Imperial College London

MEAN FIELD LIMITS OF INTERACTING DIFFUSIONS IN TWO-SCALE POTENTIALS
LMS EPSRC DURHAM SYMPOSIUM

18.07.2017
G.A. Pavliotis

- Mean field limits for interacting diffusions in a two-scale potential (S.N. Gomes and G.A. Pavliotis), Preprint (2017)
- Brownian motion in an N -scale periodic potential (A.B. Duncan and G.A. Pavliotis). Submitted to SIAM J MMS (2016).

O Noise-induced transitions in rugged energy landscapes (A.B. Duncan, S. Kalliadasis, G.A. Pavliotis, M. Pradas). Phys. Rev. E, 94, 032107 (2016).

Research Funded by the EPSRC, Grants EP/P031587/1, EP/J009636/1, EP/L024926/1, EP/L020564/1 and EP/L025159/1

EPSRC

Texts in Applied Mathematics 60

Grigorios A. Pavliotis

Stochastic

 Processes and ApplicationsDiffusion Processes, the Fokker-Planck and Langevin Equations

Springer

We consider a system of weakly interacting diffusions moving in a 2 -scale locally periodic potential:

$$
\begin{equation*}
d X_{t}^{i}=-\nabla V^{\epsilon}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j=1}^{N} \nabla F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{i}, \quad i=1, . ., \Lambda \tag{1}
\end{equation*}
$$

O where

$$
\begin{equation*}
V^{\epsilon}(x)=V_{0}(x)+V_{1}(x, x / \epsilon) \tag{2}
\end{equation*}
$$

Our goal is to study the combined mean-field/homogenization limits.

- In particular, we want to study bifurcations/phase transitions for the McKean-Vlasov equation in a confining potential with many local minima.

Figure: Bistable potential with (left) separable and (right) nonseparable fluctuations,

$$
V^{\epsilon}(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}+\delta \cos \left(\frac{x}{\epsilon}\right) \quad \text { and } \quad V^{\epsilon}(x)=\frac{x^{4}}{4}-\left(1-\delta \cos \left(\frac{x}{\epsilon}\right)\right) \frac{x^{2}}{2} .
$$

MCKEAN-VLASOV DYNAMICS IN A BISTABLE POTENTIAL

Consider a system of interacting diffusions in a bistable potential:

$$
\begin{equation*}
d X_{t}^{i}=\left(-V^{\prime}\left(X_{t}^{i}\right)-\theta\left(X_{t}^{i}-\frac{1}{N} \sum_{j=1}^{N} X_{t}^{j}\right)\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{i} \tag{3}
\end{equation*}
$$

O The total energy (Hamiltonian) is

$$
\begin{equation*}
W_{N}(\mathbf{X})=\sum_{\ell=1}^{N} V\left(X^{\ell}\right)+\frac{\theta}{4 N} \sum_{n=1}^{N} \sum_{\ell=1}^{N}\left(X^{n}-X^{\ell}\right)^{2} \tag{4}
\end{equation*}
$$

- We can pass rigorously to the mean field limit as $N \rightarrow \infty$ using, for example, martingale techniques, (Dawson 1983, Gartner 1988, Oelschlager 1984).
- Formally, using the law of large numbers we obtain the McKean SDE

$$
\begin{equation*}
d X_{t}=-V^{\prime}\left(X_{t}\right) d t-\theta\left(X_{t}-\mathbb{E} X_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t} \tag{5}
\end{equation*}
$$

- The Fokker-Planck equation corresponding to this SDE is the McKean-Vlasov equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{\partial}{\partial x}\left(V^{\prime}(x) p+\theta\left(x-\int_{\mathbb{R}} x p(x, t) d x\right) p+\beta^{-1} \frac{\partial p}{\partial x}\right) . \tag{6}
\end{equation*}
$$

O The McKean-Vlasov equation is a gradient flow, with respect to the Wasserstein metric, for the free energy functional
$\mathcal{F}[\rho]=\beta^{-1} \int \rho \ln \rho d x+\int V \rho d x+\frac{\theta}{2} \iint F(x-y) \rho(x) \rho(y) d x d y$,
with $F(x)=\frac{1}{2} x^{2}$.

