (t, x) = ft(x))

ut(x) =
∫ t

0
[∆us(x) + fs(x)] ds, t 6 T, x ∈ R2,

has a unique continuous solution such that

sup
(t,x)∈[0,T]×R2

|ut(x)|+ sup
t∈[0,T]

∫
R2

|ut(x)| dx

6 N0

[ ∫T

0

∫
R2

|ft(x)| dxdt + sup
(t,x)∈[0,T]×R2

|ft(x)|
]

, (19)

sup
t∈[0,T]

[D2
l ut]Cα(R2) 6 Nα sup

t∈[0,T]
[ft]Cα(R2), ∀l : |l| = 1, (20)

where N0 and Nα are some constants.
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We can prove that the equation

ut(x) =
∫ t

0
[∆us(x) + Mus(x) + fs(x)] ds,

where

Mφ(x) = (x2)2D11φ(x) − 2x1x2D12φ(x) + (x1)2D22φ(x) (21)

−x1D1φ(x) − x2D2φ(x)

has a continuous solution, which satisfies estimates (18) and (19) (with the
same N0 and Nα).

It seems that this is an unexpected new result. �
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The general results
Let W be a set consisting of real-valued (Borel) measurable functions
u = ut = ut(x) = u(t, x) on [0, T]×Rd.

Let G be a commutative group of affine volume-preserving transformations
of Rd. If g, h ∈ G by gh we mean the composition of the two transformations.

If f (x) is a function on Rd and g ∈ G, we define (gf )(x) = f (gx), where gx is the
image of x under mapping g.

By B((0, T),G) we denote the set of bounded measurable G-valued functions
on (0, T), B(Rd) is the set of Borel bounded functions on Rd, B([0, T]×Rd is
the Borel σ-field in [0, T]×Rd.
Fix a constant K ∈ [0,∞).

Hypothesis (1)

(i) For any u ∈W we have sup(t,x)∈[0,T]×Rd |ut(x)| 6 K.

(ii) (Convexity of W.) If (Ω,F, P) is a probability space and u(ω) = ut(ω, x) is
an F ×B([0, T]×Rd)-measurable function such that u(ω) ∈W for anyω,
then the function E[ut(x)] belongs to W.

(iii) (“Shift” invariance of W.) For u ∈W and any bounded measurable
G-valued function gt given on [0, T], the function ut(gtx) is in W.
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Example

Fix a constant K0 ∈ (0,∞) and let W be the set of Borel functions on [0, T]×R
satisfying, for each t ∈ [0, T],

0 6 ut(x) 6 1,
∫
R

u2
t (x) dx 6 K0.

Then Hypothesis 1 is satisfied if G is the group of translations of R.

Next, let L := {Lt, t ∈ (0, T)}, be a family of linear operators

Lt : C∞
0 (Rd)→ B(Rd)

and take and fix

f ∈ Bc((0, T), C∞
0 (Rd)), u0 ∈ B(Rd).
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Hypothesis (2)

The couple (L, f ) is W-regular in the following sense.

(i) (G and L commute.) For any t ∈ (0, T) and g ∈ G, we have gLt = Ltg.
(ii) For ζ ∈ C∞

0 (Rd), Ltζ(x) := (Ltζ)(x) is measurable with respect to (t, x) and∫
[0,T]×Rd

|Ltζ(x)|dtdx <∞.

(iii) There is a mapping B((0, T),G)→W sending h ∈ B((0, T),G) into
u[h] ∈W such that u = u[h] has initial condition u0 and satisfies

∂tut(x) = L∗t ut(x) + (htft)(x), t ∈ [0, T], x ∈ Rd (22)

(iv) For any h ′, h ′′ ∈ B((0, T),G) and (t, x) ∈ [0, T]×Rd, we have

|ut[h ′](x) − ut[h ′′](x)| 6 K
∫ t

0
sup
y∈Rd

|fr(h ′ry) − fr(h ′′r y)| dr. (23)

u ∈W satisfies (21) with initial condition u0 if, for any ζ ∈ C∞
0 (Rd), t ∈ [0, T],

