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» Initial motivation: speech recognition!



The problem

» We consider the following type of differential equations
dYt = a(Yt; Q)dt + b(Yt, H)dXt, Y() =Y, t < T,

where X € GQ,(R™) is a realization of a random geometric
p-rough path defined as the limit of a random sequence
(mn(X)) =0 Of nested piecewise linear paths, that we assume
to converge almost surely in the p-variation topology. We also
assume that a and b satisfy the usual conditions.
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» We consider the following type of differential equations
dYt = a(Yt; Q)dt + b(Yt, H)dXt, Y() =Y, t < T,

where X € GQ,(R™) is a realization of a random geometric
p-rough path defined as the limit of a random sequence
(mn(X)) =0 Of nested piecewise linear paths, that we assume
to converge almost surely in the p-variation topology. We also
assume that a and b satisfy the usual conditions.

» We want to construct the likelihood of observing

Yp(n) =y € RY: t; € D(n)},

when we know the distribution of X.
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The Projection + solution of the inverse problem approach.
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» Let D be a fixed grid of [0, T] and XP a piecewise linear path
on D. Let YP be the corresponding response, i.e.

dYP = a(YP;0)dt + b(YP;0)dXP, Yo=y, t<T,

» As before, we assume we observe Y? on the grid D, denoted
by yp and we know the distribution of XP.

> In this case, the likelihood of yp can be constructed exactly.
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Likelihood construction for the approximate problem: Main
idea

» By only considering piecewise linear drivers, the problem
becomes finite dimensional. The idea is to express the data as
a function of the increments of the piecewise linear path
AXP, ie. we can write

yp = Jp(AXP;6)
» Then, the likelihood can be written as
Lyn(ypl6) = Laxo(Jp*(yp; 0)) - DI (yp; 0)].

assuming that
AXP = 5 (yp;6)

exists and is uniquely defined.
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Construction of the inverse 1t6 map ng

» We want to compute AXP as a function of the data and the
parameter 6.

» By definition, Y7 satisfies
dYP = (a(YP;0)dt + b(YP;0)AX,,) dt

with initial conditions Y = y;.

» This is an ODE and we have already assumed sufficient
regularity on a and b for existence and uniqueness of its
solutions. The general form of the ODE is given by

d¥, = (a(»"/t;e) +b(Vii0) - c) dt, Yo = yo
and is solution is denoted by F¢(yo, c; #). Then,

YtD = tht;()/tnAXti; 9)’ Vt e [ti’ ti+1)'
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» The next step is to solve for AXj,, using the terminal value,
i.e. solve

Ft,'+17t,'(yt;7 AXti; 0) = yti+1

for AX: (v, i,1:0)- So, for every interval [t;, tiy1), we need
to solve an independent system of d equations and m
unknowns.
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Construction of the inverse 1t6 map ng cont'd

» The next step is to solve for AXj,, using the terminal value,
i.e. solve

Fti+1*ti(yti’ AXti; 0) = Ytina
for AX: (v, i,1:0)- So, for every interval [t;, tiy1), we need
to solve an independent system of d equations and m
unknowns.
» A natural question to ask here is whether solutions to this
system exist and are unique.

» We are going to assume existence of solution, by requiring
that y;., € Ngco M, —t; (Vi: 0), where

M (y0;0) = {Fs(y0, c; 0); c € R™}.
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The auxilliary process Z

» We define a new auxiliary process as
Zi(c) = DcFi(yo, c;:0) € R, or,

Ztl'7a(c) = %Fg(yoac;e)v fOI‘ ’: 17"'ada o = 1""7m'

» Then, under suitable regularity conditions, Z;(c) satisfies
d -, = -
2@ =v(atb-c)(F)- Z(c) + ba(Fe),

with initial conditions Zo(c) = 0, where by Z&(c) and b%(y)
we denote column a € {1,..., m} of matrix Z(c) and b(y)
respectively.



The auxilliary process Z

» We conclude that
t
ZX(c) = / exp (A)57t ba(Fs)ds,
0

where by exp (A), , we denote the sum of iterated integrals

exp (A Z A

and

Al = [ / A(Fur)- - A(Fu)dus ... du
s<up<---<u<t
for A(y) =v(a+b-c)(y).
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Uniqueness

v

We are studying the uniqueness of the solution to the general
system of equation

Fs(y,c1;0) =y

Note that if ¢; and ¢ are both solutions, then we can write

</01 DcFs(y,c1 + s(c2 — ar); 9)ds) (¢ —c1) = 0.

If the rank of d x m matrix D.Fs is always d, then we have
m — d degrees of freedom. l.e. if we specify m — d coordinates
of ¢, then the rest of the coordinates are uniquely defined.
Since Zi(c) = D.F(y, c; 0), we see that the rank will be
equal to the rank of b.
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Likelihood Construction

» We will construct the likelihood for the case m=d. If m > d,
then the construction is similar, conditioning on the values of
the free coordinates of c.

