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Motivation: branching random walks

Random i.i.d. potential (η(x))x∈Zd .

Independent particles on Zd follow random walks (cont. time);

at site x particle has branching rate η(x)+; killing rate η(x)−;

branching: new independent copy, follows same dynamics;

killing: particle disappears.

Complicated ⇒ consider simple statistics:

u(t, x) = E[# particles in (t, x)|η].

Get ∞-dim ODE “parabolic Anderson model” (PAM)

∂tu = ∆Zdu + uη.
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Comparison with super-Brownian motion

Indep. branching particles on Zd with det. branching/killing rate 1.

uN(0, x) = Nu0(x), x ∈ Zd .

Send only no. of particles →∞:

u(t, x) = lim
N→∞

uN(t, x)

N
= E[# particles in (t, x)],

then limit is discrete heat equation

∂tu = ∆Zdu.

Also zoom out as no. of particles increases:

v(t, x) = lim
N→∞

uN(N2t,Nx)

N
,

then limit is super-Brownian motion

∂tv = ∆Rd v +
√
vξ.

Would be interesting to directly zoom out in random potential model,
not treated here.
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Large scale behavior of PAM

∂tu = ∆Zdu + uη.

Intensely studied in past decades (Carmona, Molchanov, Gärtner,
König, . . . MANY more);

if η is “truely random”: u is intermittent, mass concentrated in few,
small, isolated islands; survey König ’16;

⇒ only possible scaling limit is (finite sum of) Dirac deltas.

Competition between disorder:

∂tu = uη ⇒ u(t, x) = etη(x)u0(x)

and smoothing:

∂tu = ∆Zdu ⇒ u(t, x) = PZd

t ∗ u0(x).

Intermittency: disorder always wins; to see nontrivial limit: weaken
disorder; expect phase transition(s) between intermittence and smoothness.
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Weak disorder

∂tu = ∆Zdu + εαuη.

To preserve scaling of ∆Zd :

uε(t, x) = εβu(t/ε2, x/ε).

Then
∂tu

ε = ∆εZduε + uεε−2+αη(·/ε),

and ε−d/2η(·/ε)⇒ ξ (white noise), so

−2 + α = −d/2 ⇔ α = 2− d/2.

Something goes wrong for d ≥ 4.

Conjecture for d < 4 and centered η: uε ⇒ v ,

∂tv = ∆Rd v + vξ (continuous PAM)

where ξ = space white noise.

Continuous PAM only makes sense for d < 4, critical in d = 4 and
supercritical for d > 4!
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Phase transition

∂tu = ∆Zdu + λε2−d/2uη, uε(t, x) = εβu(t/ε2, x/ε).

Assume we showed uε → v solving continuous PAM

∂tv = ∆Rd v + λvξ.

Conjecture: v is also intermittent (d = 1: Chen ’16, Dumaz-Labbé in
progress; d = 2: first results in progress by Chouk, van Zuijlen).

Scaling invariance of ξ: large scales for v ⇔ large λ.

So λ→∞: intermittency, λ→ 0: smoothness;
⇒ discrete PAM has phase transition at noise strength O(ε2−d/2).
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Generalization: branching interaction
Same dynamics as before, but include interaction:

at site x particle has branching rate

f (# particles in (x))η(x)+;

killing rate
f (# particles in (x))η(x)−;

example that models limited resources: f (u) = 1− u/C ;

could include interaction through jump rate, but did not work this out.

Very complicated ⇒ consider simple statistics:

u(t, x) = E[# particles in (t, x)|η].

Formally: get “generalized PAM”

∂tu = ∆Zdu + f (u)uη.
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2 Results
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Scaling of generalized PAM
Consider d = 2 from now on. Will work in d = 1 (easier) and d = 3
(much harder).

∂tu = ∆Z2u + εF (u)η, u(0, x) = 1x=0.

Natural conjecture: If E[η(0)] = 0, var(η(0)) = 1, then

lim
ε→0

ε−2u(t/ε2, x/ε) = v ,

where v solves generalized continuous PAM

∂tv = ∆R2v + F (v)ξ, v(0, x) = δ(x − 0).