(ut, ζ) :=
∫
Rd

ut(x)ζ(x)dx = (u0, ζ) +
∫ t

0
(us, Lsζ) ds +

∫ t

0
(hsfs, ζ) ds.
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Theorem

Assume Hypotheses (1) and (2). For any g(1), ..., g(n) ∈ B((0, T),G) and
λ1, ..., λn > 0, the couple, consisting of the family of operators L̂t, such that

L̂∗t = L∗t +

n∑
i=1

λi(g
(i)
t − 1), (24)

where 1 stands for the operation of multiplying by one, and f , is W-regular.

Now we add another assumption:

Hypothesis (3)

For any sequence uk ∈W and a bounded function u = u(t, x) = ut(x),
(t, x) ∈ [0, T]×Rd, such that∫

Rd
uk

t (x)ζ(x) dx→
∫
Rd

ut(x)ζ(x) dx

for any t ∈ [0, T] and ζ ∈ C∞
0 (Rd), there exists w ∈W such that wt = ut (a.e.)

on Rd for any t ∈ [0, T].
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LetN be a subset of the space of affine transformations ofRd and suppose that

G = {etν : t ∈ R,ν ∈ N}, (25)

where by etν we mean a transformation g(t) defined as a unique solution of
the equation

g(t) = 1 +

∫ t

0
νg(s) ds. (26)

We keep the assumption that G is a commutative group of volume-preserving
transformations.

With any ν ∈ Nwe associate an operator Mν acting on smooth functions
φ : Rd → R by the formula

Mνφ(x) =
d2

(dε)2φ(e
ενx)

∣∣
ε=0 = (νx)i(νx)jDijφ(x) + (ν2x − ν0)iDiφ(x).
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Example (1)

Let l be a unit vector in Rd and define a transformation ν = νl by νlx ≡ l on
Rd. Then (25) becomes

g(t)x = x +

∫ t

0
νg(s)x ds = x +

∫ t

0
l ds = x + tl.

Observe that in this example, for smooth φ, we have Mνφ(x) = D2
lφ(x).

Thus, if N = {νl : l ∈ Rd, |l| = 1}, then G is the set of shifts of Rd and G is a
commutative group.

Example (2)

Let νx = Qx, where Q is a skew-symmetric d× d-matrix as in the previous
example (see (20))

Then gtx = etνx = (exp[tQ])x, where exp[tQ] is an orthogonal matrix. In this
example, for smooth φ,

Mνφ(x) = (Qx)i(Qx)jDijφ(x) + (Q2x)iDiφ(x).
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A further result

Let W, G, L, u0, and f satisfy Hypotheses (1), (2) and (3). with G from (24).

Then, for any µ(1), ...,µ(n) ∈ B((0, T),N) equation (21) with

L∗t +

n∑
i=1

M
µ
(i)
t

in place of L∗t and initial condition u0 has a solution in W.

To apply this result to Example (2) we fix the datum f and denote by A0 and
Aα the right-hand sides of (18) and (19), respectively. Then introduce

W = {u ∈ B([0, T]×R2) : ut ∈ C2+α(Rd), t ∈ [0, T], sup
(t,x)∈[0,T]×R2

|ut(x)|

+ sup
t∈[0,T]

∫
R2

|ut(x)| dx 6 A0, sup
t∈[0,T]

[D2
l ut]Cα(R2) 6 Aα ∀l ∈ S1},

and let N = {tQ : t ∈ R}, where Q = (Qij) is a 2× 2-matrix, Qii = 0, Q12 = 1,
Q21 = −1, i = 1, 2. Q is skew-symmetric and G = {etQ; t ∈ R} is a group of
rotations of R2.

One can check the hypotheses for W and N, u0 = 0 and ∆ in place of Lt. �
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A useful lemma

Lemma

Let u ∈ C2+α(Rd) be such that, for any unit vector l ∈ Rd, we have

sup
x∈Rd

[D2
l u(x + l ·)]Cα(R) 6 1.