The finite dimensional dynamics (3) is reversible with respect to the Gibbs measure

$$
\begin{equation*}
\mu_{N}(d x)=\frac{1}{Z_{N}} e^{-\beta W_{N}\left(x^{1}, \ldots x^{N}\right)} d x^{1} \ldots d x^{N}, \quad Z_{N}=\int_{\mathbb{R}^{N}} e^{-\beta W_{N}\left(x^{1}, \ldots x^{N}\right)} \tag{8}
\end{equation*}
$$

o where $W_{N}(\cdot)$ is given by (4).
O the McKean dynamics (5) can have more than one invariant measures, for nonconvex confining potentials and at sufficiently low temperatures (Dawson1983, Tamura 1984, Shiino 1987, Tugaut 2014).

- The density of the invariant measure(s) for the McKean dynamics (5) satisfies the stationary nonlinear Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(V^{\prime}(x) p_{\infty}+\theta\left(x-\int_{\mathbb{R}} x p_{\infty}(x) d x\right) p_{\infty}+\beta^{-1} \frac{\partial p_{\infty}}{\partial x}\right)=0 \tag{9}
\end{equation*}
$$

- For the quadratic interaction potential a one-parameter family of solutions to the stationary McKean-Vlasov equation (9) can be obtained:

$$
\begin{align*}
p_{\infty}(x ; \theta, \beta, m) & =\frac{1}{Z(\theta, \beta ; m)} e^{-\beta\left(V(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)},(10 \mathrm{a}) \\
Z(\theta, \beta ; m) & =\int_{\mathbb{R}} e^{-\beta\left(V(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)} d x \tag{10b}
\end{align*}
$$

These solutions are subject, to the constraint that they provide us with the correct formula for the first moment:

$$
\begin{equation*}
m=\int_{\mathbb{R}} x p_{\infty}(x ; \theta, \beta, m) d x=: R(m ; \theta, \beta) \tag{11}
\end{equation*}
$$

This is the selfconsistency equation.

- The critical temperature can be calculated from

$$
\begin{equation*}
\left.\operatorname{Var}_{p_{\infty}}(x)\right|_{m=0}=\frac{1}{\beta \theta} \tag{12}
\end{equation*}
$$

Figure: Plot of $R(m ; \theta, \beta)$ and of the straight line $y=x$ for $\theta=0.5$, $\beta=10$, and bifurcation diagram of m as a function of β for $\theta=0.5$ for the bistable potential $V(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}$ and interaction potential $F(x)=\frac{x^{2}}{2}$.

BROWNIAN PARTICLES IN A TWO-SCALE POTENTIAL

- Dynamics given by Itô SDE:

$$
d X_{t}^{\epsilon}=-\nabla V^{\epsilon}\left(X_{t}^{\epsilon}\right) d t+\sqrt{2 \beta^{-1}} d W_{t}
$$

\bigcirc For $\epsilon \ll 1, V^{\epsilon}$ models a "rough" potential:

$$
V^{\epsilon}(x):=V\left(x, \frac{x}{\epsilon}, \frac{x}{\epsilon^{2}}, \ldots, \frac{x}{\epsilon^{N}}\right)
$$

for a smooth function $V\left(x_{0}, y_{1}, \ldots, y_{N}\right)$.

- x_{0} : slowly-varying structure of potential.
- y_{1}, \ldots, y_{N} : multiscale periodic fluctuations occuring at different scales.

LONG-TIME BEHAVIOUR OF THE SLOW-FAST DYNAMICS

X_{t}^{ϵ} is a Markov diffusion process with infinitesimal generator defined by

$$
\mathcal{L}^{\epsilon} f=\beta^{-1} e^{\beta V^{\epsilon}(x)} \nabla \cdot\left(e^{-\beta V^{\epsilon}(x)} \nabla f(x)\right) .
$$

Stationary distribution satisfies the stationary Fokker-Planck equation:

$$
\nabla \cdot\left(e^{-\beta V^{\epsilon}(x)} \nabla\left(\pi^{\epsilon}(x) e^{\beta V^{\epsilon}(x)}\right)=0, \quad x \in \mathbb{R}^{d}\right.
$$

Suppose $Z^{\epsilon}=\int_{\mathbb{R}^{d}} e^{-\beta V^{\epsilon}(x)} d x<\infty$,
X_{t}^{ϵ} is ergodic, with stationary density $\pi^{\epsilon}(x)=\frac{1}{Z^{\epsilon}} e^{-\beta V^{\epsilon}(x)}$.
X_{t}^{ϵ} satisfies detailed balance with respect to $\pi^{\epsilon}(x)$, i.e.
Stationary Probability Flux $=\nabla \cdot\left(\pi^{\epsilon}(x) e^{\beta V^{\epsilon}(x)}\right)=0, \quad \forall x \in \mathbb{R}^{d}$.

