Weak universality of the parabolic Anderson model

Nicolas Perkowski

Humboldt-Universität zu Berlin

July 2017 Stochastic Analysis Symposium Durham

Joint work with Jörg Martin

Motivation: branching random walks

Random i.i.d. potential $(\eta(x))_{x\in\mathbb{Z}^d}$.

- Independent particles on \mathbb{Z}^d follow random walks (cont. time);
- at site x particle has branching rate $\eta(x)^+$; killing rate $\eta(x)^-$;
- branching: new independent copy, follows same dynamics;
- killing: particle disappears.

Complicated \Rightarrow consider simple statistics:

 $u(t,x) = \mathbb{E}[\# \text{ particles in } (t,x)|\eta].$

Get ∞ -dim ODE "parabolic Anderson model" (PAM)

 $\partial_t u = \Delta_{\mathbb{Z}^d} u + u\eta.$

Motivation: branching random walks

Random i.i.d. potential $(\eta(x))_{x\in\mathbb{Z}^d}$.

- Independent particles on \mathbb{Z}^d follow random walks (cont. time);
- at site x particle has branching rate $\eta(x)^+$; killing rate $\eta(x)^-$;
- branching: new independent copy, follows same dynamics;
- killing: particle disappears.

Complicated \Rightarrow consider simple statistics:

 $u(t,x) = \mathbb{E}[\# \text{ particles in } (t,x)|\eta].$

Get ∞ -dim ODE "parabolic Anderson model" (PAM)

 $\partial_t u = \Delta_{\mathbb{Z}^d} u + u\eta.$

Comparison with super-Brownian motion

- Indep. branching particles on \mathbb{Z}^d with det. branching/killing rate 1.
- $u^N(0,x) = Nu_0(x), x \in \mathbb{Z}^d$.
- Send only no. of particles $\rightarrow \infty$:

$$u(t,x) = \lim_{N o \infty} rac{u^N(t,x)}{N} = \mathbb{E}[\# ext{ particles in } (t,x)],$$

then limit is discrete heat equation

$$\partial_t u = \Delta_{\mathbb{Z}^d} u.$$

• Also zoom out as no. of particles increases:

$$v(t,x) = \lim_{N \to \infty} \frac{u^N(N^2t, Nx)}{N},$$

then limit is super-Brownian motion

$$\partial_t v = \Delta_{\mathbb{R}^d} v + \sqrt{v} \xi.$$

• Would be interesting to directly zoom out in random potential model, not treated here.

Comparison with super-Brownian motion

- Indep. branching particles on \mathbb{Z}^d with det. branching/killing rate 1.
- $u^N(0,x) = Nu_0(x), x \in \mathbb{Z}^d$.
- Send only no. of particles $\rightarrow \infty$:

$$u(t,x) = \lim_{N o \infty} rac{u^N(t,x)}{N} = \mathbb{E}[\# ext{ particles in } (t,x)],$$

then limit is discrete heat equation

$$\partial_t u = \Delta_{\mathbb{Z}^d} u.$$

• Also zoom out as no. of particles increases:

$$v(t,x) = \lim_{N \to \infty} \frac{u^N(N^2t, Nx)}{N},$$

then limit is super-Brownian motion

$$\partial_t v = \Delta_{\mathbb{R}^d} v + \sqrt{v} \xi.$$

• Would be interesting to directly zoom out in random potential model, not treated here.

Large scale behavior of PAM

 $\partial_t u = \Delta_{\mathbb{Z}^d} u + u\eta.$

- Intensely studied in past decades (Carmona, Molchanov, Gärtner, König, ... MANY more);
- if η is "truely random": u is intermittent, mass concentrated in few, small, isolated islands; survey König '16;
- \Rightarrow only possible scaling limit is (finite sum of) Dirac deltas.

