Likelihood Construction for discretely observed RDEs

Anastasia Papavasiliou (Warwick University) Joint work with
K. Taylor (National Grid) and T. Papamarkou (Glasgow) Supported by the Leverhulme Trust

July 18, 2017

Motivation

- Data from processes modelled as diffusions does not exhibit finite quadratic variation (ex. frequently traded stocks, molecular dynamics).

Motivation

- Data from processes modelled as diffusions does not exhibit finite quadratic variation (ex. frequently traded stocks, molecular dynamics).
- Statistical inference methodology for fractional diffusions is still under developed.

Motivation

- Data from processes modelled as diffusions does not exhibit finite quadratic variation (ex. frequently traded stocks, molecular dynamics).
- Statistical inference methodology for fractional diffusions is still under developed.
- Initial motivation: speech recognition!

The problem

- We consider the following type of differential equations

$$
d Y_{t}=a\left(Y_{t} ; \theta\right) d t+b\left(Y_{t} ; \theta\right) d X_{t}, \quad Y_{0}=y_{0}, t \leq T
$$

where $X \in G \Omega_{p}\left(\mathbb{R}^{m}\right)$ is a realization of a random geometric p-rough path defined as the limit of a random sequence $\left(\pi_{n}(X)\right)_{n>0}$ of nested piecewise linear paths, that we assume to converge almost surely in the p-variation topology. We also assume that a and b satisfy the usual conditions.

The problem

- We consider the following type of differential equations

$$
d Y_{t}=a\left(Y_{t} ; \theta\right) d t+b\left(Y_{t} ; \theta\right) d X_{t}, \quad Y_{0}=y_{0}, t \leq T
$$

where $X \in G \Omega_{p}\left(\mathbb{R}^{m}\right)$ is a realization of a random geometric p-rough path defined as the limit of a random sequence $\left(\pi_{n}(X)\right)_{n>0}$ of nested piecewise linear paths, that we assume to converge almost surely in the p-variation topology. We also assume that a and b satisfy the usual conditions.

- We want to construct the likelihood of observing

$$
y_{\mathcal{D}(n)}:=\left\{y_{t_{i}} \in \mathbb{R}^{d} ; t_{i} \in \mathcal{D}(n)\right\}
$$

when we know the distribution of X.

The Challenge

- We need to match the infinite dimensional information on the distribution of X with the finite-dimensional information on Y.

The Challenge

- We need to match the infinite dimensional information on the distribution of X with the finite-dimensional information on Y.
- The Girsanov + MCMC approach.

The Challenge

- We need to match the infinite dimensional information on the distribution of X with the finite-dimensional information on Y.
- The Girsanov + MCMC approach.
- The Euler approach.

The Challenge

- We need to match the infinite dimensional information on the distribution of X with the finite-dimensional information on Y.
- The Girsanov + MCMC approach.
- The Euler approach.
- The Projection + solution of the inverse problem approach.

After projection: an approximate problem

- Let \mathcal{D} be a fixed grid of $[0, T]$ and $X^{\mathcal{D}}$ a piecewise linear path on \mathcal{D}. Let $Y^{\mathcal{D}}$ be the corresponding response, i.e.

$$
d Y_{t}^{\mathcal{D}}=a\left(Y_{t}^{\mathcal{D}} ; \theta\right) d t+b\left(Y_{t}^{\mathcal{D}} ; \theta\right) d X_{t}^{\mathcal{D}}, \quad Y_{0}=y_{0}, t \leq T
$$

After projection: an approximate problem

- Let \mathcal{D} be a fixed grid of $[0, T]$ and $X^{\mathcal{D}}$ a piecewise linear path on \mathcal{D}. Let $Y^{\mathcal{D}}$ be the corresponding response, i.e.

$$
d Y_{t}^{\mathcal{D}}=a\left(Y_{t}^{\mathcal{D}} ; \theta\right) d t+b\left(Y_{t}^{\mathcal{D}} ; \theta\right) d X_{t}^{\mathcal{D}}, \quad Y_{0}=y_{0}, t \leq T
$$

- As before, we assume we observe $Y^{\mathcal{D}}$ on the grid \mathcal{D}, denoted by $y_{\mathcal{D}}$ and we know the distribution of $X^{\mathcal{D}}$.