QUESTIONS AND OBJECTIVES

Questions:

- Can behaviour of X_{t}^{ϵ} for small ϵ be approximated by some X_{t}^{0} ?
X_{t}^{ϵ} ergodic $\Rightarrow X_{t}^{0}$ ergodic?
- Relationship between $\pi^{\epsilon}(\cdot)$ and $\pi^{0}(\cdot)$?
- Asymptotic behaviour of other quantities related to X_{t}^{ϵ},
- Observables of X_{t}^{ϵ}, e.g. reaction coordinates.
- Mean First Passage Time (MFPT), as $\epsilon \rightarrow 0$.

Approach:
O Formal approach: Asymptotic expansions of the Kolmogorov Backward Equation for X_{t}^{ϵ} in powers of $O\left(\epsilon^{-1}\right)$.
\bigcirc Rigorous Approach: probabilistic techniques for locally-periodic homogenization, [Bensoussans, Lyons, Papanicolau, 1979], [Pardoux, 1999], [Pardoux, Veretennikov, 2001], [Bencherif-Madani, Pardoux, 2003].

THE HOMOGENIZATION THEOREM

To prove the existence of the limit of X_{t}^{ϵ} as $\epsilon \rightarrow 0$, we make the following assumptions on V.

- There exist confining potentials $M_{0}(x)$ and $M_{1}(x)$ such that

$$
M_{0}(x) \leq V\left(x, y_{1}, \ldots, y_{N}\right) \leq M_{1}(x), \quad \forall x \in \mathbb{R}^{d}, y_{1}, \ldots y_{N} \in \mathbb{T}^{d}
$$

$V\left(x, y_{1}, \ldots, y_{N}\right)$ is smooth in all variables (can be relaxed).
\bigcirc The gradient of the potential is Lipschitz in x, i.e.

$$
\left|\nabla V\left(x, y_{1}, \ldots, y_{N}\right)-\nabla V\left(x^{\prime}, y_{1}, \ldots, y_{N}\right)\right| \leq C\left|x-x^{\prime}\right|
$$

$\left|\nabla V\left(x, y_{1}, \ldots, y_{N}\right)\right| \leq C^{\prime}|x|$, for some C, C^{\prime} for all $x, x^{\prime} \in \mathbb{R}$, $y_{1}, \ldots, y_{N} \in \mathbb{T}^{d}$.

HOMOGENIZATION THEOREM

The limiting dynamics can be characterized by the following Itô SDE:
$d X_{t}^{0}=-\mathcal{K}\left(X_{t}^{0}\right) \nabla \Psi\left(X_{t}^{0}\right) d t+\beta^{-1} \nabla \cdot \mathcal{K}\left(X_{t}^{0}\right) d t+\sqrt{2 \beta^{-1} \mathcal{K}\left(X_{t}^{0}\right)} d W_{t}$, where Ψ is the free energy $\Psi(x)=-\beta^{-1} \log Z(x)$.
O The limiting SDE corresponds to the Klimontovich interpretation of the stochastic integral.
$\bigcirc X_{t}^{0}$ satisfies detailed balance with respect to the invariant measure

$$
\pi^{0}(x)=\frac{1}{\mathcal{Z}} e^{-\Psi(x)}=\frac{Z(x)}{\mathcal{Z}}, \quad \mathcal{Z}=\int Z\left(x^{\prime}\right) d x^{\prime}
$$

For all $e \in \mathbb{R}^{d}$, with $\hat{Z}(x)=\int \cdots \int e^{\beta V\left(x, y_{1}, \ldots, y_{N}\right)} d y_{N} \ldots d y_{1}$:

$$
\frac{|e|^{2}}{Z(x) \hat{Z}(x)} \leq e \cdot \mathcal{K}(x) e \leq|e|^{2}
$$

HOMOGENIZATION THEOREM

As $\epsilon \rightarrow 0$, the process X_{t}^{ϵ} converges weakly in $C\left([0, T], \mathbb{R}^{d}\right)$ to a diffusion process X_{t}^{0} having generator defined by