Problem 1: (generalized) continuous PAM needs renormalization!
⇒ assume instead E[η(0)] = −εF ′(0)cε with cε ' | log ε|.
Problem 2: continuous generalized PAM cannot be started in δ unless
F (u) = λu.
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Weak universality of PAM

∂tu = ∆rwu + εF (u)η, u(0, x) = 1x=0.

Assume:

∆rw generator of random walk with sub-exponential moments;

F ′′ ∈ L∞, F (0) = 0;

(η(x))x∈Z2 independent, E[η(x)] = −εF ′(0)cε, var(η(x)) = 1,
supx E[|η(x)|p] <∞ for some p > 14 (might treat p > 4 by
truncation).

We may also generalize Z2 to any two-dimensional “crystal lattice”.

Theorem (Martin-P. ’17)

Under these assumptions limε→0 ε
−2u(t/ε2, x/ε) = v , where v solves

linear continuous PAM,

∂tv = ∆R2v + F ′(0)vξ, v(0, x) = δ(x − 0).
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Weak universality of PAM

Call this weak universality since model changes with scaling:

∂tu = ∆rwu + εF (u)η, u(0, x) = 1x=0.

Continuous PAM treated pathwise (rough paths, regularity structures,
paracontrolled distributions);

pathwise approaches need subcriticality: nonlinearity unimportant on
small scales
⇒ solutions not scale-invariant
⇒ fixed model cannot rescale to continuous PAM.
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Comparison: weak universality of the KPZ equation

Conjecture (“Weak KPZ universality conjecture”)

All (appropriate) 1 + 1-dimensional weakly asymmetric interface growth
models scale to the KPZ equation

∂th = ∆h + (∂xh)2 + ξ.

Example: WASEP with open boundaries, Gonçalves-P.-Simon ’17.
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Figure: Jump rates. Leftmost and rightmost rates are entrance/exit rates.
Compare also Corwin-Shen ’16.
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Strong KPZ universality

Conjecture (“Strong KPZ universality conjecture”)

All (appropriate) 1 + 1-dimensional asymmetric interface growth models
show the same large scale behavior as the KPZ equation.

Much harder than weak KPZ universality.

Example: ASEP with open boundaries
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Solution of the continuous PAM

∂tv = ∆R2v + vξ.

Difficulty: ξ only noise in space, no martingales around;

Analysis: ξ ∈ C−1−
loc ⇒ expect v ∈ C 1−

loc ;
⇒ sum of regularities < 0, so vξ ill-defined.

Subcriticality: on small scales v should look like Ξ,

∂tΞ = ∆R2Ξ + ξ.

Direct computation ((Ξ, ξ) is Gaussian):

Ξξ = lim
ε→0

[(Ξ ∗ δε)(ξ ∗ δε)−cε], cε ' | log ε|,

is well defined and in C 0−
loc .

Philosphy of rough paths: also vξ is well defined.

Implement this with paracontrolled distributions Gubinelli-Imkeller-P. ’15.
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Crash course on paracontrolled distributions I
Littlewood-Paley blocks: ∆m are contributions of f on scale 2−m

f =
∑

m

F−1(1[2m,2m+1)(|·|)F f ) =
∑

m

∆mf .

Formally: fg =
∑

m,n ∆mf ∆ng .
Bony ’81: paraproduct f ≺ g =

∑
m≤n−2 ∆mf ∆ng always well defined,

inherits regularity of g .
We interpret f ≺ g as frequency modulation of g :

f

g

fg = f ≺ g
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Crash course on paracontrolled distributions II

Intuition: f ≺ g “looks like” g (call it paracontrolled).

Gubinelli-Imkeller-P. ’15: if gh is given, (f ≺ g)h is well defined and
paracontrolled by h.

Solutions to SPDEs often paracontrolled (paraproduct + smooth rest)

Example PAM:
∂tv = ∆R2v + vξ.

v = v ≺Ξ + v ] with v ] ∈ C 2−
loc .

⇒ vξ ok if Ξξ ok, this we can control with Gaussian analysis.

Gubinelli-Imkeller-P. ’15, Hairer ’14: for periodic white noise ξ;
non-periodic: Hairer-Labbé ’15.

v depends continuously on (ξ,Ξξ); good for proving convergence!
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Back to our model

∂tu = ∆rwu + εF (u)η, u(0, x) = 1x=0.

