Homogenization of a semilinear heat equation with a highly oscillating random potential

Etienne Pardoux
Aix-Marseille Université
joint work with Martin Hairer

The problem

- We start with the PDE $(\operatorname{dim}(x)=1)$

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}(t, x) & =\partial_{x}^{2} u_{\varepsilon}(t, x)+H\left(u_{\varepsilon}(t, x)\right)+G\left(u_{\varepsilon}(t, x)\right) \eta_{\varepsilon}(t, x) \\
u_{\varepsilon}(0, x) & =u_{0}(x), \quad u_{\varepsilon}(t, 0)=u_{\varepsilon}(t, 1)=0
\end{aligned}
$$

where

$$
\eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)
$$

and $\eta(t, x)$ is a stationary zero-mean generalized random field with "good" mixing properties.

The problem

- We start with the PDE $(\operatorname{dim}(x)=1)$

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}(t, x) & =\partial_{x}^{2} u_{\varepsilon}(t, x)+H\left(u_{\varepsilon}(t, x)\right)+G\left(u_{\varepsilon}(t, x)\right) \eta_{\varepsilon}(t, x) \\
u_{\varepsilon}(0, x) & =u_{0}(x), \quad u_{\varepsilon}(t, 0)=u_{\varepsilon}(t, 1)=0
\end{aligned}
$$

where

$$
\eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)
$$

and $\eta(t, x)$ is a stationary zero-mean generalized random field with "good" mixing properties.

- This problem has been studied in case $H=0$ and $G(u)=u$ in P., Piatnitski '12 and Hairer, P., Piatnitski '13, with different respective scalings of t and x. Those papers establish the $\operatorname{LLN} u_{\varepsilon} \rightarrow u$, with a limiting PDE which depends upon the specific scaling.

The problem

- We start with the PDE $(\operatorname{dim}(x)=1)$

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}(t, x) & =\partial_{x}^{2} u_{\varepsilon}(t, x)+H\left(u_{\varepsilon}(t, x)\right)+G\left(u_{\varepsilon}(t, x)\right) \eta_{\varepsilon}(t, x) \\
u_{\varepsilon}(0, x) & =u_{0}(x), \quad u_{\varepsilon}(t, 0)=u_{\varepsilon}(t, 1)=0
\end{aligned}
$$

where

$$
\eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)
$$

and $\eta(t, x)$ is a stationary zero-mean generalized random field with "good" mixing properties.

- This problem has been studied in case $H=0$ and $G(u)=u$ in P., Piatnitski '12 and Hairer, P., Piatnitski '13, with different respective scalings of t and x. Those papers establish the $\operatorname{LLN} u_{\varepsilon} \rightarrow u$, with a limiting PDE which depends upon the specific scaling.
- Bal '11 proves both the LLN and the CLT in the linear case, with a Gaussian perturbation η_{ε}.

The problem

- We start with the PDE $(\operatorname{dim}(x)=1)$

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}(t, x) & =\partial_{x}^{2} u_{\varepsilon}(t, x)+H\left(u_{\varepsilon}(t, x)\right)+G\left(u_{\varepsilon}(t, x)\right) \eta_{\varepsilon}(t, x) \\
u_{\varepsilon}(0, x) & =u_{0}(x), \quad u_{\varepsilon}(t, 0)=u_{\varepsilon}(t, 1)=0
\end{aligned}
$$

where

$$
\eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)
$$

and $\eta(t, x)$ is a stationary zero-mean generalized random field with "good" mixing properties.

- This problem has been studied in case $H=0$ and $G(u)=u$ in P., Piatnitski '12 and Hairer, P., Piatnitski '13, with different respective scalings of t and x. Those papers establish the $\operatorname{LLN} u_{\varepsilon} \rightarrow u$, with a limiting PDE which depends upon the specific scaling.
- Bal '11 proves both the LLN and the CLT in the linear case, with a Gaussian perturbation η_{ε}.
- Here we prove both the LLN and the CLT in the semilinear case, with a non-Gaussian η_{ε}.

Comparison with earlier results

- Wong-Zakai, see Hairer, P.'15. Consider for $x \in S^{1}$

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+H\left(u_{\varepsilon}\right)-C_{\varepsilon} G^{\prime} G\left(u_{\varepsilon}\right)+G\left(u_{\varepsilon}\right) \xi_{\varepsilon}
$$

where $\xi_{\varepsilon}(t, x)=\varepsilon^{-3 / 2} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)$ and $C_{\varepsilon} \sim \varepsilon^{-1} . u_{\varepsilon} \rightarrow u$

$$
\partial_{t} u=\Delta u+\bar{H}(u)+G(u) \xi
$$

Comparison with earlier results

- Wong-Zakai, see Hairer, P.'15. Consider for $x \in S^{1}$

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+H\left(u_{\varepsilon}\right)-C_{\varepsilon} G^{\prime} G\left(u_{\varepsilon}\right)+G\left(u_{\varepsilon}\right) \xi_{\varepsilon}
$$