$$
\mathcal{L}^{0} f(x)=\frac{\beta^{-1}}{Z(x)} \nabla_{x} \cdot\left(Z(x) \mathcal{K}(x) \nabla_{x} f(x)\right), \quad f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

where $Z(x)=\int \cdots \int e^{-\beta V(x, \ldots)} d y_{N} \ldots d y_{1}$, and

$$
\mathcal{K}(x)=I+\frac{1}{Z(x)} \int_{\mathbb{T}^{d}} \cdots \int_{\mathbb{T}^{d}}\left(I+\nabla_{x_{N}} \theta_{N}^{\top}\right) \cdots\left(I+\nabla_{x_{1}} \theta_{1}^{\top}\right) e^{-\beta V} d y_{N} \ldots d y_{1}
$$

and θ_{k} are mean-zero solutions of the following Poisson equations on \mathbb{T}^{d} :

$$
\nabla_{y_{k}} \cdot\left(\mathcal{K}_{k}\left(\nabla_{y_{k}} \theta_{k}+I\right)\right)=0, \quad y \in \mathbb{T}^{d}
$$

where $\mathcal{K}_{N}\left(x, y_{1}, \ldots, y_{N}\right)=e^{-\beta V\left(x, y_{1}, \ldots, y_{N}\right)} /$ and
$\mathcal{K}_{k}\left(x, y_{1}, \ldots, y_{k}\right)=\int\left(I+\nabla_{N} \theta_{N}^{\top}\right) \cdots\left(I+\nabla_{k+1} \theta_{k+1}^{\top}\right) e^{-\beta V} d y_{N} \ldots d y_{k+1}$.

PROOF OF THE HOMOGENIZATION THEOREM

Slight generalisation of classical martingale approach to homogenization, applied to SDEs with locally-periodic coefficients having N-scales.

Rough idea:

1. The slow-fast system is the solution to the following martingale problem:

$$
\mathbb{E}_{X}\left[\phi^{\epsilon}\left(X_{t}^{\epsilon}\right)-\int_{s}^{t} \mathcal{L}^{\epsilon} \phi^{\epsilon}\left(X_{u}^{\epsilon}\right) d u \mid \mathcal{F}_{s}\right]=\phi^{\epsilon}\left(X_{s}^{\epsilon}\right), \quad \forall \phi^{\epsilon} \in \mathcal{D}\left(\mathcal{L}^{\epsilon}\right)
$$

Construct a test function
$\phi^{\epsilon}(x)=\phi_{0}(x)+\epsilon \phi_{1}(x, x / \epsilon)+\ldots+\epsilon^{N} \phi_{N}\left(x, x / \epsilon, \ldots, x / \epsilon^{N}\right)+\ldots$
such that

$$
\mathcal{L}^{\epsilon} \phi^{\epsilon}(x)=\mathcal{L}^{0} \phi_{0}(x)+\epsilon R^{\epsilon}(x)
$$

where $E_{x}\left[\epsilon R^{\epsilon}\left(X_{u}^{\epsilon}\right)\right] \rightarrow 0$, as $\epsilon \rightarrow 0$.

PROOF OF THE HOMOGENIZATION THEOREM CTD.

1. If the set of measures \mathbb{P}^{ϵ} on $C\left([0, T], \mathbb{R}^{d}\right)$ corresponding to the processes $\left\{X_{t}^{\epsilon}, t \in[0, T]\right\}$ possesses a limit point X_{t}^{0} then it is the unique solution of the following martingale problem

$$
\mathbb{E}_{X}\left[\phi_{0}\left(X^{0}\right)-\int_{s}^{t} \mathcal{L}^{0} \phi_{0}\left(X_{u}^{\epsilon}\right) d u \mid \mathcal{F}_{s}\right]=\phi_{0}\left(X_{s}^{\epsilon}\right), \quad \forall \phi \in \mathcal{D}\left(\mathcal{L}^{0}\right) .
$$

2. Show that $\left\{X_{t}^{\epsilon}\right\}_{\epsilon>0}$ possesses an accumulation point. i.e. Establish tightness of the family of processes in $\left\{X_{t}^{\epsilon}\right\}_{\epsilon>0}$.