Competition between disorder:

$$\partial_t u = u\eta \qquad \Rightarrow \qquad u(t,x) = e^{t\eta(x)}u_0(x)$$

and smoothing:

$$\partial_t u = \Delta_{\mathbb{Z}^d} u \qquad \Rightarrow \qquad u(t, x) = P_t^{\mathbb{Z}^d} * u_0(x).$$

Intermittency: disorder always wins; to see nontrivial limit: weaken disorder; expect phase transition(s) between intermittence and smoothness.

Nicolas Perkowski

Large scale behavior of PAM

 $\partial_t u = \Delta_{\mathbb{Z}^d} u + u\eta.$

- Intensely studied in past decades (Carmona, Molchanov, Gärtner, König, ... MANY more);
- if η is "truely random": u is intermittent, mass concentrated in few, small, isolated islands; survey König '16;
- \bullet \Rightarrow only possible scaling limit is (finite sum of) Dirac deltas.

Competition between disorder:

$$\partial_t u = u\eta \qquad \Rightarrow \qquad u(t,x) = e^{t\eta(x)}u_0(x)$$

and smoothing:

$$\partial_t u = \Delta_{\mathbb{Z}^d} u \qquad \Rightarrow \qquad u(t,x) = P_t^{\mathbb{Z}^d} * u_0(x).$$

Intermittency: disorder always wins; to see nontrivial limit: weaken disorder; expect phase transition(s) between intermittence and smoothness.

Nicolas Perkowski

Weak disorder

$$\partial_t u = \Delta_{\mathbb{Z}^d} u + \varepsilon^{\alpha} u \eta.$$

• To preserve scaling of $\Delta_{\mathbb{Z}^d}$:

$$u^{\varepsilon}(t,x) = \varepsilon^{\beta} u(t/\varepsilon^2, x/\varepsilon).$$

Then

$$\partial_t u^{\varepsilon} = \Delta_{\varepsilon \mathbb{Z}^d} u^{\varepsilon} + u^{\varepsilon} \varepsilon^{-2+\alpha} \eta(\cdot/\varepsilon),$$

and $\varepsilon^{-d/2}\eta(\cdot/\varepsilon) \Rightarrow \xi$ (white noise), so

$$-2 + \alpha = -d/2 \quad \Leftrightarrow \quad \alpha = 2 - d/2.$$

• Something goes wrong for $d \ge 4$.

• Conjecture for d < 4 and centered η : $u^{\varepsilon} \Rightarrow v$,

 $\partial_t v = \Delta_{\mathbb{R}^d} v + v \xi$ (continuous PAM)

where $\xi =$ space white noise.

 Continuous PAM only makes sense for d < 4, critical in d = 4 and supercritical for d > 4!

Weak disorder

$$\partial_t u = \Delta_{\mathbb{Z}^d} u + \varepsilon^{\alpha} u \eta.$$

• To preserve scaling of $\Delta_{\mathbb{Z}^d}$:

$$u^{\varepsilon}(t,x) = \varepsilon^{\beta} u(t/\varepsilon^2, x/\varepsilon).$$

Then

$$\partial_t u^{\varepsilon} = \Delta_{\varepsilon \mathbb{Z}^d} u^{\varepsilon} + u^{\varepsilon} \varepsilon^{-2+\alpha} \eta(\cdot/\varepsilon),$$

and $\varepsilon^{-d/2}\eta(\cdot/\varepsilon) \Rightarrow \xi$ (white noise), so

$$-2 + \alpha = -d/2 \quad \Leftrightarrow \quad \alpha = 2 - d/2.$$

- Something goes wrong for $d \ge 4$.
- Conjecture for d < 4 and centered η : $u^{\varepsilon} \Rightarrow v$,

$$\partial_t v = \Delta_{\mathbb{R}^d} v + v \xi$$
 (continuous PAM)

where $\xi =$ space white noise.

 Continuous PAM only makes sense for d < 4, critical in d = 4 and supercritical for d > 4!