where $\xi_{\varepsilon}(t, x)=\varepsilon^{-3 / 2} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)$ and $C_{\varepsilon} \sim \varepsilon^{-1} . u_{\varepsilon} \rightarrow u$

$$
\partial_{t} u=\Delta u+\bar{H}(u)+G(u) \xi
$$

- Homogenization. Consider for $x \in[0,1]$, with

$$
\begin{aligned}
& \eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right) \\
& \quad \partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+H\left(u_{\varepsilon}\right)+G\left(u_{\varepsilon}\right) \eta_{\varepsilon}
\end{aligned}
$$

LLN $u_{\varepsilon} \rightarrow \bar{u}$ in probability, where

$$
\partial_{t} \bar{u}=\Delta \bar{u}+H(\bar{u})+c_{\eta} G G^{\prime}(\bar{u})
$$

CLT Let $v_{\varepsilon}=\varepsilon^{-1 / 2}\left(u_{\varepsilon}-\bar{u}\right) . v_{\varepsilon} \Rightarrow v$, where

$$
\partial_{t} v=\Delta v+\left(H+c_{\eta} G G^{\prime}\right)^{\prime}(\bar{u}) v+G(\bar{u}) \xi
$$

Our assumptions

- We assume that the noise $\eta(t, x)$ is zero-mean, stationary, has finite moments of all order, and moreover that for any $\ell \geq 1$, the ℓ-th joint cumulant $\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)$ of the random variables $\eta\left(z_{1}\right), \ldots, \eta\left(z_{\ell}\right)$ satisfies certain bounds $(z=(t, x))$.

Cumulants can be expressed in terms of moments

Our assumptions

- We assume that the noise $\eta(t, x)$ is zero-mean, stationary, has finite moments of all order, and moreover that for any $\ell \geq 1$, the ℓ-th joint cumulant $\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)$ of the random variables $\eta\left(z_{1}\right), \ldots, \eta\left(z_{\ell}\right)$ satisfies certain bounds $(z=(t, x))$.
- Let us recall what are the cumulants. Formally, the joint cumulant of the random variables X_{1}, \ldots, X_{ℓ} is

$$
\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=\left.(-i)^{\ell} \frac{\partial^{\ell}}{\partial z_{1} \cdots \partial z_{\ell}} \log \mathbf{E}\left[\exp \left(i \sum_{j=1}^{\ell} z_{j} X_{j}\right)\right]\right|_{z_{1}=\cdots=z_{\ell}=0}
$$

Our assumptions

- We assume that the noise $\eta(t, x)$ is zero-mean, stationary, has finite moments of all order, and moreover that for any $\ell \geq 1$, the ℓ-th joint cumulant $\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)$ of the random variables $\eta\left(z_{1}\right), \ldots, \eta\left(z_{\ell}\right)$ satisfies certain bounds $(z=(t, x))$.
- Let us recall what are the cumulants. Formally, the joint cumulant of the random variables X_{1}, \ldots, X_{ℓ} is

$$
\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=\left.(-i)^{\ell} \frac{\partial^{\ell}}{\partial z_{1} \cdots \partial z_{\ell}} \log \mathbf{E}\left[\exp \left(i \sum_{j=1}^{\ell} z_{j} X_{j}\right)\right]\right|_{z_{1}=\cdots=z_{\ell}=0}
$$

- Cumulants can be expressed in terms of moments

$$
\begin{aligned}
& \kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=\sum_{\left\{a_{1}, \ldots, a_{r}\right\} \in \mathcal{P}([n])}(-1)^{r-1}(r-1)!\mathbf{E}\left(X^{a_{1}}\right) \times \cdots \times \mathbf{E}\left(X^{a_{r}}\right) \\
& \text { where }[n]=\{1,2, \ldots, n\} \text { and if } b \subset[n], X^{b}=\prod_{j \in b} X_{j}
\end{aligned}
$$

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc \ldots

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc \ldots
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc \ldots
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.
- If $X \simeq \operatorname{Poisson}(\lambda), \kappa_{\ell}(X, \ldots, X)=\lambda$, for all $\ell \geq 1$.

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc \ldots
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.
- If $X \simeq \operatorname{Poisson}(\lambda), \kappa_{\ell}(X, \ldots, X)=\lambda$, for all $\ell \geq 1$.
- If $\left(X_{1}, \ldots, X_{j}\right)$ and $\left(X_{j+1}, \ldots, X_{\ell}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=0$.