CRITICAL POINTS OF THE INVARIANT DISTRIBUTION

- we want to calculate the critical points of the stationary distribution:

$$
\nabla Z(x ; \beta)=0
$$

- Multiplicative noise can change the location and number of the critical points.
- We distinguish between two cases:

1. Separable Potential: the fluctuations and large scale parts of the potential are uncoupled:

$$
V^{\epsilon}(x)=V_{0}(x)+V_{1}\left(x / \epsilon, x / \epsilon^{2}, \ldots x / \epsilon^{N}\right) .
$$

In this case:

$$
Z(x) \propto \int \cdots \int e^{-\beta V\left(x, y_{1}, \ldots y_{N}\right)} d y_{N} \ldots d y_{1} \propto e^{-V_{0}(x)} .
$$

and \mathcal{K} is independent of x. Rapid fluctuations do not alter stationary behaviour, but only speed of convergence to equilibrium and effective diffusion tensor.
2. Nonseparable potential. In this case

$$
Z(x) \nprec e^{-V_{0}(x)}, \quad \text { in general. }
$$

Rapid fluctuations can change the critical points of the stationary distribution.

TOY EXAMPLE: ID DOUBLE WELL POTENTIAL

Consider the ODE in \mathbb{R} :

$$
\dot{x}(t)=-\frac{d}{d x} V_{0}(x ; \alpha), \quad t>0
$$

where $V_{0}(x ; \alpha)=-\frac{\alpha}{2} x^{2}+\frac{1}{4} x^{4}$, corresponding to the invariant density $e^{-\beta V(x)}$.

- Normal form for supercritical pitchfork bifurcation.$\alpha<0$: One stable equilibrium at $x=0$.
○ $\alpha>0$: Stable equilibria at $x= \pm \sqrt{\alpha}$. Unstable
 equilibrium at $x=0$.

1D DOUBLE WELL POTENTIAL

Consider the ODE in \mathbb{R} :

$$
\dot{x}(t)=-\frac{d}{d x} V_{0}(x ; \alpha), \quad t>0,
$$

where $V_{0}(x ; \alpha)=-\frac{\alpha}{2} x^{2}+\frac{1}{4} x^{4}$.
Add multiscale fluctuations $V^{\epsilon}(x ; \alpha)=V(x, x / \epsilon ; \alpha)$, where

$$
V(x, y ; \alpha)=\frac{1}{4} x^{4}-\left(\frac{\alpha+\sin (2 \pi y)}{2}\right) x^{2} .
$$

Thermal motion in potential:

$$
d X_{t}^{\epsilon}=-\frac{d V^{\epsilon}}{d x}\left(X_{t}^{\epsilon}\right) d t+\sqrt{2 \beta^{-1}} d W_{t} .
$$

1D DOUBLE WELL POTENTIAL

By previous theory, $X_{t}^{\epsilon} \Rightarrow X_{t}^{0}$, as $\epsilon \rightarrow 0$, where X_{t}^{0} is ergodic with stationary distribution

$$
\pi^{0}(d x) \propto Z(x) d x
$$

Can show that

$$
\pi^{0}(x) \propto \underbrace{e^{\beta\left(\frac{\alpha^{2} x^{2}}{2}-\frac{x^{4}}{4}\right)}}_{\pi_{0}(x)} / \underbrace{\left(0, \frac{x^{2}}{2 \beta^{-1}}\right)}_{\text {correction }}
$$

where I is the modified Bessel function of the first kind.
Varying the intensity of the noise can alter the equilibrium properties of the system, i.e. the critical points of the stationary distribution.

1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the dynamics.

Figure: $\beta^{-1}=1.0$

1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the dynamics.

Figure: $\beta^{-1}=10^{-1}$

1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the dynamics.

Figure: $\beta^{-1}=5 \cdot 10^{-2}$

1D DOUBLE WELL POTENTIAL

More generally: consider an N-scale potential

$$
V^{\epsilon}(x ; \alpha)=V_{0}(x ; \alpha)-\frac{1}{2} \sum_{n=1}^{N} \sin \left(\frac{2 \pi x}{\epsilon^{n}}\right) x^{2}
$$

Figure: Bifurcation diagram for a different number N of microscopic scales in the potential

1D DOUBLE WELL POTENTIAL

Stationary PDF of homogenized dynamics is:

$$
Z_{N}(x ; \alpha) \propto e^{-\beta V_{0}(x ; \alpha)} /\left(0, \frac{x^{2}}{2 \beta^{-1 / 2}}\right)^{N}
$$