Phase transition

$$\partial_t u = \Delta_{\mathbb{Z}^d} u + \lambda \varepsilon^{2-d/2} u \eta, \qquad u^{\varepsilon}(t,x) = \varepsilon^{\beta} u(t/\varepsilon^2, x/\varepsilon).$$

• Assume we showed $u^{arepsilon}
ightarrow v$ solving continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^d} v + \lambda v \xi.$$

- Conjecture: v is also intermittent (d = 1: Chen '16, Dumaz-Labbé in progress; d = 2: first results in progress by Chouk, van Zuijlen).
- Scaling invariance of ξ : large scales for $v \Leftrightarrow$ large λ .
- So λ → ∞: intermittency, λ → 0: smoothness;
 ⇒ discrete PAM has phase transition at noise strength O(ε^{2-d/2}).

Phase transition

$$\partial_t u = \Delta_{\mathbb{Z}^d} u + \lambda \varepsilon^{2-d/2} u \eta, \qquad u^{\varepsilon}(t,x) = \varepsilon^{\beta} u(t/\varepsilon^2, x/\varepsilon).$$

• Assume we showed $u^{arepsilon}
ightarrow v$ solving continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^d} v + \lambda v \xi.$$

- Conjecture: v is also intermittent (d = 1: Chen '16, Dumaz-Labbé in progress; d = 2: first results in progress by Chouk, van Zuijlen).
- Scaling invariance of ξ : large scales for $v \Leftrightarrow$ large λ .
- So $\lambda \to \infty$: intermittency, $\lambda \to 0$: smoothness; \Rightarrow discrete PAM has phase transition at noise strength $O(\varepsilon^{2-d/2})$.

Generalization: branching interaction

Same dynamics as before, but include interaction:

• at site x particle has branching rate

 $f(\# \text{ particles in } (x))\eta(x)^+;$

killing rate

 $f(\# \text{ particles in } (x))\eta(x)^-;$

- example that models limited resources: f(u) = 1 u/C;
- $\bullet\,$ could include interaction through jump rate, but did not work this out.

Very complicated \Rightarrow consider simple statistics:

 $u(t,x) = \mathbb{E}[\# \text{ particles in } (t,x)|\eta].$

Formally: get "generalized PAM"

 $\partial_t u = \Delta_{\mathbb{Z}^d} u + f(u) u \eta$

Generalization: branching interaction

Same dynamics as before, but include interaction:

• at site x particle has branching rate

 $f(\# \text{ particles in } (x))\eta(x)^+;$

killing rate

 $f(\# \text{ particles in } (x))\eta(x)^-;$

• example that models limited resources: f(u) = 1 - u/C;

• could include interaction through jump rate, but did not work this out. Very complicated \Rightarrow consider simple statistics:

$$u(t,x) = \mathbb{E}[\# \text{ particles in } (t,x)|\eta].$$

Formally: get "generalized PAM"

$$\partial_t u = \Delta_{\mathbb{Z}^d} u + f(u) u \eta$$

Scaling of generalized PAM

Consider d = 2 from now on. Will work in d = 1 (easier) and d = 3 (much harder).

$$\partial_t u = \Delta_{\mathbb{Z}^2} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

• Natural conjecture: If $\mathbb{E}[\eta(0)] = 0$, $\operatorname{var}(\eta(0)) = 1$, then

$$\lim_{\varepsilon\to 0}\varepsilon^{-2}u(t/\varepsilon^2,x/\varepsilon)=v,$$

where v solves generalized continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^2} v + F(v)\xi, \qquad v(0,x) = \delta(x-0).$$

- Problem 1: (generalized) continuous PAM needs renormalization!
 ⇒ assume instead 𝔼[η(0)] = −εF'(0)c^ε with c^ε ≃ |log ε|.
- Problem 2: continuous generalized PAM cannot be started in δ unless $F(u) = \lambda u$.

