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# We consider a system of weakly interacting diffusions moving
in a 2-scale locally periodic potential:

dX i
t = −∇V ε(X i

t )dt− 1
N

N∑
j=1
∇F (X i

t−X
j
t )dt+

√
2β−1dB i

t , i = 1, ..,N,

(1)
# where

V ε(x) = V0(x) + V1(x , x/ε). (2)

# Our goal is to study the combined mean-field/homogenization
limits.

# In particular, we want to study bifurcations/phase transitions
for the McKean-Vlasov equation in a confining potential with
many local minima.
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Figure: Bistable potential with (left) separable and (right) nonseparable
fluctuations,
V ε(x) = x4

4 −
x2

2 + δ cos
( x

ε

)
and V ε(x) = x4

4 −
(
1− δ cos

( x
ε

)) x2

2 .
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MCKEAN-VLASOV DYNAMICS IN A BISTABLE POTENTIAL

# Consider a system of interacting diffusions in a bistable
potential:

dX i
t =

−V ′(X i
t )− θ

X i
t −

1
N

N∑
j=1

X j
t

 dt +
√
2β−1 dB i

t .

(3)
# The total energy (Hamiltonian) is

WN(X) =
N∑
`=1

V (X `) + θ

4N

N∑
n=1

N∑
`=1

(Xn − X `)2. (4)

# We can pass rigorously to the mean field limit as N →∞
using, for example, martingale techniques, (Dawson 1983,
Gartner 1988, Oelschlager 1984).

# Formally, using the law of large numbers we obtain the
McKean SDE

dXt = −V ′(Xt) dt − θ(Xt − EXt) dt +
√
2β−1 dBt . (5) 6



# The Fokker-Planck equation corresponding to this SDE is the
McKean-Vlasov equation

∂p
∂t = ∂

∂x

(
V ′(x)p + θ

(
x −

∫
R
xp(x , t) dx

)
p + β−1

∂p
∂x

)
.

(6)
# The McKean-Vlasov equation is a gradient flow, with respect

to the Wasserstein metric, for the free energy functional

F [ρ] = β−1
∫
ρ ln ρ dx+

∫
V ρ dx+θ

2

∫ ∫
F (x−y)ρ(x)ρ(y) dxdy ,

(7)
with F (x) = 1

2x
2.
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# The finite dimensional dynamics (3) is reversible with respect
to the Gibbs measure

µN(dx) = 1
ZN

e−βWN (x1,...xN ) dx1 . . . dxN , ZN =
∫
RN

e−βWN (x1,...xN ) dx1 . . . dxN

(8)
# where WN(·) is given by (4).
# the McKean dynamics (5) can have more than one invariant

measures, for nonconvex confining potentials and at
sufficiently low temperatures (Dawson1983, Tamura 1984,
Shiino 1987, Tugaut 2014).

# The density of the invariant measure(s) for the McKean
dynamics (5) satisfies the stationary nonlinear Fokker-Planck
equation

∂

∂x

(
V ′(x)p∞ + θ

(
x −

∫
R
xp∞(x) dx

)
p∞ + β−1

∂p∞
∂x

)
= 0.
(9)
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# For the quadratic interaction potential a one-parameter family
of solutions to the stationary McKean-Vlasov equation (9) can
be obtained:

p∞(x ; θ, β,m) = 1
Z (θ, β;m)e

−β(V (x)+θ( 1
2 x2−xm)),(10a)

Z (θ, β;m) =
∫
R
e−β(V (x)+θ( 1

2 x2−xm)) dx . (10b)

# These solutions are subject, to the constraint that they
provide us with the correct formula for the first moment:

m =
∫
R
xp∞(x ; θ, β,m) dx =: R(m; θ, β). (11)

# This is the selfconsistency equation.
# The critical temperature can be calculated from

Varp∞(x)
∣∣∣
m=0

= 1
βθ
. (12)
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β = 10, and bifurcation diagram of m as a function of β for θ = 0.5 for
the bistable potential V (x) = x4

4 −
x2

2 and interaction potential
F (x) = x2

2 .
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BROWNIAN PARTICLES IN A TWO-SCALE POTENTIAL

# Dynamics given by Itô SDE:

dX ε
t = −∇V ε(X ε

t ) dt +
√
2β−1 dWt .