Then there exists a constant N ′(α) such that for any i, j = 1, ..., d we have

M := [Diju]Cα(Rd) 6 N ′(α).
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A hyperbolic system taken from the Evans book on PDEs [Evans]

∂tur
t(x) + Brk

j Djuk
t (x) = gr

t(x) (27)

r = 1, ..., m, in (0, T)×Rd with zero initial condition, where the m×m
constant matrices Bj := (Brk

j ), j = 1, ..., d, are such that for any ξ ∈ Rd, the
matrix ξjBj has m real eigenvalues. Assume that gt(x) = (gr

t(x)) is an
Rm-valued measurable functions such that∫T

0
‖gt‖2

Hs(Rd ;Rm)
dt = A <∞,

where s > m + d/2 and Hs(Rd;Rm) = Ws
2(R

d;Rm) are the usual fractional
Sobolev spaces of Rm-valued functions.

By following the proof of Theorem 5 in §7.3.3 of [Evans] one arrives at the
conclusion that (26) with zero initial condition has a unique solution in class
W, which consists of measurable functions u = ut(x) on [0, T]×Rd, such that
ut ∈ C0,1(Rd;Rm) (here C0,1(Rd;Rm) is the usual space of Rm-valued Lipschitz
functions on Rd) for any t ∈ [0, T] and

‖u‖L2([0,T]×Rd ;Rm) + sup
t∈[0,T]

‖ut‖C0,1(Rd ;Rm) 6 N ′A, (28)

where N ′ is a constant independent of g.
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Now take a bounded measurable d× d-matrix valued function a = at which is
symmetric and nonnegative for any t ∈ [0, T].
Define σt = a1/2

t . One knows that σt is also measurable and if σ(i)
t is the ith

column of σ(t), i = 1, .., d, then for smooth φ = φ(x)

aij
t Dijφ =

d∑
i=1

D2
σ
(i)
t
φ

Therefore, by our last theorem, system (26) with the additional terms on the
right-hand side aij

t Dijur
t(x) has a solution of class W.

In particular, estimate (27) holds for the solution of the new system with the
same right-hand side. The system seems to be of unknown type.

It is worth mentioning that the fact that estimate (27) holds for the new
system with a constant N ′ independent of a can also be obtained by closely
following the proof of Theorem 5 in §7.3.3 of [Evans].

Still, what is important, we do not need to know how the initial result about (26) was
obtained
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A stochastic Poisson type process with values in G

Take g ∈ B((0, T),G), extend it to [0,∞) by setting g0 = 1 and gt = 1 for t > T,
where 1 is the operator of multiplying by 1.

Define ht = ht(ω) ∈ G for t > 0 andω ∈ Ω by

ht = gσn hσn− for t ∈ [σn,σn+1), (29)

n = 0, 1, ..., where σ0− = 0− := 0 and h0x :≡ x, x ∈ Rd.

In other terms,
ht =

∏
n6πt

gσn =
∏
n6πt

gσn∧t.

Observe that the random variables σn ∧ t are Ft-measurable.

Since gt is measurable, gσn∧t is Ft-measurable. It follows that ht is
Ft-measurable for each t, or, in other words, the process ht is Ft-adapted.
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On the case L̂∗t = L∗t + λ(gt − 1)

Let ζ be a test function and ĥ ∈ B((0, T),G).

We prove that for eachω and t ∈ [0, T] we have (ht = ht(ω) as before)

(ut[hĥ], ζ(ht·)) = (u0, ζ) +
∫ t

0
(us[hĥ], Lsζ(hs·)) ds

+

∫ t

0
(hsĥsfs, ζ(hs·)) ds

+

∫
(0,t]

[
(us[hĥ], ζ(gshs−·)) − ξs−

]
dπs

where
ξt = (ut[hĥ], ζ(ht·)).

Then introduce
wt(x) = E[ut[h(ω)ĥ](h−1

t (ω)x)]

We find

wt(x) = u0(x) +
∫ t

0
[L∗r wr(x) + λ(g−1

r − 1)wr(x) + ĥrfr(x)] dr.
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