Scaling of generalized PAM

Consider d = 2 from now on. Will work in d = 1 (easier) and d = 3 (much harder).

$$\partial_t u = \Delta_{\mathbb{Z}^2} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

• Natural conjecture: If $\mathbb{E}[\eta(0)] = 0$, $\operatorname{var}(\eta(0)) = 1$, then

$$\lim_{\varepsilon\to 0}\varepsilon^{-2}u(t/\varepsilon^2,x/\varepsilon)=v,$$

where v solves generalized continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^2} v + F(v)\xi, \qquad v(0,x) = \delta(x-0).$$

- Problem 1: (generalized) continuous PAM needs renormalization!
 ⇒ assume instead 𝔼[η(0)] = −εF'(0)c^ε with c^ε ≃ |log ε|.
- Problem 2: continuous generalized PAM cannot be started in δ unless $F(u) = \lambda u$.

Weak universality of PAM

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

Assume:

- Δ_{rw} generator of random walk with sub-exponential moments;
- $F'' \in L^{\infty}$, F(0) = 0;
- $(\eta(x))_{x\in\mathbb{Z}^2}$ independent, $\mathbb{E}[\eta(x)] = -\varepsilon F'(0)c^{\varepsilon}$, $\operatorname{var}(\eta(x)) = 1$, $\sup_x \mathbb{E}[|\eta(x)|^p] < \infty$ for some p > 14 (might treat p > 4 by truncation).
- \bullet We may also generalize \mathbb{Z}^2 to any two-dimensional "crystal lattice".

Theorem (Martin-P. '17)

Under these assumptions $\lim_{\varepsilon \to 0} \varepsilon^{-2} u(t/\varepsilon^2, x/\varepsilon) = v$, where v solves linear continuous PAM,

$$\partial_t v = \Delta_{\mathbb{R}^2} v + F'(0)v\xi, \qquad v(0,x) = \delta(x-0).$$

Weak universality of PAM

Call this weak universality since model changes with scaling:

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

- Continuous PAM treated pathwise (rough paths, regularity structures, paracontrolled distributions);
- pathwise approaches need subcriticality: nonlinearity unimportant on small scales
 - \Rightarrow solutions not scale-invariant
 - \Rightarrow fixed model cannot rescale to continuous PAM.

Comparison: weak universality of the KPZ equation

Conjecture ("Weak KPZ universality conjecture")

All (appropriate) 1 + 1-dimensional weakly asymmetric interface growth models scale to the KPZ equation

 $\partial_t h = \Delta h + (\partial_x h)^2 + \xi.$

Example: WASEP with open boundaries, Gonçalves-P.-Simon '17.

Figure: Jump rates. Leftmost and rightmost rates are entrance/exit rates. Compare also Corwin-Shen '16.

Strong KPZ universality

Conjecture ("Strong KPZ universality conjecture")

All (appropriate) 1 + 1-dimensional asymmetric interface growth models show the same large scale behavior as the KPZ equation.

- Much harder than weak KPZ universality.
- Example: ASEP with open boundaries

Solution of the continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^2} v + v\xi.$$

• Difficulty: ξ only noise in space, no martingales around;

- Analysis: $\xi \in C_{\text{loc}}^{-1-} \Rightarrow \text{expect } v \in C_{\text{loc}}^{1-}$; $\Rightarrow \text{ sum of regularities } < 0, \text{ so } v\xi \text{ ill-defined.}$
- Subcriticality: on small scales v should look like Ξ ,

$$\partial_t \Xi = \Delta_{\mathbb{R}^2} \Xi + \xi.$$

• Direct computation $((\Xi, \xi)$ is Gaussian):

$$\Xi \xi = \lim_{\varepsilon \to 0} [(\Xi * \delta_{\varepsilon})(\xi * \delta_{\varepsilon}) - c^{\varepsilon}], \qquad c^{\varepsilon} \simeq |\log \varepsilon|,$$

is well defined and in $C_{\rm loc}^{0-}$.

- Philosphy of rough paths: also $v\xi$ is well defined.
- Implement this with paracontrolled distributions Gubinelli-Imkeller-P. '15.