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc...
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.
- If $X \simeq \operatorname{Poisson}(\lambda), \kappa_{\ell}(X, \ldots, X)=\lambda$, for all $\ell \geq 1$.
- If $\left(X_{1}, \ldots, X_{j}\right)$ and $\left(X_{j+1}, \ldots, X_{\ell}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=0$.
- If c_{1}, \ldots, c_{ℓ} are constants, $\ell \geq 2$,
$\kappa_{\ell}\left(X_{1}+c_{1}, \ldots, X_{\ell}+c_{\ell}\right)=\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)$.

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc \ldots
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.
- If $X \simeq \operatorname{Poisson}(\lambda), \kappa_{\ell}(X, \ldots, X)=\lambda$, for all $\ell \geq 1$.
- If $\left(X_{1}, \ldots, X_{j}\right)$ and $\left(X_{j+1}, \ldots, X_{\ell}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=0$.
- If c_{1}, \ldots, c_{ℓ} are constants, $\ell \geq 2$,
$\kappa_{\ell}\left(X_{1}+c_{1}, \ldots, X_{\ell}+c_{\ell}\right)=\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)$.
- If the two vectors $\left(X_{1}, \ldots, X_{\ell}\right)$ and $\left(X_{1}^{\prime}, \ldots, X_{\ell}^{\prime}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}+X_{1}^{\prime}, \ldots, X_{\ell}+X_{\ell}^{\prime}\right)=\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)+\kappa_{\ell}\left(X_{1}^{\prime}, \ldots, X_{\ell}^{\prime}\right)$.

More on cumulants

- $\kappa_{1}(X)=\mathbf{E}(X), \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)$, etc...
- $\left\{X_{j}, j \in J\right\}$ is Gaussian $\Leftrightarrow \kappa_{\ell}\left(X_{j_{1}}, \ldots, X_{j_{\ell}}\right)=0$ whenever $\ell \geq 3$.
- If $X \simeq \operatorname{Poisson}(\lambda), \kappa_{\ell}(X, \ldots, X)=\lambda$, for all $\ell \geq 1$.
- If $\left(X_{1}, \ldots, X_{j}\right)$ and $\left(X_{j+1}, \ldots, X_{\ell}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=0$.
- If c_{1}, \ldots, c_{ℓ} are constants, $\ell \geq 2$,
$\kappa_{\ell}\left(X_{1}+c_{1}, \ldots, X_{\ell}+c_{\ell}\right)=\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)$.
- If the two vectors $\left(X_{1}, \ldots, X_{\ell}\right)$ and $\left(X_{1}^{\prime}, \ldots, X_{\ell}^{\prime}\right)$ are independent, then $\kappa_{\ell}\left(X_{1}+X_{1}^{\prime}, \ldots, X_{\ell}+X_{\ell}^{\prime}\right)=\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)+\kappa_{\ell}\left(X_{1}^{\prime}, \ldots, X_{\ell}^{\prime}\right)$.
- If N is a Poisson point measure on \mathbf{R}^{d} with mean measure μ, f_{1}, \ldots, f_{ℓ} are continuous and have compact support, then

$$
\kappa_{\ell}\left(N\left(f_{1}\right), \ldots, N\left(f_{\ell}\right)\right)=\int_{\mathbf{R}^{d}} f_{1}(x) \times \cdots \times f_{\ell}(x) \mu(d x)
$$

Precise assumptions

- H and G are of class C^{4} and C^{5} resp., H, G and $G G^{\prime}$ having at most linear growth at infinity.

where V denotes the set of interior nodes of the minimal spanning tree of the complete graph with vertices $\left\{z_{1}, \ldots, z_{\ell}\right\}, \Omega_{\ell}$ is the root $c(A)=3 / 2+\delta$ otherwise.

Precise assumptions

- H and G are of class C^{4} and C^{5} resp., H, G and $G G^{\prime}$ having at most linear growth at infinity.
- Denote by $\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)$ the joint cumulant of $\eta\left(z_{1}\right), \ldots, \eta\left(z_{\ell}\right)$. We assume that uniformly over all $z_{1}, \ldots, z_{\ell} \in \mathbf{R}^{2}$,

$$
\left|\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)\right| \lesssim 2^{c\left(\Omega_{\ell}\right) \mathbf{n}\left(\Omega_{\ell}\right)} \prod_{A \in \dot{V}} 2^{c(A) \mathbf{n}(A)}
$$

where $\stackrel{\circ}{V}$ denotes the set of interior nodes of the minimal spanning tree of the complete graph with vertices $\left\{z_{1}, \ldots, z_{\ell}\right\}, \Omega_{\ell}$ is the root $c(A)=3 / 2+\delta$ otherwise.