» We can write

Lyo (ypl0) = Laxo (Jp (yp)) IDI* (yp)l,

where by L xp(Axp(n)) we denote the likelihood of observing
a realisation of the piecewise linear path X with increments
{Axy;, ti € D}.

» Since AX;, only depends on y;; and y;, ., the Jacobian matrix
will be block lower triangular and consequently:

D55 o) =TT [78X(s::0)ly-,
t;eD(n)

+1]°



Likelihood Construction cont'd
» Note that, by definition,
Fti+1*ti(yti’ AXti(ytny; 0); 9) =Y.

Thus,
Dth,'Jrl—ti(ytia oH 6)|CZAXt,-(yt,-,}’t,-+1;9)‘VAXt,'(ytia Y 0)|y:yt,- = /d

+1

and, consequently,

1
VAXt/(Ytiv Y, 9)|y=y:,-+1 = (Dth,‘H*ti (Ytia C; 9)|c:Ath.(ytI.,ytl.+1 ;0))
1
= (Zti+1_ti(AXti(.yti7.yti+1; 0))) .



Likelihood Construction cont'd

» Note that, by definition,

Ft,-_*_lft;(ytn AXt,'(yt,'ay; 0)1 9) =Y.
Thus,

Dth,'Jrl—ti(ytia (o8 6)|CZAXti(yt,-,}’t,-+1;9)'VAXt,'(ytia Y 9)|y:yt,- = /d

+1

and, consequently,

-1
vAXt,‘(ytﬂ i 9)|y:}/ti+1 = (DCFt,‘+17ti (.yti7 C; 9)|c:Ath.(ytI.,ytl.+1 ,9))
-1
= (Zti+1_ti(AXti (yti7yti+1; 0))) .
> So, Ly (yp(n)|9) can be written as

—1
Lxp (JBI(YD(n))) H ‘Zfiﬂ*ti (Jlgl(yp)ti”

t,€D
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» Consider the equation
dYP = - AyPdt +oxP, YP =0,

where XtD is the piecewise linear interpolation to a fractional
Brownian path with Hurst parameter h on a homogeneous
grid D ={kd; k =0,...,N} where N6 = T.
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» Consider the equation
dYP = - AyPdt +oxP, YP =0,

where XtD is the piecewise linear interpolation to a fractional
Brownian path with Hurst parameter h on a homogeneous
grid D ={kd; k =0,...,N} where N6 = T.

» In this case, we can solve both the ODE and the system of
equations explicitely and we get

_ A (Y(k+1)s — Yroe ™™
Ip (ypi kg1 = Dxir = ( ;J(rl)_ a0 )
» Moreover,
¢ g g
Z:/exp—)\t—s —ds = —(1— e ).
e= ) (—=A( ))5 )\5( )



Example: linear system cont'd

» We can now write down the likelihood:

N
Ly» (ypl 0) = Laxy (Jp' (vpi ) <a(1AiA5)> :



Example: linear system cont'd

» We can now write down the likelihood:

N
Ly» (ypl 0) = Laxy (Jp' (vpi ) (U(l/\im)) :

> In particular, for X fBM, this becomes
1

g e (om0ED w0 (o)
T2

where X2 is the coveriance matrix of fGN with Hurst
parameter h.



Example: linear system cont'd

» Using also the expression for JBI, the log-likelihood becomes

)\252 by Dy~ 1 AN
gy(yp‘ )\,O') X —m (A }/>D(Zh) <A )/)D

Ao
+Nlog <0(1 — e)“s)) ,

where AMy,5 = yiki1)s — Ykse™.



Main Theorem

> Let £y (,)(+|0) be the approximate likelihood, y be the
response to a p-rough path x and y(n) be the response to
Tn(x), where m,(x) is the piecewise linear interpolation of x
on grid D(n) ={k27"T, k=0,...,N} for N =2"T. Then,
assuming that the determinant of b is uniformly bounded from
below over both parameters y and 6 and that

‘EAXD(H) (Bxp(n) = Laxp, (A*D(n))’ < w(dp(x, X)),
we get that

lim sup [0y (m) (YD) — Ly (m) (y(n)p(m10)] = 0.



Lemma 1

For Z;, .-+ and Jg(ln) defined as before and under the additional
assumption on b that

1
inf )| = —

for some My > 0, it holds that
| 2 tien(n) 108 | Zt—; (JB(l,,)(yD(n))t,-> \
- Zt,—ED(n) log ‘Zti+1*ti (ng(ln)(yD(n))ti) | <
C: w(dp(JB(ln) (yD(n))v JBE,,) (.)N/D(n))))

for some C € Ry and modulus of continuity function w.