Solution of the continuous PAM

$$\partial_t v = \Delta_{\mathbb{R}^2} v + v\xi.$$

- Difficulty: ξ only noise in space, no martingales around;
- Analysis: $\xi \in C_{\text{loc}}^{-1-} \Rightarrow \text{expect } v \in C_{\text{loc}}^{1-}$; $\Rightarrow \text{ sum of regularities } < 0, \text{ so } v\xi \text{ ill-defined.}$
- Subcriticality: on small scales v should look like Ξ ,

$$\partial_t \Xi = \Delta_{\mathbb{R}^2} \Xi + \xi.$$

• Direct computation $((\Xi, \xi)$ is Gaussian):

$$\Xi \xi = \lim_{\varepsilon \to 0} [(\Xi * \delta_{\varepsilon})(\xi * \delta_{\varepsilon}) - c^{\varepsilon}], \qquad c^{\varepsilon} \simeq |\log \varepsilon|,$$

is well defined and in $C_{\rm loc}^{0-}$.

- Philosphy of rough paths: also $v\xi$ is well defined.
- Implement this with paracontrolled distributions Gubinelli-Imkeller-P. '15.

Crash course on paracontrolled distributions I

• Littlewood-Paley blocks: Δ_m are contributions of f on scale 2^{-m}

$$f = \sum_{m} \mathcal{F}^{-1}(\mathbb{1}_{[2^m, 2^{m+1})}(|\cdot|)\mathcal{F}f) = \sum_{m} \Delta_m f$$

- Formally: $fg = \sum_{m,n} \Delta_m f \Delta_n g$.
- Bony '81: paraproduct $f \prec g = \sum_{m \leq n-2} \Delta_m f \Delta_n g$ always well defined, inherits regularity of g.
- We interpret $f \prec g$ as frequency modulation of g:

Crash course on paracontrolled distributions II

- Intuition: $f \prec g$ "looks like" g (call it paracontrolled).
- Gubinelli-Imkeller-P. '15: if gh is given, $(f \prec g)h$ is well defined and paracontrolled by h.
- Solutions to SPDEs often paracontrolled (paraproduct + smooth rest)
 xample PAM:

$$\partial_t v = \Delta_{\mathbb{R}^2} v + v\xi.$$

•
$$v = v \prec \Xi + v^{\sharp}$$
 with $v^{\sharp} \in C^{2-}_{loc}$.

• $\Rightarrow v\xi$ ok if $\Xi\xi$ ok, this we can control with Gaussian analysis.

- Gubinelli-Imkeller-P. '15, Hairer '14: for periodic white noise ξ; non-periodic: Hairer-Labbé '15.
- v depends continuously on $(\xi, \Xi\xi)$; good for proving convergence!

Crash course on paracontrolled distributions II

- Intuition: $f \prec g$ "looks like" g (call it paracontrolled).
- Gubinelli-Imkeller-P. '15: if gh is given, $(f \prec g)h$ is well defined and paracontrolled by h.
- Solutions to SPDEs often paracontrolled (paraproduct + smooth rest) Example PAM:

$$\partial_t v = \Delta_{\mathbb{R}^2} v + v\xi.$$

•
$$v = v \prec \Xi + v^{\sharp}$$
 with $v^{\sharp} \in C^{2-}_{loc}$.

• $\Rightarrow v\xi$ ok if $\Xi\xi$ ok, this we can control with Gaussian analysis.

- Gubinelli-Imkeller-P. '15, Hairer '14: for periodic white noise ξ; non-periodic: Hairer-Labbé '15.
- v depends continuously on $(\xi, \Xi\xi)$; good for proving convergence!

Back to our model

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

Problem: *u* lives on lattice, not \mathbb{R}^2 . Possible solutions:

- Interpolation: find \tilde{u} on \mathbb{R}^2 with $\tilde{u}|_{\mathbb{Z}^2} = u$ and such that \tilde{u} solves "similar" equation, e.g. Mourrat-Weber '16, Gubinelli-P. '17, Zhu-Zhu '15, Chouk-Gairing-P. 17, Shen-Weber '16. Needs random operators, highly technical.
- Discretization of regularity structures: Hairer-Matetski '16, Cannizzaro-Matetski '16, Erhard-Hairer '17.
- Paracontrolled distributions via semigroups: Replace Fourier transform by heat semigroup, works on manifolds and on discrete spaces Bailleul-Bernicot '16.
- We want to be similar to continuous paracontrolled distributions.