Precise assumptions

- H and G are of class C^{4} and C^{5} resp., H, G and $G G^{\prime}$ having at most linear growth at infinity.
- Denote by $\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)$ the joint cumulant of $\eta\left(z_{1}\right), \ldots, \eta\left(z_{\ell}\right)$. We assume that uniformly over all $z_{1}, \ldots, z_{\ell} \in \mathbf{R}^{2}$,

$$
\left|\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)\right| \lesssim 2^{c\left(\Omega_{\ell}\right) \mathbf{n}\left(\Omega_{\ell}\right)} \prod_{A \in \dot{V}} 2^{c(A) \mathbf{n}(A)}
$$

- where $\stackrel{\circ}{V}$ denotes the set of interior nodes of the minimal spanning tree of the complete graph with vertices $\left\{z_{1}, \ldots, z_{\ell}\right\}, \Omega_{\ell}$ is the root of that tree, $\mathbf{n}(A)=-\left\lceil\log _{2} d_{z}\left(A_{1}, A_{2}\right)\right\rceil$ and $c(A)=1 / 2$ if $\mathbf{n}(A) \geq 0$, $c(A)=3 / 2+\delta$ otherwise.

An example satisfying our assumptions

- Suppose $\eta(z)=\bar{N}\left(\varrho(z-\cdot)\right.$, with N a Poisson point process on \mathbf{R}^{2} with mean measure Lebesgue, $\bar{N}(d z)=N(d z)-d z$, and

$$
|\varrho(z)| \lesssim|z|^{-3-\delta} \text { for }|z|>1, \text { and }|\varrho(z)| \lesssim|z|^{-1 / 2} \text { for }|z| \leq 1 .
$$

An example satisfying our assumptions

- Suppose $\eta(z)=\bar{N}\left(\varrho(z-\cdot)\right.$, with N a Poisson point process on \mathbf{R}^{2} with mean measure Lebesgue, $\bar{N}(d z)=N(d z)-d z$, and

$$
|\varrho(z)| \lesssim|z|^{-3-\delta} \text { for }|z|>1, \text { and }|\varrho(z)| \lesssim|z|^{-1 / 2} \text { for }|z| \leq 1 .
$$

- In that case,

$$
\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)=\int_{\mathbf{R}^{2}} \varrho\left(z_{1}-z\right) \times \cdots \times \varrho\left(z_{\ell}-z\right) d z
$$

An example satisfying our assumptions

- Suppose $\eta(z)=\bar{N}\left(\varrho(z-\cdot)\right.$, with N a Poisson point process on \mathbf{R}^{2} with mean measure Lebesgue, $\bar{N}(d z)=N(d z)-d z$, and

$$
|\varrho(z)| \lesssim|z|^{-3-\delta} \text { for }|z|>1, \text { and }|\varrho(z)| \lesssim|z|^{-1 / 2} \text { for }|z| \leq 1 .
$$

- In that case,

$$
\kappa_{\ell}\left(z_{1}, \ldots, z_{\ell}\right)=\int_{\mathbf{R}^{2}} \varrho\left(z_{1}-z\right) \times \cdots \times \varrho\left(z_{\ell}-z\right) d z
$$

- It is not too hard to verify the assumption thanks to that formula.

Regularity structures

- We shall write $\mathbf{1}$ for the unit constant, $|\mathbf{1}|=0, X$ for an "abstract version" of the first order monomial $x \rightarrow x .|X|=1$.

- シ stands for $\varepsilon \xi_{\varepsilon}$, is zero in the limit, $|\ddot{\equiv}|$

Regularity structures

- We shall write $\mathbf{1}$ for the unit constant, $|\mathbf{1}|=0, X$ for an "abstract version" of the first order monomial $x \rightarrow x .|X|=1$.
- We have the three following elements of \mathcal{T} with negative regularity :
- 三 stands for ξ_{ε}, or space-time white noise itself in the limit, $\mid \equiv=-3 / 2-\kappa$;
- $亠$ stands for the noise driving our approximate PDE $\left(=\sqrt{\varepsilon} \xi_{\varepsilon}\right)$, is zero in the limit, $|\dot{\overline{=}}|=-1-\kappa$;
- $\ddot{\bar{\Xi}}$ stands for $\varepsilon \xi_{\varepsilon}$, is zero in the limit, $|\ddot{\bar{\Xi}}|=-1 / 2-\kappa$.

Law of Large Numbers 1

- We want to show that $u_{\varepsilon} \rightarrow \bar{u}$, where \bar{u} solves the parabolic PDE

$$
\begin{aligned}
\partial_{t} \bar{u}(t, x) & =\partial_{x}^{2} \bar{u}(t, x)+H(\bar{u}(t, x))+c_{\eta} G G^{\prime}(\bar{u}(t, x)), \\
\bar{u}(0, x) & =u_{0}(x), \quad \bar{u}(t, 0)=\bar{u}(t, 1)=0
\end{aligned}
$$

where $c_{\eta}=\int_{\mathbf{R}^{2}} P(z) \kappa_{2}(0, z) d z$.