# For ε� 1, V ε models a “rough” potential:

V ε(x) := V
(
x , x
ε
,
x
ε2
, . . . ,

x
εN

)
,

for a smooth function V (x0, y1, . . . , yN).
◦ x0: slowly–varying structure of potential.
◦ y1, . . . , yN : multiscale periodic fluctuations occuring at

different scales.
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LONG-TIME BEHAVIOUR OF THE SLOW-FAST DYNAMICS

X ε
t is a Markov diffusion process with infinitesimal generator

defined by

Lεf = β−1eβV ε(x)∇ ·
(
e−βV ε(x)∇f (x)

)
.

Stationary distribution satisfies the stationary Fokker-Planck
equation:

∇ ·
(
e−βV ε(x)∇(πε(x)eβV ε(x)

)
= 0, x ∈ Rd .

Suppose Z ε =
∫
Rd e−βV ε(x) dx <∞,

# X ε
t is ergodic, with stationary density πε(x) = 1

Zε e
−βV ε(x).

# X ε
t satisfies detailed balance with respect to πε(x), i.e.

Stationary Probability Flux = ∇·
(
πε(x)eβV ε(x)

)
= 0, ∀x ∈ Rd .
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QUESTIONS AND OBJECTIVES

Questions:

# Can behaviour of X ε
t for small ε be approximated by some X 0

t ?
# X ε

t ergodic ⇒ X 0
t ergodic?

# Relationship between πε(·) and π0(·)?
# Asymptotic behaviour of other quantities related to X ε

t ,
◦ Observables of X ε

t , e.g. reaction coordinates.
◦ Mean First Passage Time (MFPT), as ε→ 0.

Approach:

# Formal approach: Asymptotic expansions of the Kolmogorov
Backward Equation for X ε

t in powers of O(ε−1).
# Rigorous Approach: probabilistic techniques for

locally-periodic homogenization, [Bensoussans, Lyons,
Papanicolau, 1979], [Pardoux, 1999], [Pardoux,
Veretennikov, 2001], [Bencherif-Madani, Pardoux, 2003].
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THE HOMOGENIZATION THEOREM

To prove the existence of the limit of X ε
t as ε→ 0, we make the

following assumptions on V .

# There exist confining potentials M0(x) and M1(x) such that

M0(x) ≤ V (x , y1, . . . , yN) ≤ M1(x), ∀x ∈ Rd , y1, . . . yN ∈ Td

# V (x , y1, . . . , yN) is smooth in all variables (can be relaxed).
# The gradient of the potential is Lipschitz in x , i.e.∣∣∇V (x , y1, . . . , yN)−∇V (x ′, y1, . . . , yN)

∣∣ ≤ C |x − x ′|.

# |∇V (x , y1, . . . , yN)| ≤ C ′|x |, for some C ,C ′ for all x , x ′ ∈ R,
y1, . . . , yN ∈ Td .

14



HOMOGENIZATION THEOREM

# The limiting dynamics can be characterized by the following
Itô SDE:

dX 0
t = −K(X 0

t )∇Ψ(X 0
t ) dt+β−1∇·K(X 0

t ) dt+
√
2β−1K(X 0

t ) dWt ,

where Ψ is the free energy Ψ(x) = −β−1 logZ (x).
# The limiting SDE corresponds to the Klimontovich

interpretation of the stochastic integral.
# X 0

t satisfies detailed balance with respect to the invariant
measure

π0(x) = 1
Z
e−Ψ(x) = Z (x)

Z
, Z =

∫
Z (x ′) dx ′.