Back to our model

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbb{1}_{x=0}.$$

Problem: *u* lives on lattice, not \mathbb{R}^2 . Possible solutions:

- Interpolation: find \tilde{u} on \mathbb{R}^2 with $\tilde{u}|_{\mathbb{Z}^2} = u$ and such that \tilde{u} solves "similar" equation, e.g. Mourrat-Weber '16, Gubinelli-P. '17, Zhu-Zhu '15, Chouk-Gairing-P. 17, Shen-Weber '16. Needs random operators, highly technical.
- Discretization of regularity structures: Hairer-Matetski '16, Cannizzaro-Matetski '16, Erhard-Hairer '17.
- Paracontrolled distributions via semigroups: Replace Fourier transform by heat semigroup, works on manifolds and on discrete spaces Bailleul-Bernicot '16.
- We want to be similar to continuous paracontrolled distributions.

Crystal lattices

Consider lattices ${\mathcal G}$ that allow for Fourier transform:

Fourier transform lives on "reciprocal Fourier cell" $\widehat{\mathcal{G}}$:

$$\mathcal{F} arphi(x) := \widehat{arphi}(x) := |\mathcal{G}| \sum_{k \in \mathcal{G}} arphi(k) e^{-2\pi \imath k \cdot x}, \qquad x \in \widehat{\mathcal{G}}.$$

Example:
$$\mathcal{G} = \varepsilon \mathbb{Z}^d$$
 then $\widehat{\mathcal{G}} = \varepsilon^{-1} (\mathbb{R}/\mathbb{Z})^d$.

Paracontrolled distributions on crystal lattices

• Given Fourier transform we define Littlewood-Paley blocks as on \mathbb{R}^d :

$$\Delta_m f = \mathcal{F}^{-1}(\mathbb{1}_{[2^m, 2^{m+1})}(|\cdot|)\mathcal{F}f).$$

- Should not interpret $\mathcal{F}f$ as periodic function but embed $\widehat{\mathcal{G}} = \varepsilon^{-1} (\mathbb{R}/\mathbb{Z})^d$ in \mathbb{R}^d .
- $\varepsilon \gg 0$: maybe $\Delta_m f = 0$ for all $m \ge 0$, but nontrivial decomposition for $\varepsilon \to 0$.
- From here paracontrolled analysis exactly as in continuous space.

Weighted paracontrolled distributions

Next difficulty: equation lives on unbounded domain

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u)\eta, \qquad u(0,x) = \mathbbm{1}_{x=0}.$$

 \Rightarrow cannot control η in C^{-1-} , but only in weighted Hölder space.

- Develop paracontrolled distributions in weighted spaces.
- Trick from Hairer-Labbé '15: convenient to allow (sub-)exponential growth of *u*, but then *u* is no tempered distribution, i.e. we have no Fourier transform!
- \Rightarrow consider ultra-distributions (can grow faster than polynomially, still have Fourier transforms.) Similar to Mourrat-Weber '15, but their approach does not work on L^{∞} spaces.

Weighted paracontrolled distributions

Next difficulty: equation lives on unbounded domain

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u) \eta, \qquad u(0, x) = \mathbb{1}_{x=0}.$$

 \Rightarrow cannot control η in C^{-1-} , but only in weighted Hölder space.

- Develop paracontrolled distributions in weighted spaces.
- Trick from Hairer-Labbé '15: convenient to allow (sub-)exponential growth of *u*, but then *u* is no tempered distribution, i.e. we have no Fourier transform!
- \Rightarrow consider ultra-distributions (can grow faster than polynomially, still have Fourier transforms.) Similar to Mourrat-Weber '15, but their approach does not work on L^{∞} spaces.