Law of Large Numbers 1

- We want to show that $u_{\varepsilon} \rightarrow \bar{u}$, where \bar{u} solves the parabolic PDE

$$
\begin{aligned}
\partial_{t} \bar{u}(t, x) & =\partial_{x}^{2} \bar{u}(t, x)+H(\bar{u}(t, x))+c_{\eta} G G^{\prime}(\bar{u}(t, x)), \\
\bar{u}(0, x) & =u_{0}(x), \quad \bar{u}(t, 0)=\bar{u}(t, 1)=0
\end{aligned}
$$

where $c_{\eta}=\int_{\mathbf{R}^{2}} P(z) \kappa_{2}(0, z) d z$.

- We rewrite the equation for u_{ε} as

$$
U=\mathcal{P} \mathbf{1}_{t>0}(\hat{H}(U)+\hat{G}(U) \dot{\bar{\Xi}})+P u_{0}
$$

where if $U=u \mathbf{1}+\tilde{U}, \hat{H}(U)=H(u) \mathbf{1}+H^{\prime}(u) \tilde{U}$.

Law of Large Numbers 2

$$
U=\mathcal{P} \mathbf{1}_{t>0}(\hat{H}(U)+\hat{G}(U) \dot{\bar{\Xi}})+P u_{0} .
$$

U is of the form (for some functions u and u^{\prime})

The right hand side of the above is given as

Law of Large Numbers 2

$$
U=\mathcal{P} \mathbf{1}_{t>0}(\hat{H}(U)+\hat{G}(U) \dot{\bar{\Xi}})+P u_{0} .
$$

- U is of the form (for some functions u and u^{\prime})

$$
U=u \mathbf{1}+G(u) \mathcal{I}(\dot{\overline{\bar{I}}})+u^{\prime} X
$$

- The right hand side of the above is given as

$$
H(u) \mathbf{1}+G(u) \dot{\bar{\Xi}}+G^{\prime}(u) G(u) \mathcal{I}(\dot{\bar{\Xi}}) \dot{\bar{\Xi}}+G^{\prime}(u) u^{\prime} X \dot{\bar{\Xi}} .
$$

- The LLN follows from the two facts $\Pi_{z}^{\varepsilon} \dot{\Xi} \rightarrow 0$

Law of Large Numbers 2

$$
U=\mathcal{P} \mathbf{1}_{t>0}(\hat{H}(U)+\hat{G}(U) \dot{\bar{\Xi}})+P u_{0} .
$$

- U is of the form (for some functions u and u^{\prime})

$$
U=u \mathbf{1}+G(u) \mathcal{I}(\dot{\bar{\Xi}})+u^{\prime} X,
$$

- The right hand side of the above is given as

$$
H(u) \mathbf{1}+G(u) \dot{\equiv}+G^{\prime}(u) G(u) \mathcal{I}(\dot{\bar{\Xi}}) \dot{\bar{\Xi}}+G^{\prime}(u) u^{\prime} X \dot{\equiv} .
$$

Law of Large Numbers 2

$$
U=\mathcal{P} \mathbf{1}_{t>0}(\hat{H}(U)+\hat{G}(U) \dot{\bar{\Xi}})+P u_{0} .
$$

- U is of the form (for some functions u and u^{\prime})

$$
U=u \mathbf{1}+G(u) \mathcal{I}(\dot{\bar{\Xi}})+u^{\prime} X,
$$

- The right hand side of the above is given as

$$
H(u) \mathbf{1}+G(u) \dot{\equiv}+G^{\prime}(u) G(u) \mathcal{I}(\dot{\bar{\Xi}}) \dot{\equiv}+G^{\prime}(u) u^{\prime} X \dot{\equiv} .
$$

- The LLN follows from the two facts $\Pi_{z}^{\varepsilon} \dot{\overline{=}} \rightarrow 0, \Pi_{z}^{\varepsilon} \mathcal{I}(\dot{\bar{\Xi}}) \dot{\bar{\Xi}} \rightarrow c_{\eta}$.

Central Limit Theorem

- Now let $v_{\varepsilon}(t, x)=\frac{u_{\varepsilon}(t, x)-\bar{u}(t, x)}{\sqrt{\varepsilon}}$.
- Consider the fixed point problem
where $(\mathcal{L} f)(z)=f(z) 1+\partial_{X} f(z) X, z=(t, x)$.