# For all e ∈ Rd , with Ẑ (x) =
∫
· · ·
∫
eβV (x ,y1,...,yN ) dyN . . . dy1:

|e|2

Z (x)Ẑ (x)
≤ e · K(x)e ≤ |e|2,
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HOMOGENIZATION THEOREM

As ε→ 0, the process X ε
t converges weakly in C([0,T ],Rd ) to a

diffusion process X 0
t having generator defined by

L0f (x) = β−1

Z (x)∇x · (Z (x)K(x)∇x f (x)) , f ∈ C2
c (Rd ).

where Z (x) =
∫
· · ·
∫
e−βV (x ,...) dyN . . . dy1, and

K(x) = I+ 1
Z (x)

∫
Td
· · ·
∫
Td

(I+∇xNθ
>
N ) · · · (I+∇x1θ

>
1 )e−βV dyN . . . dy1.

and θk are mean-zero solutions of the following Poisson equations
on Td :

∇yk · (Kk(∇ykθk + I)) = 0, y ∈ Td

where KN(x , y1, . . . , yN) = e−βV (x ,y1,...,yN )I and

Kk(x , y1, . . . , yk) =
∫

(I+∇Nθ
>
N ) · · · (I+∇k+1θ

>
k+1)e−βV dyN . . . dyk+1.
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PROOF OF THE HOMOGENIZATION THEOREM

Slight generalisation of classical martingale approach to
homogenization, applied to SDEs with locally-periodic coefficients
having N-scales.
Rough idea:

1. The slow–fast system is the solution to the following
martingale problem:

Ex

[
φε(X ε

t )−
∫ t

s
Lεφε(X ε

u) du
∣∣∣Fs

]
= φε(X ε

s ), ∀φε ∈ D(Lε).

Construct a test function

φε(x) = φ0(x)+εφ1(x , x/ε)+. . .+εNφN(x , x/ε, . . . , x/εN)+. . .

such that
Lεφε(x) = L0φ0(x) + εRε(x),

where Ex [εRε(X ε
u)]→ 0, as ε→ 0.
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PROOF OF THE HOMOGENIZATION THEOREM CTD.

1. If the set of measures Pε on C([0,T ],Rd ) corresponding to
the processes {X ε

t , t ∈ [0,T ]} possesses a limit point X 0
t then

it is the unique solution of the following martingale problem

Ex

[
φ0(X 0)−

∫ t

s
L0φ0(X ε

u) du
∣∣∣Fs

]
= φ0(X ε

s ), ∀φ ∈ D(L0).

2. Show that {X ε
t }ε>0 possesses an accumulation point. i.e.

Establish tightness of the family of processes in {X ε
t }ε>0.
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CRITICAL POINTS OF THE INVARIANT DISTRIBUTION

# we want to calculate the critical points of the stationary
distribution:

∇Z (x ;β) = 0.

# Multiplicative noise can change the location and number of
the critical points.

# We distinguish between two cases:
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1. Separable Potential: the fluctuations and large scale parts of
the potential are uncoupled:

V ε(x) = V0(x) + V1(x/ε, x/ε2, . . . x/εN).

In this case:

Z (x) ∝
∫
· · ·
∫

e−βV (x ,y1,...yN )dyN . . . dy1 ∝ e−V0(x).

and K is independent of x . Rapid fluctuations do not alter
stationary behaviour, but only speed of convergence to
equilibrium and effective diffusion tensor.

2. Nonseparable potential. In this case

Z (x) 6∝ e−V0(x), in general.

Rapid fluctuations can change the critical points of the
stationary distribution.
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TOY EXAMPLE: 1D DOUBLE WELL POTENTIAL

Consider the ODE in R:

ẋ(t) = − d
dx V0(x ;α), t > 0,

where V0(x ;α) = −α
2 x

2 + 1
4x

4, corresponding to the invariant
density e−βV (x).

# Normal form for
supercritical pitchfork
bifurcation.

# α < 0: One stable
equilibrium at x = 0.

# α > 0: Stable equilibria
at x = ±

√
α. Unstable

equilibrium at x = 0.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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1D DOUBLE WELL POTENTIAL

Consider the ODE in R:

ẋ(t) = − d
dx V0(x ;α), t > 0,

where V0(x ;α) = −α
2 x

2 + 1
4x

4.

Add multiscale fluctuations V ε(x ;α) = V (x , x/ε;α), where

V (x , y ;α) = 1
4x

4 −
(
α + sin(2πy)

2

)
x2.