Figure: Phase diagram for α and σ

EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As the number of scales increase, the effective diffusivity $K(x)$ decreases.
Must increase temperature β^{-1} to overcome "trapping effect" of regions of slow diffusivity. Consider separable N-scale potential

$$
V^{\epsilon}(x)=S(x / \epsilon)+\ldots+S\left(x / \epsilon^{N}\right)
$$

where

$$
S(x)= \begin{cases}2 x & \text { if } x \bmod 1 \in\left[0, \frac{1}{2}\right) \\ 2-2 x & \text { if } x \bmod 1 \in\left[\frac{1}{2}, 1\right)\end{cases}
$$

EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As $\epsilon \rightarrow 0, X_{t}^{\epsilon} \Rightarrow X_{t}^{0}$, where

$$
d X_{t}^{0}=\sqrt{\frac{2 \sigma}{K(\sigma)^{N}}} d W_{t}
$$

where $\sigma=\beta^{-1}$, for $K(\sigma)=2 \sigma^{2}\left(\cosh \left(\frac{1}{\sigma}\right)-1\right)$.

MEAN FIELD LIMITS FOR INTERACTING DIFFUSIONS IN A TWO-SCALE POTENTIAL

We consider a system of weakly interacting diffusions moving in a 2 -scale locally periodic potential:

$$
\begin{equation*}
d X_{t}^{i}=-\nabla V^{\epsilon}\left(X_{t}^{i}\right) d t-\frac{1}{N} \sum_{j=1}^{N} \nabla F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{i}, \quad i=1, . ., \Lambda \tag{13}
\end{equation*}
$$

O where

$$
\begin{equation*}
V^{\epsilon}(x)=V_{0}(x)+V_{1}(x, x / \epsilon) \tag{14}
\end{equation*}
$$

The full N-particle potential is

$$
\begin{align*}
U\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right)= & \sum_{i=1}^{N} V_{0}\left(x_{i}\right)+\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} F\left(x_{i}-x_{j}\right) \\
& +\sum_{i=1}^{N} V_{1}\left(x_{i}, y_{i}\right) \tag{15}
\end{align*}
$$

The homogenization theorem applies to the N-particle system.

The homogenized equation is

$$
\begin{align*}
d X_{t}^{i}=- & M\left(X_{t}^{i}\right)\left(\nabla V_{0}\left(X_{t}^{i}\right)+\frac{1}{N} \sum_{i \neq j} \nabla F\left(X_{t}^{j}-X_{t}^{i}\right)+\nabla \psi\left(X_{t}^{i}\right)\right) d t \\
& +\beta^{-1} \nabla \cdot M\left(X_{t}^{i}\right) d t+\sqrt{2 \beta^{-1} M\left(X_{t}^{i}\right)} d W_{t}^{i} \tag{16}
\end{align*}
$$

for $i=1, \ldots, N$, where $M: \mathbb{R}^{d} \rightarrow \mathbb{R}_{\text {sym }}^{d \times d}$ is defined by

$$
\begin{equation*}
M(x)=\frac{1}{Z(x)} \int_{\mathbb{T}^{d}} \int\left(I+\nabla_{y} \theta(x, y)\right) e^{-\beta V_{1}(x, y)} d y, \quad x \in \mathbb{R}^{d} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(x)=-\beta^{-1} \nabla \log Z(x) \tag{18}
\end{equation*}
$$

for (this is the free energy only with respect to $V_{1}(x, y)$)

$$
Z(x)=\int_{\mathbb{T}^{d}} e^{-\beta V_{1}(x, y)} d y
$$

and where, for fixed $x \in \mathbb{R}^{d}, \theta$ is the unique mean zero solution to

$$
\begin{equation*}
\nabla \cdot\left(e^{-\beta V_{1}(x, y)}\left(I+\nabla_{y} \theta(x, y)\right)=0, \quad y \in \mathbb{T}^{d}\right. \tag{19}
\end{equation*}
$$

- We can pass to the mean field limit $N \rightarrow+\infty$ using the results from e.g. Dawson (1983), Oelschlager (1984) to obtain the McKean-Vlasov-Fokker-Planck equation:
$\frac{\partial p}{\partial t}=\nabla \cdot\left(M\left(\nabla V_{0} p+\nabla \Psi p+(\nabla F * p) p\right)+\beta^{-1} \nabla \cdot M p+\beta^{-1} \nabla \cdot(M p)\right)$.
\bigcirc The mean field $N \rightarrow+\infty$ and the homogenization $\epsilon \rightarrow 0$ limits commute over finite time intervals.
- This is a nonlinear equation and more than one invariant measures can exist, depending on the temperature. Eqn (20) can exhibit phase transitions.
- The number of invariant measures depends on the number of solutions of the self-consistency equation.
- The phase/bifurcation diagrams can be different depending on the order with which we take the limits. For example:

$$
V^{\epsilon}(x)=\frac{x^{2}}{2}+\cos (x / \epsilon)
$$

O The homogenization process tends to "convexify" the potential.