Central Limit Theorem

- Now let $v_{\varepsilon}(t, x)=\frac{u_{\varepsilon}(t, x)-\bar{u}(t, x)}{\sqrt{\varepsilon}}$.
- With $\zeta_{\varepsilon}=\sqrt{\varepsilon} \eta_{\varepsilon}$,

$$
\begin{aligned}
\partial_{t} v_{\varepsilon} & =\partial_{x}^{2} v_{\varepsilon}+\frac{H\left(u_{\varepsilon}\right)-H(\bar{u})}{\sqrt{\varepsilon}}+\frac{G\left(u_{\varepsilon}\right) \eta_{\varepsilon}-c_{\eta} G^{\prime} G(\bar{u})}{\sqrt{\varepsilon}} \\
& =\partial_{x}^{2} v_{\varepsilon}+\frac{H\left(u_{\varepsilon}\right)-H(\bar{u})}{\sqrt{\varepsilon}}+G(\bar{u}) \xi_{\varepsilon}+\frac{G\left(u_{\varepsilon}\right)-G(\bar{u})}{\sqrt{\varepsilon}} \eta_{\varepsilon}-\frac{c \eta G^{\prime} G(\bar{u})}{\sqrt{\varepsilon}} \\
& \simeq \partial_{x}^{2} v_{\varepsilon}+H^{\prime}(\bar{u}) v_{\varepsilon}+G(\bar{u}) \xi_{\varepsilon}+G^{\prime}(\bar{u}) v_{\varepsilon} \eta_{\varepsilon}+\frac{1}{2} G^{\prime \prime}(\bar{u}) v_{\varepsilon}^{2} \zeta_{\varepsilon}-\frac{c_{\eta}}{\sqrt{\varepsilon}} G G^{\prime}(\bar{u})
\end{aligned}
$$

Central Limit Theorem

- Now let $v_{\varepsilon}(t, x)=\frac{u_{\varepsilon}(t, x)-\bar{u}(t, x)}{\sqrt{\varepsilon}}$.
- With $\zeta_{\varepsilon}=\sqrt{\varepsilon} \eta_{\varepsilon}$,

$$
\begin{aligned}
\partial_{t} v_{\varepsilon} & =\partial_{x}^{2} v_{\varepsilon}+\frac{H\left(u_{\varepsilon}\right)-H(\bar{u})}{\sqrt{\varepsilon}}+\frac{G\left(u_{\varepsilon}\right) \eta_{\varepsilon}-c_{\eta} G^{\prime} G(\bar{u})}{\sqrt{\varepsilon}} \\
& =\partial_{x}^{2} v_{\varepsilon}+\frac{H\left(u_{\varepsilon}\right)-H(\bar{u})}{\sqrt{\varepsilon}}+G(\bar{u}) \xi_{\varepsilon}+\frac{G\left(u_{\varepsilon}\right)-G(\bar{u})}{\sqrt{\varepsilon}} \eta_{\varepsilon}-\frac{c \eta G^{\prime} G(\bar{u})}{\sqrt{\varepsilon}} \\
& \simeq \partial_{x}^{2} v_{\varepsilon}+H^{\prime}(\bar{u}) v_{\varepsilon}+G(\bar{u}) \xi_{\varepsilon}+G^{\prime}(\bar{u}) v_{\varepsilon} \eta_{\varepsilon}+\frac{1}{2} G^{\prime \prime}(\bar{u}) v_{\varepsilon}^{2} \zeta_{\varepsilon}-\frac{c_{\eta}}{\sqrt{\varepsilon}} G G^{\prime}(\bar{u})
\end{aligned}
$$

- Consider the fixed point problem

$$
\text { where }(\mathcal{L} f)(z)=f(z) \mathbf{1}+\partial_{x} f(z) X, z=(t, x)
$$

- Note that we have left out the last term of the previous equation. At the end we renormalize the equation, which means bring back in that term.

- Note that we have left out the last term of the previous equation. At the end we renormalize the equation, which means bring back in that term.
- V must be of the form (up to terms of homogeneity >1)

$$
V=v \mathbf{1}+G(\bar{u}) \mathcal{I}(\bar{\Xi})+G^{\prime}(\bar{u}) v \mathcal{I}(\dot{\bar{\Xi}})+v^{\prime} X .
$$

- Note that we have left out the last term of the previous equation. At the end we renormalize the equation, which means bring back in that term.
- V must be of the form (up to terms of homogeneity >1)

$$
v=v \mathbf{1}+G(\bar{u}) \mathcal{I}(\equiv)+G^{\prime}(\bar{u}) v \mathcal{I}(\dot{\bar{\Xi}})+v^{\prime} X .
$$

- The factor of \mathcal{P} in the righthand side reads (up to terms of homogeneity >0)

$$
\begin{aligned}
& H^{\prime}(\bar{u}) v \mathbf{1}+G(\bar{u}) \equiv+G^{\prime}(\bar{u}) \bar{u}^{\prime} X \equiv+G^{\prime}(\bar{u}) v \vdots \\
& +G^{\prime}(\bar{u}) G(\bar{u}) \mathcal{I}(\equiv) \dot{\bar{\Xi}}+G^{\prime}(\bar{u}) G^{\prime}(\bar{u}) v \mathcal{I}(\dot{\bar{y}}) \dot{\bar{\Xi}}+G^{\prime \prime}(\bar{u}) \bar{u}^{\prime} v X \dot{\bar{\prime}} \\
& +G^{\prime}(\bar{u}) v^{\prime} X \doteq \frac{1}{2} G^{\prime \prime}(\bar{u}) v^{2} \ddot{\Xi}+G^{\prime \prime}(\bar{u}) G(\bar{u}) v \mathcal{I}(\equiv) \ddot{\bar{\Xi}} .
\end{aligned}
$$