Lemma 2

Let J_ n) be the inverse 1t6 map previously defined. Moreover, let
Y(n, IQO(X)'D(,, ) and Y'(n, lg,(7(x))p(n)) be the responses to the
piecewise linear map, parametrised by its values on the grid D(n),
given by lg,(x)p(n) and lg,(mn(x))p(n) respectively, where x is a
fixed rough path in GQ,(R?) and 6y € ©. Then,

lim dp (/ (Y(n7 IHO(X)D(n))) ) /51 (Y(nv IQO(WH(X))D(n)))) =0,

n—o00

provided that dp(ms(x),x) — 0 as n — oo.



Example: likelihood and parameter estimation

» According to our previous analysis, the approximate likelihood
of discrete observations of an OU process becomes
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Example: likelihood and parameter estimation

» According to our previous analysis, the approximate likelihood
of discrete observations of an OU process becomes

252 T
_m% Zlle(ytk - ytkfle/\6)2 + % |Og (ﬁ) =
5 (=Tlogo — 55 3, Ayg)
2
o (ﬁ Zkytk(ythrl _ytk) + % Zkyl?k(5> + O((S)

> The o(%) term converges to

1
72<Y,Y>T.

B o _
g7 20

» The o(1) term converges to

Y T AZ T
- wdy, — — 2du.
02/0 i 202/0 Yudt



Approximate likelihood and MLEs

» To avoid losing information about certain parameters in the
limit, we construct a canonical expansion of the log-likelihood
as

M

Uy (ny (YD(m)]0) Z n~ % + Rm(yp(n), 0)
k=

for M>0and —co< ap <y < - < apy < 00, where
Egi(()n) (yp(,,)|0) converges to a non-trivial limit (finite and
non-zero) for every k = 0,..., M and the remainder
Rum(yp(n), 0) satisfies lim, oo N Ry (yp(n), 0) = 0.
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Going Further

» We have assumed that X is approximated by piecewise linear
paths. Is this really necessary?

» We have assumed that the inverse problem can be solved
explicitly. What if it cannot?
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n — oo w.p. 1 and that X(n) live in a finite-dimensional
sub-manifold X, C Q,(R™). Moreover, the response
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sub-manifold Y, C Q,(R9) that is in 1 — 1 correspondence
with RIP(I,



Generalisation of the previous set-up

» We assume that X(n) are such that d,(X(n)),X) — 0 as
n — oo w.p. 1 and that X(n) live in a finite-dimensional
sub-manifold X, C Q,(R™). Moreover, the response
Y (n) = I(X(n)) also belongs to a finite-dimensional
sub-manifold Y, C Q,(R9) that is in 1 — 1 correspondence
with RIP(I,

» The goal is to express a finite-dimensional representation of
X(n) (whose distribution we assume we know) in terms of the
data.
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Solving the ‘inverse problem’

» We want to find X(n) € X, such that
1(X(n))y = yt,, Yti € D(n).

» Most standard numerical techniques are local while we need
to control the error in p-variation.

» ldea: work on the signature space.
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A general algorithm

» Initialization: Y'(n,0) is a linear interpolation of observations.
» Step Y(n, k) = Y(n,k+1), k> 0.

X(n, k) =171 (Y (n, k)). }
X(n, k) = argmingc v, dp(X(n, k) X).
V(n, k) =1 (5<(n, k)).
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A general algorithm

» Initialization: Y'(n,0) is a linear interpolation of observations.
» Step Y(n, k) = Y(n,k+1), k> 0.

X(n, k) =171 (Y (n, k)). }
X(n, k) = argmingc v, dp(X(n, k) X).
V(n, k)= (5<(n, k)).
Y(n, k+ 1) = Y(n, k)+ tree-like path going through
observations.

v
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> Intuition: try to correct the path so that it satisfies required
conditions by changing the signature as little as possible.
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» Initialization. Y(0):
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First iteration

> Solving for the noise. X(0) = /,*(Y(0)):
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First iteration

» Linear interpolation of X(0). X(0):

«4O0r «F)r « =)

«E)»

nae



First iteration
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First iteration

> Y(1) connects Y(0) to observations:
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» Second iteration:

0.15
0.1 1
0.05
0-
—0.05
-0.1
-0.15 -

10

15

20




Evolution of Y

» Third iteration:
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» Fourth iteration:
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» Fifth iteration:
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Evolution of X

» First iteration:
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» Fifth iteration:
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A conjecture

» The map Y(n, k) — Y(n, k + 1) is a contraction in the
signature space, i.e.

d(S(Y(n k+1))o.7r,S(Y(n, k))o.7) < c-d (S(Y(n, k))o.7,S(Y(n, k — 1))

for c < 1.

» Convergence will also imply convergence in p-variation.



Summary

» We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.



Summary

» We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.

» There are still numerous issues to be addressed:



Summary

» We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.
» There are still numerous issues to be addressed:
» Solving the inverse problem in the general framework.



Summary

» We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.
» There are still numerous issues to be addressed:

» Solving the inverse problem in the general framework.
» ‘Exact’ construction.



Summary

» We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.
» There are still numerous issues to be addressed:

» Solving the inverse problem in the general framework.
» ‘Exact’ construction.
» Properties of estimators.