Analytic convergence proof

Rescale:

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u) \eta, \qquad u(0, x) = \mathbb{1}_{x=0},$$

 \Rightarrow for $u^{\varepsilon}(t,x) = \varepsilon^{-2} u(t/\varepsilon^2, x/\varepsilon)$

$$\partial_t u^{\varepsilon} = \Delta_{\varepsilon \mathbb{Z}^2} u^{\varepsilon} + \varepsilon^{-2} F(\varepsilon^2 u^{\varepsilon}) \xi^{\varepsilon}, \qquad u^{\varepsilon}(0) = \delta^{\varepsilon}.$$

• Taylor expansion:

$$\varepsilon^{-2}F(\varepsilon^{2}u^{\varepsilon})\xi^{\varepsilon}=F'(0)u^{\varepsilon}\xi^{\varepsilon}+o(1)$$

• Paracontrolled analysis of rescaled, Taylor expanded equation.

- Key ingredient: Schauder estimates for semigroup generated by $\Delta_{\rm rw}.$
- Final result: If $\xi^{\varepsilon} \to \xi$ and $\Xi^{\varepsilon} \xi^{\varepsilon} \to \Xi \xi$ in appropriate spaces, then $u^{\varepsilon} \to v$,

$$\partial_t v = \Delta_{\mathbb{R}^2} v + F'(0) v \xi, \qquad v(0) = \delta.$$

Analytic convergence proof

Rescale:

$$\partial_t u = \Delta_{\mathrm{rw}} u + \varepsilon F(u) \eta, \qquad u(0, x) = \mathbb{1}_{x=0},$$

 \Rightarrow for $u^{\varepsilon}(t,x) = \varepsilon^{-2} u(t/\varepsilon^2, x/\varepsilon)$

$$\partial_t u^{\varepsilon} = \Delta_{\varepsilon \mathbb{Z}^2} u^{\varepsilon} + \varepsilon^{-2} F(\varepsilon^2 u^{\varepsilon}) \xi^{\varepsilon}, \qquad u^{\varepsilon}(0) = \delta^{\varepsilon}.$$

• Taylor expansion:

$$\varepsilon^{-2}F(\varepsilon^2 u^{\varepsilon})\xi^{\varepsilon} = F'(0)u^{\varepsilon}\xi^{\varepsilon} + o(1)$$

- Paracontrolled analysis of rescaled, Taylor expanded equation.
- Key ingredient: Schauder estimates for semigroup generated by $\Delta_{\rm rw}$.
- Final result: If $\xi^{\varepsilon} \to \xi$ and $\Xi^{\varepsilon} \xi^{\varepsilon} \to \Xi \xi$ in appropriate spaces, then $u^{\varepsilon} \to v$,

$$\partial_t v = \Delta_{\mathbb{R}^2} v + F'(0) v \xi, \qquad v(0) = \delta.$$

Convergence of the stochastic data

Remains to study convergence of $(\xi^{\varepsilon}, \Xi^{\varepsilon}\xi^{\varepsilon})$.

- Central limit theorem: $\xi^{\varepsilon} \to \xi$.
- Convergence of Ξ^εξ^ε often via diagonal sequence argument (Mourrat-Weber '16, Hairer-Shen '16, Chouk-Gairing-P. '16, ...). Here: Use Wick product to write Ξ^εξ^ε as discrete multiple stochastic integral; apply results of Caravenna-Sun-Zygouras '17 to identify limit.
- Regularity from Kolmogorov's criterion ⇒ need high moments; obtain bounds via martingale arguments and Wick products.

This concludes the convergence proof.

Conclusion

- Consider interacting branching population in a random potential.
- Model too complicated ⇒ average over particle dynamics, formally get generalized discrete PAM.
- Generalized discrete PAM with small potential on large scales universally described by linear continuous PAM.
- To prove this we develop paracontrolled distributions on lattices,
- and we provide a systematic approach based on Caravenna-Sun-Zygouras '17 and Wick products to control multilinear functionals of i.i.d. variables.

Thank you