Problem: u lives on lattice, not R2. Possible solutions:

Interpolation: find ũ on R2 with ũ|Z2 = u and such that ũ solves
“similar” equation, e.g. Mourrat-Weber ’16, Gubinelli-P. ’17, Zhu-Zhu ’15,

Chouk-Gairing-P. 17, Shen-Weber ’16.
Needs random operators, highly technical.

Discretization of regularity structures: Hairer-Matetski ’16,

Cannizzaro-Matetski ’16, Erhard-Hairer ’17.

Paracontrolled distributions via semigroups: Replace Fourier
transform by heat semigroup, works on manifolds and on discrete
spaces Bailleul-Bernicot ’16.

We want to be similar to continuous paracontrolled distributions.
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Crystal lattices
Consider lattices G that allow for Fourier transform:

G

Ĝ

a2

a1

â1

â2

a2

a1

â1

â2

a2

a1

â1

â2

Fourier transform lives on “reciprocal Fourier cell” Ĝ:

Fϕ(x) := ϕ̂(x) := |G|
∑

k∈G
ϕ(k)e−2πık·x , x ∈ Ĝ.

Example: G = εZd then Ĝ = ε−1(R/Z)d .
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Paracontrolled distributions on crystal lattices

Given Fourier transform we define Littlewood-Paley blocks as on Rd :

∆mf = F−1(1[2m,2m+1)(| · |)F f ).

Should not interpret F f as periodic function but embed
Ĝ = ε−1(R/Z)d in Rd .

ε� 0: maybe ∆mf = 0 for all m ≥ 0, but nontrivial decomposition
for ε→ 0.

From here paracontrolled analysis exactly as in continuous space.
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Weighted paracontrolled distributions

Next difficulty: equation lives on unbounded domain

∂tu = ∆rwu + εF (u)η, u(0, x) = 1x=0.

⇒ cannot control η in C−1−, but only in weighted Hölder space.

Develop paracontrolled distributions in weighted spaces.

Trick from Hairer-Labbé ’15: convenient to allow (sub-)exponential
growth of u, but then u is no tempered distribution, i.e. we have no
Fourier transform!

⇒ consider ultra-distributions (can grow faster than polynomially, still
have Fourier transforms.) Similar to Mourrat-Weber ’15, but their
approach does not work on L∞ spaces.
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Analytic convergence proof

Rescale:
∂tu = ∆rwu + εF (u)η, u(0, x) = 1x=0,

⇒ for uε(t, x) = ε−2u(t/ε2, x/ε)

∂tu
ε = ∆εZ2uε + ε−2F (ε2uε)ξε, uε(0) = δε.

Taylor expansion:

ε−2F (ε2uε)ξε = F ′(0)uεξε + o(1)

Paracontrolled analysis of rescaled, Taylor expanded equation.

Key ingredient: Schauder estimates for semigroup generated by ∆rw.

Final result: If ξε → ξ and Ξεξε → Ξξ in appropriate spaces, then
uε → v ,

∂tv = ∆R2v + F ′(0)vξ, v(0) = δ.
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Convergence of the stochastic data

Remains to study convergence of (ξε,Ξεξε).

Central limit theorem: ξε → ξ.

Convergence of Ξεξε often via diagonal sequence argument
(Mourrat-Weber ’16, Hairer-Shen ’16, Chouk-Gairing-P. ’16, . . . ).

Here: Use Wick product to write Ξεξε as discrete multiple stochastic
integral; apply results of Caravenna-Sun-Zygouras ’17 to identify limit.

Regularity from Kolmogorov’s criterion ⇒ need high moments;
obtain bounds via martingale arguments and Wick products.

This concludes the convergence proof.
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Conclusion

Consider interacting branching population in a random potential.

Model too complicated ⇒ average over particle dynamics, formally
get generalized discrete PAM.

Generalized discrete PAM with small potential on large scales
universally described by linear continuous PAM.

To prove this we develop paracontrolled distributions on lattices,

and we provide a systematic approach based on Caravenna-Sun-Zygouras ’17

and Wick products to control multilinear functionals of i.i.d. variables.
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Thank you
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