Figure: Bistable potential with additive (left) and multiplicative (right) fluctuations.

Consider the case $F(x)=\theta \frac{x^{2}}{2}$, take $N \rightarrow+\infty$ and keep ϵ fixed. The invariant distribution(s) are:

$$
\begin{align*}
p^{\epsilon}(x ; m, \theta, \beta) & =\frac{1}{Z^{\epsilon}} e^{-\beta\left(V^{\epsilon}(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)} \tag{21a}\\
Z^{\epsilon} & =\int e^{-\beta\left(V^{\epsilon}(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)} d x \tag{21b}
\end{align*}
$$

O where

$$
\begin{equation*}
m=\int x p^{\epsilon}(x ; m, \theta, \beta) d x \tag{22}
\end{equation*}
$$

\bigcirc Take first $\epsilon \rightarrow 0$ and then $N \rightarrow+\infty$. The invariant distribution(s) are

$$
\begin{aligned}
p(x ; m, \theta, \beta) & =\frac{1}{Z} e^{-\beta\left(V_{0}(x)+\psi(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)} \\
Z & =\int e^{-\beta\left(V_{0}(x)+\psi(x)+\theta\left(\frac{1}{2} x^{2}-x m\right)\right)} d y,(23 \mathrm{~b})
\end{aligned}
$$

O where

$$
\begin{equation*}
m=\int x p(x ; m, \theta, \beta) d x \tag{24}
\end{equation*}
$$

- The number of invariant measures is given by the number of solutions to the self-consistency equations (22) and (24).
Separable fluctuations $V_{0}(x)+V_{1}(x / \epsilon)$ do not change the structure of the phase diagram, since they lead to additive noise. Nonseparable fluctuations $V_{0}(x)+V_{1}(x, x / \epsilon)$ lead to multiplicative noise and change the bifurcation diagram.
Rigorous results for the $\epsilon \rightarrow 0, N \rightarrow+\infty$ limits, formal asymptotics for the opposite limit.

O The structure of the bifurcation diagram for the homogenized dynamics is similar to the one for the dynamics in the absence of fluctuations.
O The critical temperature is different, but there are no additional branches and their stability is the same as in the case $V_{1}=0$.
This is the case both for additive and multiplicative oscillations.

Figure: $R_{\text {hom }}(m ; \theta, \beta)$ compared to $y=x$ for $\theta=0.5, \delta=1$ and various values of β for the homogenized bistable potentials with separable and nonseparable fluctuations. Bifurcation diagram of m as a function of β for the additive (full line) and multiplicative (dashed line) fluctuations.

COMMUTATIVITY FOR SEPARABLE POTENTIALS

Figure: Plot of $R(m ; \theta, \beta)=m$ and $R\left(m^{\epsilon} ; \theta, \beta\right)$ for $\theta=5, \beta=30, \delta=1$ and various values of ϵ for separable fluctuations. Convex potential $V_{0}(x)$ and Bistable potential $V_{0}(x)$.

NONCOMMUTATIVITY FOR SEPARABLE POTENTIALS

Figure: Plot of $R(m ; \theta, \beta)=m$ and $R(m ; \epsilon)$ for $\theta=5, \beta=30, \delta=1$ and various values of ϵ where the fluctuations are nonseparable. Convex potential $V_{0}(x)$ and Bistable potential $V_{0}(x)$.

FINITE ϵ : SEPARABLE FLUCTUATIONS I

Figure: Results for case 1: convex V_{0}^{c} with separable fluctuations, for $\theta=5, \delta=1, \epsilon=0.1$. $R\left(m^{\epsilon} ; \theta, \beta\right)$ for various values of β, with the potential $V^{\epsilon}(x)$ (full line) compared with $V_{0}^{c}(x)$ (dashed line) in the inside panel. Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable ones.