After projection: an approximate problem

- Let \mathcal{D} be a fixed grid of $[0, T]$ and $X^{\mathcal{D}}$ a piecewise linear path on \mathcal{D}. Let $Y^{\mathcal{D}}$ be the corresponding response, i.e.

$$
d Y_{t}^{\mathcal{D}}=a\left(Y_{t}^{\mathcal{D}} ; \theta\right) d t+b\left(Y_{t}^{\mathcal{D}} ; \theta\right) d X_{t}^{\mathcal{D}}, \quad Y_{0}=y_{0}, t \leq T
$$

- As before, we assume we observe $Y^{\mathcal{D}}$ on the grid \mathcal{D}, denoted by $y_{\mathcal{D}}$ and we know the distribution of $X^{\mathcal{D}}$.
- In this case, the likelihood of $y_{\mathcal{D}}$ can be constructed exactly.

Likelihood construction for the approximate problem: Main

 idea- By only considering piecewise linear drivers, the problem becomes finite dimensional. The idea is to express the data as a function of the increments of the piecewise linear path $\Delta X^{\mathcal{D}}$, i.e. we can write

$$
y_{\mathcal{D}}=J_{\mathcal{D}}\left(\Delta X^{\mathcal{D}} ; \theta\right)
$$

Likelihood construction for the approximate problem: Main

 idea- By only considering piecewise linear drivers, the problem becomes finite dimensional. The idea is to express the data as a function of the increments of the piecewise linear path $\Delta X^{\mathcal{D}}$, i.e. we can write

$$
y_{\mathcal{D}}=J_{\mathcal{D}}\left(\Delta X^{\mathcal{D}} ; \theta\right)
$$

- Then, the likelihood can be written as

$$
L_{Y_{\mathcal{D}}}\left(y_{\mathcal{D}} \mid \theta\right)=L_{\Delta X_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)\right) \cdot\left|D J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)\right| .
$$

assuming that

$$
\Delta X^{\mathcal{D}}=J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)
$$

exists and is uniquely defined.

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$

- We want to compute $\Delta X^{\mathcal{D}}$ as a function of the data and the parameter θ.

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$

- We want to compute $\Delta X^{\mathcal{D}}$ as a function of the data and the parameter θ.
- By definition, $Y^{\mathcal{D}}$ satisfies

$$
d Y_{t}^{\mathcal{D}}=\left(a\left(Y_{t}^{\mathcal{D}} ; \theta\right) d t+b\left(Y_{t}^{\mathcal{D}} ; \theta\right) \Delta X_{t_{i}}\right) d t
$$

with initial conditions $Y_{t_{i}}=y_{t_{i}}$.

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$

- We want to compute $\Delta X^{\mathcal{D}}$ as a function of the data and the parameter θ.
- By definition, $Y^{\mathcal{D}}$ satisfies

$$
d Y_{t}^{\mathcal{D}}=\left(a\left(Y_{t}^{\mathcal{D}} ; \theta\right) d t+b\left(Y_{t}^{\mathcal{D}} ; \theta\right) \Delta X_{t_{i}}\right) d t
$$

with initial conditions $Y_{t_{i}}=y_{t_{i}}$.