Thermal motion in potential:

dX ε
t = −dV ε

dx (X ε
t ) dt +

√
2β−1 dWt .
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1D DOUBLE WELL POTENTIAL

By previous theory, X ε
t ⇒ X 0

t , as ε→ 0, where X 0
t is ergodic with

stationary distribution

π0(dx) ∝ Z (x) dx

Can show that

π0(x) ∝ e
β

(
α2x2
2 −

x4
4

)
︸ ︷︷ ︸

π0(x)

I
(
0, x2

2β−1

)
︸ ︷︷ ︸

correction

,

where I is the modified Bessel function of the first kind.

Varying the intensity of the noise can alter the equilibrium
properties of the system, i.e. the critical points of the
stationary distribution.
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 1.0
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 10−1
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 5 · 10−2
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1D DOUBLE WELL POTENTIAL

More generally: consider an N-scale potential

V ε(x ;α) = V0(x ;α)− 1
2

N∑
n=1

sin
(2π x
εn

)
x2

−5 −4 −3 −2 −1 0 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

α

N = 5, 4, 3, 2, 1

Figure: Bifurcation diagram for a different number N of microscopic
scales in the potential
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1D DOUBLE WELL POTENTIAL

Stationary PDF of homogenized dynamics is:

ZN(x ;α) ∝ e−βV0(x ;α)I
(
0, x2

2β−1/2

)N

.
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Figure: Phase diagram for α and σ
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EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As the number of scales increase, the effective diffusivity K (x)
decreases.

Must increase temperature β−1 to overcome “trapping effect” of
regions of slow diffusivity. Consider separable N-scale potential

V ε(x) = S (x/ε) + . . .+ S
(
x/εN

)
,

where

S(x) =
{
2x if x mod 1 ∈ [0, 12)
2− 2x if x mod 1 ∈ [12 , 1)

29



EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR
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EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As ε→ 0, X ε
t ⇒ X 0

t , where

dX 0
t =

√
2σ

K (σ)N dWt

where σ = β−1, for K (σ) = 2σ2
(
cosh

(
1
σ

)
− 1

)
.
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MEAN FIELD LIMITS FOR INTERACTING DIFFUSIONS
IN A TWO-SCALE POTENTIAL
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# We consider a system of weakly interacting diffusions moving
in a 2-scale locally periodic potential:

dX i
t = −∇V ε(X i

t )dt− 1
N

N∑
j=1
∇F (X i

t−X
j
t )dt+

√
2β−1dB i

t , i = 1, ..,N,

(13)
# where

V ε(x) = V0(x) + V1(x , x/ε). (14)

# The full N-particle potential is

U(x1, . . . , xN , y1, . . . , yN) =
N∑

i=1
V0(xi ) + 1

2N

N∑
i=1

N∑
j=1

F (xi − xj)

+
N∑

i=1
V1(xi , yi ). (15)

# The homogenization theorem applies to the N-particle system.
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The homogenized equation is

dX i
t =−M(X i

t )

∇V0(X i
t ) + 1

N
∑
i 6=j
∇F

(
X j

t − X i
t

)
+∇ψ(X i

t )

 dt

+ β−1∇ ·M(X i
t )dt +

√
2β−1M(X i

t )dW i
t ,

(16)
for i = 1, . . . ,N, where M : Rd → Rd×d

sym is defined by

M(x) = 1
Z (x)

∫
Td

∫
(I +∇yθ(x , y))e−βV1(x ,y)dy , x ∈ Rd , (17)

and
ψ(x) = −β−1∇ logZ (x), (18)

for (this is the free energy only with respect to V1(x , y))

Z (x) =
∫
Td

e−βV1(x ,y) dy ,

and where, for fixed x ∈ Rd , θ is the unique mean zero solution to

∇ ·
(
e−βV1(x ,y)(I +∇yθ(x , y)

)
= 0, y ∈ Td , (19)
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# We can pass to the mean field limit N → +∞ using the
results from e.g. Dawson (1983), Oelschlager (1984) to
obtain the McKean-Vlasov-Fokker-Planck equation:

∂p
∂t = ∇·

(
M(∇V0p+∇Ψp+(∇F∗p)p)+β−1∇·Mp+β−1∇·(Mp)

)
.