- The canonical model satisfies $\Pi^{\varepsilon} \Xi=\xi_{\varepsilon}$ and also $\mathbf{E}\left(\Pi^{\varepsilon} \mathcal{I}(\overline{\text { (}} \dot{\overline{\bar{\prime}}})=\varepsilon^{-1 / 2} c_{\eta}\right.$. for all other basis vectors τ Theorem $\hat{\Pi}$ such that with $\xi=$ space-time white noise,
- The canonical model satisfies $\Pi^{\varepsilon} \Xi=\xi_{\varepsilon}$ and also $\mathbf{E}\left(\Pi^{\varepsilon} \mathcal{I}(\overline{\bar{\prime}} \dot{\overline{\bar{\prime}}})=\varepsilon^{-1 / 2} c_{\eta}\right.$.
- We define a renormalized model $\hat{\Pi}^{\varepsilon}$ by setting

$$
\hat{\Pi}_{Z}^{\varepsilon} \mathcal{I}(\equiv) \dot{\equiv}=\Pi_{Z}^{\varepsilon} \mathcal{I}(\equiv) \dot{\equiv}-\frac{c_{\eta}}{\sqrt{\varepsilon}}, \quad \hat{\Pi}_{Z}^{\varepsilon} \tau=\Pi_{Z}^{\varepsilon} \tau
$$

for all other basis vectors τ.

- The canonical model satisfies $\Pi^{\varepsilon} \Xi=\xi_{\varepsilon}$ and also $\mathbf{E}\left(\Pi^{\varepsilon} \mathcal{I}(\overline{\bar{\prime}} \dot{\bar{\Xi}})=\varepsilon^{-1 / 2} c_{\eta}\right.$.
- We define a renormalized model $\hat{\Pi}^{\varepsilon}$ by setting

$$
\hat{\Pi}_{z}^{\varepsilon} \mathcal{I}(\equiv) \dot{\bar{\Xi}}=\Pi_{z}^{\varepsilon} \mathcal{I}(\equiv) \dot{\bar{\Xi}}-\frac{c_{\eta}}{\sqrt{\varepsilon}}, \quad \hat{\Pi}_{z}^{\varepsilon} \tau=\Pi_{z}^{\varepsilon} \tau
$$

for all other basis vectors τ.

- The core result says

Theorem

The random models $\hat{\Pi}^{\varepsilon}$ converge weakly to a limiting admissible model $\hat{\Pi}$ such that with $\xi=$ space-time white noise,

$$
\begin{array}{rll}
\hat{\Pi} \equiv=\xi, & \hat{\Pi} \dot{\Xi}=0, & \hat{\Pi} \ddot{\Xi}=0, \\
\hat{\Pi} \mathcal{I}(\equiv) \dot{\Xi}=0, & \hat{\Pi} \mathcal{I}(\dot{\bar{\Xi}}) \dot{\bar{\Xi}}=c_{\eta}, & \hat{\Pi} \mathcal{I}(\equiv) \ddot{\bar{\Xi}}=c_{\eta}
\end{array}
$$

- As a consequence

Corollary

The sequence v_{ε} converges weakly to the limit v given by the solution to

$$
\partial_{t} v=\partial_{x}^{2} v+\left(H+c_{\eta} G G^{\prime}\right)^{\prime}(\bar{u}) v+G(\bar{u}) \xi, \quad v(0, \cdot)=0 .
$$

- As a consequence

Corollary

The sequence v_{ε} converges weakly to the limit v given by the solution to

$$
\partial_{t} v=\partial_{x}^{2} v+\left(H+c_{\eta} G G^{\prime}\right)^{\prime}(\bar{u}) v+G(\bar{u}) \xi, \quad v(0, \cdot)=0 .
$$

- Among the various technical aspects which I have left under the rug is the treatment of the boundary condition, for which we need the very recent work of Màtè Derencsér and Martin Hairer.
- After all, the above result makes sense in dimension $d>1$. The following is work in progress.
- After all, the above result makes sense in dimension $d>1$. The following is work in progress.
- Consider in dimension $d=1,2,3$ the SPDE

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}(t, x) & =\Delta u_{\varepsilon}(t, x)+H\left(u_{\varepsilon}(t, x)\right)+G\left(u_{\varepsilon}(t, x)\right) \eta_{\varepsilon}(t, x) \\
u_{\varepsilon}(0, x) & =u_{0}(x), x \in D \quad u_{\varepsilon}(t, x)=0, x \in \partial D .
\end{aligned}
$$

where

$$
\eta_{\varepsilon}(t, x)=\varepsilon^{-1} \eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right)
$$

and $\eta(t, x)$ is a stationary zero-mean generalized random field with "good" mixing properties.