FINITE ϵ : NONSEPARABLE FLUCTUATIONS I

Figure: Results for case 2: convex V_{0} with nonseparable fluctuations, for $\theta=5, \delta=1, \epsilon=0.1 . R(m ; \theta, \beta)$ for various values of β, with the potential $V^{\epsilon}(x)$ (full line) compared with $V_{0}^{c}(x)$ (dashed line) in the inside panel. Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable ones.

THE MEAN ZERO SOLN IS THE MINIMIZER OF F[$\rho]$

Figure: Convex V_{0} with nonseparable fluctuations, for $\theta=5, \delta=1, \epsilon=0.1 . R(m ; \theta, \beta)$, bifurcation diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable ones. Values of the free energy of the steady state in each branch of the bifurcation diagram for $\beta=45$. Free energy of each branch of the bifurcation diagram.

FINITE ϵ : SEPARABLE FLUCTUATIONS II

Figure: Bistable V_{0}^{b} with separable fluctuations, for
$\theta=5, \delta=1, \epsilon=0.1$. $R\left(m^{\epsilon} ; \theta, \beta\right)$ for various values of β. Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable ones.

FINITE ϵ : NONSEPARABLE FLUCTUATIONS II

Figure: Bistable V_{0}^{b} with nonseparable fluctuations, for $\theta=5, \delta=1, \epsilon=0.1 . R(m \epsilon ; \theta, \beta)$ for various values of β. Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable ones.

- We can study the dependence of the critical temperature β_{C} on ϵ.

We study solutions of the equation

$$
\begin{equation*}
\theta^{-1} \beta^{-1}=\int x^{2} p_{\infty}(x ; m=0) d x \tag{25}
\end{equation*}
$$

Figure: Critical temperature β_{C} as a function of ϵ for the multiscale Fokker-Planck equation with $\theta=5$ for $1-V^{\epsilon}(x)=\frac{x^{2}}{2}+\delta \cos \left(\frac{x}{\epsilon}\right), 2-$ $V^{\epsilon}(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}+\delta \cos \left(\frac{x}{\epsilon}\right)$, and $3-V^{\epsilon}(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}\left(1-\delta \cos \left(\frac{x}{\epsilon}\right)\right)$.

NONCOMMUTATIVITY: PARTICLE SIMULATIONS

Figure: Histogram of $N=1000$ particles for a MC simulation of a convex potential with separable fluctuations. Parameters used were $\theta=2$, $\beta=8, \delta=1$. Left: $\epsilon=0.1$. Right: homogenized system.

Figure: Histogram of $N=500$ particles for an MC simulation of a bistable potential with nonseparable fluctuations. Parameters used were $\theta=0.5, \beta \approx 5.6, \delta=1$. Left: $\epsilon=0.1$. Right: homogenized system.

Figure: Time evolution of the mean \bar{X}_{t} of $N=500$ particles for an MC simulation of a bistable potential with separable fluctuations. Parameters used were $\theta=0.5, \beta \approx 5.6, \delta=1$. Left: $\epsilon=0.1$. Right: homogenized system.

NONCOMMUTATIVITY: MCKEAN-VLASOV EVOLUTION

Figure: Time evolution of $p(x, t)$ for $V_{0}(x)=\frac{x^{2}}{2}+\delta \cos \left(\frac{x}{\epsilon}\right)$. Parameters used were $\theta=2, \beta=8, \delta=1$. Left: $\epsilon=0.1$. Right: homogenized system.

Figure: Time evolution of $p(x, t)$ when $V_{0}^{b}(x)$ is a bistable potential and with nonseparable fluctuations. Parameters used were $\theta=0.5, \beta \approx 5.6$, $\delta=1$. Left: $\epsilon=0.1$. Right: homogenized system.

Figure: Potential and solution of self-consistency equation for the potential $V(q)=\frac{1}{\sum_{\ell=-N}^{N}\left|q-q_{\ell}\right|^{-2}}$ (used in the Thesis of Dr Z. Trstanova).

NON-PERIODIC MULTIWELL POTENTIALS

Figure: Bifurcation diagram for for the potential $V(q)=\frac{1}{\sum_{\ell=-N}^{N}\left|q-q_{\ell}\right|^{-2}}$
for the order parameter m as a function of β^{-1} for $N=6$ and $N=8$.

NON-PERIODIC MULTIWELL POTENTIALS

Figure: Free energy surface as a function of β and the first moment m for potential $V(q)=\frac{1}{\sum_{\ell}^{N}\left|q-q_{\ell}\right|^{-2}}$, but the energy barriers are