(20)
# The mean field N → +∞ and the homogenization ε→ 0

limits commute over finite time intervals.
# This is a nonlinear equation and more than one invariant

measures can exist, depending on the temperature. Eqn (20)
can exhibit phase transitions.

# The number of invariant measures depends on the number of
solutions of the self-consistency equation.
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# The phase/bifurcation diagrams can be different depending on
the order with which we take the limits. For example:

V ε(x) = x2
2 + cos(x/ε).

# The homogenization process tends to "convexify" the
potential.
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Figure: Bistable potential with additive (left) and multiplicative (right)
fluctuations.
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# Consider the case F (x) = θ x2

2 , take N → +∞ and keep ε
fixed. The invariant distribution(s) are:

pε(x ;m, θ, β) = 1
Z ε e

−β(V ε(x)+θ( 1
2 x2−x m)), (21a)

Z ε =
∫

e−β(V ε(x)+θ( 1
2 x2−x m)) dx , (21b)

# where
m =

∫
xpε(x ;m, θ, β) dx . (22)

# Take first ε→ 0 and then N → +∞. The invariant
distribution(s) are

p(x ;m, θ, β) = 1
Z e−β(V0(x)+ψ(x)+θ( 1

2 x2−x m)), (23a)

Z =
∫

e−β(V0(x)+ψ(x)+θ( 1
2 x2−x m)) dy ,(23b)

# where
m =

∫
xp(x ;m, θ, β) dx . (24)
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# The number of invariant measures is given by the number of
solutions to the self-consistency equations (22) and (24).

# Separable fluctuations V0(x) + V1(x/ε) do not change the
structure of the phase diagram, since they lead to additive
noise. Nonseparable fluctuations V0(x) + V1(x , x/ε) lead to
multiplicative noise and change the bifurcation diagram.

# Rigorous results for the ε→ 0, N → +∞ limits, formal
asymptotics for the opposite limit.
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# The structure of the bifurcation diagram for the homogenized
dynamics is similar to the one for the dynamics in the absence
of fluctuations.

# The critical temperature is different, but there are no
additional branches and their stability is the same as in the
case V1 = 0.

# This is the case both for additive and multiplicative
oscillations.
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Figure: Rhom(m; θ, β) compared to y = x for θ = 0.5, δ = 1 and various
values of β for the homogenized bistable potentials with separable and
nonseparable fluctuations. Bifurcation diagram of m as a function of β
for the additive (full line) and multiplicative (dashed line) fluctuations.
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COMMUTATIVITY FOR SEPARABLE POTENTIALS
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Figure: Plot of R(m; θ, β) = m and R(mε; θ, β) for θ = 5, β = 30, δ = 1
and various values of ε for separable fluctuations. Convex potential V0(x)
and Bistable potential V0(x).
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NONCOMMUTATIVITY FOR SEPARABLE POTENTIALS
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Figure: Plot of R(m; θ, β) = m and R(m; ε) for θ = 5, β = 30, δ = 1 and
various values of ε where the fluctuations are nonseparable. Convex
potential V0(x) and Bistable potential V0(x).
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FINITE ε: SEPARABLE FLUCTUATIONS I
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Figure: Results for case 1: convex V c
0 with separable fluctuations, for

θ = 5, δ = 1, ε = 0.1. R(mε; θ, β) for various values of β, with the
potential V ε(x) (full line) compared with V c

0 (x) (dashed line) in the
inside panel. Bifurcation diagram of m as a function of β. Full lines
correspond to stable solutions, while dashed lines represent unstable ones.