Results in case $1 \leq d \leq 3$

- Consider the following deterministic PDEs ($\left.H_{\eta}=H+c_{\eta} G G^{\prime}\right)$

$$
\begin{gathered}
\partial_{t} \bar{u}^{0}=\Delta \bar{u}^{0}+H_{\eta}\left(\bar{u}^{0}\right) \\
\partial_{t} \bar{u}^{1}=\Delta \bar{u}^{1}+\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right) \\
\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right)=c_{3}\left(G^{2} G^{\prime \prime}\right)\left(\bar{u}^{0}\right)+c_{3}^{\prime}\left(G\left(G^{\prime}\right)^{2}\right)\left(\bar{u}^{0}\right)+G^{\prime}\left(\bar{u}^{0}\right)^{2} c_{2}^{i} \partial_{i} \bar{u}^{0}
\end{gathered}
$$

where ξ is space-time white noise.

Results in case $1 \leq d \leq 3$

- Consider the following deterministic PDEs ($\left.H_{\eta}=H+c_{\eta} G G^{\prime}\right)$

$$
\begin{gathered}
\partial_{t} \bar{u}^{0}=\Delta \bar{u}^{0}+H_{\eta}\left(\bar{u}^{0}\right) \\
\partial_{t} \bar{u}^{1}=\Delta \bar{u}^{1}+\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right) \\
\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right)=c_{3}\left(G^{2} G^{\prime \prime}\right)\left(\bar{u}^{0}\right)+c_{3}^{\prime}\left(G\left(G^{\prime}\right)^{2}\right)\left(\bar{u}^{0}\right)+G^{\prime}\left(\bar{u}^{0}\right)^{2} c_{2}^{i} \partial_{i} \bar{u}^{0} .
\end{gathered}
$$

- LLN $u_{\varepsilon} \rightarrow \bar{u}^{0}$ in probability.
where ξ is space-time white noise.

Results in case $1 \leq d \leq 3$

- Consider the following deterministic PDEs $\left(H_{\eta}=H+c_{\eta} G G^{\prime}\right)$

$$
\begin{gathered}
\partial_{t} \bar{u}^{0}=\Delta \bar{u}^{0}+H_{n}\left(\bar{u}^{0}\right) \\
\partial_{t} \bar{u}^{1}=\Delta \bar{u}^{1}+\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right) \\
\Psi\left(\bar{u}^{0}, \nabla \bar{u}^{0}\right)=c_{3}\left(G^{2} G^{\prime \prime}\right)\left(\bar{u}^{0}\right)+c_{3}^{\prime}\left(G\left(G^{\prime}\right)^{2}\right)\left(\bar{u}^{0}\right)+G^{\prime}\left(\bar{u}^{0}\right)^{2} c_{2}^{i} \partial_{i} \bar{u}^{0}
\end{gathered}
$$

- LLN $u_{\varepsilon} \rightarrow \bar{u}^{0}$ in probability.
- CLT $\varepsilon^{-d / 2}\left(u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}\right) \Rightarrow v$, where

$$
\partial_{t} v=\Delta v+H_{\eta}^{\prime}\left(\bar{u}^{0}\right) v+G\left(\bar{u}^{0}\right) \xi
$$

where ξ is space-time white noise.

CLT

- Recall from previous slide :

$$
\frac{u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}}{\varepsilon^{d / 2}} \Rightarrow v
$$

CLT

- Recall from previous slide :

$$
\frac{u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}}{\varepsilon^{d / 2}} \Rightarrow v .
$$

- In case $d=1$, we have

$$
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon^{1 / 2}} \Rightarrow v
$$

CLT

- Recall from previous slide :

$$
\frac{u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}}{\varepsilon^{d / 2}} \Rightarrow v .
$$

- In case $d=1$, we have

$$
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon^{1 / 2}} \Rightarrow v .
$$

- In case $d=2$, we have

$$
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon} \Rightarrow \bar{u}^{1}+v .
$$

CLT

- Recall from previous slide :

$$
\frac{u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}}{\varepsilon^{d / 2}} \Rightarrow v .
$$

- In case $d=1$, we have

$$
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon^{1 / 2}} \Rightarrow v
$$

- In case $d=2$, we have

$$
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon} \Rightarrow \bar{u}^{1}+v .
$$

- In case $d=3$, we have

$$
\begin{array}{r}
\frac{u_{\varepsilon}-\bar{u}^{0}}{\varepsilon} \Rightarrow \bar{u}^{1}, \\
\frac{u_{\varepsilon}-\bar{u}^{0}-\varepsilon \bar{u}^{1}}{\varepsilon^{3 / 2}} \Rightarrow v .
\end{array}
$$

THANK YOU FOR YOUR ATTENTION!