44



FINITE ε: NONSEPARABLE FLUCTUATIONS I
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Figure: Results for case 2: convex V0 with nonseparable fluctuations, for
θ = 5, δ = 1, ε = 0.1. R(m; θ, β) for various values of β, with the
potential V ε(x) (full line) compared with V c

0 (x) (dashed line) in the
inside panel. Bifurcation diagram of m as a function of β. Full lines
correspond to stable solutions, while dashed lines represent unstable ones.
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THE MEAN ZERO SOLN IS THE MINIMIZER OF F [ρ]

-2 -1 0 1 2
-2

-1

0

1

2

-2 0 2
0

2

4

0 10 20 30

-2

-1

0

1

2

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Figure: Convex V0 with nonseparable fluctuations, for θ = 5, δ = 1, ε = 0.1. R(m; θ, β), bifurcation

diagram of m as a function of β. Full lines correspond to stable solutions, while dashed lines represent unstable

ones. Values of the free energy of the steady state in each branch of the bifurcation diagram for β = 45. Free

energy of each branch of the bifurcation diagram.
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FINITE ε: SEPARABLE FLUCTUATIONS II
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Figure: Bistable V b
0 with separable fluctuations, for

θ = 5, δ = 1, ε = 0.1. R(mε; θ, β) for various values of β. Bifurcation
diagram of m as a function of β. Full lines correspond to stable solutions,
while dashed lines represent unstable ones.
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FINITE ε: NONSEPARABLE FLUCTUATIONS II
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Figure: Bistable V b
0 with nonseparable fluctuations, for

θ = 5, δ = 1, ε = 0.1. R(mε; θ, β) for various values of β. Bifurcation
diagram of m as a function of β. Full lines correspond to stable solutions,
while dashed lines represent unstable ones.
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# We can study the dependence of the critical temperature βC
on ε.

# We study solutions of the equation

θ−1β−1 =
∫

x2p∞(x ;m = 0) dx . (25)
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Figure: Critical temperature βC as a function of ε for the multiscale
Fokker-Planck equation with θ = 5 for 1- V ε(x) = x2

2 + δ cos
( x

ε

)
, 2 -

V ε(x) = x4

4 −
x2

2 + δ cos
( x

ε

)
, and 3 - V ε(x) = x4

4 −
x2

2
(
1− δ cos

( x
ε

))
.
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NONCOMMUTATIVITY: PARTICLE SIMULATIONS

Figure: Histogram of N = 1000 particles for a MC simulation of a convex
potential with separable fluctuations. Parameters used were θ = 2,
β = 8, δ = 1. Left: ε = 0.1. Right: homogenized system. 51



Figure: Histogram of N = 500 particles for an MC simulation of a
bistable potential with nonseparable fluctuations. Parameters used were
θ = 0.5, β ≈ 5.6, δ = 1. Left: ε = 0.1. Right: homogenized system.
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Figure: Time evolution of the mean X̄t of N = 500 particles for an MC
simulation of a bistable potential with separable fluctuations. Parameters
used were θ = 0.5, β ≈ 5.6, δ = 1. Left: ε = 0.1. Right: homogenized
system.
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NONCOMMUTATIVITY: MCKEAN-VLASOV EVOLUTION
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Figure: Time evolution of p(x , t) for V0(x) = x2

2 + δ cos
( x

ε

)
. Parameters

used were θ = 2, β = 8, δ = 1. Left: ε = 0.1. Right: homogenized
system.
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Figure: Time evolution of p(x , t) when V b
0 (x) is a bistable potential and

with nonseparable fluctuations. Parameters used were θ = 0.5, β ≈ 5.6,
δ = 1. Left: ε = 0.1. Right: homogenized system.
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Figure: Potential and solution of self-consistency equation for the
potential V (q) = 1∑N

`=−N
|q−q`|−2

(used in the Thesis of Dr Z. Trstanova).
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NON-PERIODIC MULTIWELL POTENTIALS

Figure: Bifurcation diagram for for the potential V (q) = 1∑N
`=−N

|q−q`|−2

for the order parameter m as a function of β−1 for N = 6 and N = 8.
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NON-PERIODIC MULTIWELL POTENTIALS
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Figure: Free energy surface as a function of β and the first moment m
for potential V (q) = 1∑N

`=−N
|q−q`|−2

, but the energy barriers are

uniformly randomly distributed.
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