- This is an ODE and we have already assumed sufficient regularity on a and b for existence and uniqueness of its solutions. The general form of the ODE is given by

$$
d \tilde{Y}_{t}=\left(a\left(\tilde{Y}_{t} ; \theta\right)+b\left(\tilde{Y}_{t} ; \theta\right) \cdot c\right) d t, Y_{0}=y_{0}
$$

and is solution is denoted by $F_{t}\left(y_{0}, c ; \theta\right)$. Then,

$$
Y_{t}^{\mathcal{D}}=F_{t-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}} ; \theta\right), \forall t \in\left[t_{i}, t_{i+1}\right)
$$

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$ cont'd

- The next step is to solve for $\Delta X_{t_{i}}$, using the terminal value, i.e. solve

$$
F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}} ; \theta\right)=y_{t_{i+1}}
$$

for $\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)$. So, for every interval $\left[t_{i}, t_{i+1}\right)$, we need to solve an independent system of d equations and m unknowns.

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$ cont'd

- The next step is to solve for $\Delta X_{t_{i}}$, using the terminal value, i.e. solve

$$
F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}} ; \theta\right)=y_{t_{i+1}}
$$

for $\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)$. So, for every interval $\left[t_{i}, t_{i+1}\right)$, we need to solve an independent system of d equations and m unknowns.

- A natural question to ask here is whether solutions to this system exist and are unique.

Construction of the inverse Itô map $J_{\mathcal{D}}^{-1}$ cont'd

- The next step is to solve for $\Delta X_{t_{i}}$, using the terminal value, i.e. solve

$$
F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}} ; \theta\right)=y_{t_{i+1}}
$$

for $\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)$. So, for every interval $\left[t_{i}, t_{i+1}\right)$, we need to solve an independent system of d equations and m unknowns.

- A natural question to ask here is whether solutions to this system exist and are unique.
- We are going to assume existence of solution, by requiring that $y_{t_{i+1}} \in \cap_{\theta \in \Theta} \mathcal{M}_{t_{i+1}-t_{i}}\left(y_{t_{i}} ; \theta\right)$, where

$$
\mathcal{M}_{\delta}\left(y_{0} ; \theta\right)=\left\{F_{\delta}\left(y_{0}, c ; \theta\right) ; c \in \mathbb{R}^{m}\right\}
$$

The auxilliary process Z

- We define a new auxiliary process as

$$
Z_{t}(c)=D_{c} F_{t}\left(y_{0}, c ; \theta\right) \in \mathbb{R}^{d \times m}, \text { or, }
$$

$$
Z_{t}^{i, \alpha}(c)=\frac{\partial}{\partial c_{\alpha}} F_{t}^{i}\left(y_{0}, c ; \theta\right), \text { for } i=1, \ldots, d, \alpha=1, \ldots, m
$$

The auxilliary process Z

- We define a new auxiliary process as

$$
Z_{t}(c)=D_{c} F_{t}\left(y_{0}, c ; \theta\right) \in \mathbb{R}^{d \times m}, \text { or, }
$$

$$
Z_{t}^{i, \alpha}(c)=\frac{\partial}{\partial c_{\alpha}} F_{t}^{i}\left(y_{0}, c ; \theta\right), \text { for } i=1, \ldots, d, \alpha=1, \ldots, m
$$

- Then, under suitable regularity conditions, $Z_{t}(c)$ satisfies

$$
\frac{d}{d t} \bar{Z}_{t}^{\alpha}(c)=\nabla(a+b \cdot c)\left(F_{t}\right) \cdot \bar{Z}_{t}^{\alpha}(c)+\bar{b}_{\alpha}\left(F_{t}\right)
$$

with initial conditions $Z_{0}(c) \equiv 0$, where by $\bar{Z}_{t}^{\alpha}(c)$ and $\bar{b}^{\alpha}(y)$ we denote column $\alpha \in\{1, \ldots, m\}$ of matrix $Z_{t}(c)$ and $b(y)$ respectively.

The auxilliary process Z

- We conclude that

$$
\bar{Z}_{t}^{\alpha}(c)=\int_{0}^{t} \exp (\mathbf{A})_{s, t} \bar{b}_{\alpha}\left(F_{s}\right) d s
$$

where by $\exp (A)_{s, t}$ we denote the sum of iterated integrals

$$
\exp (\mathbf{A})_{s, t}=\sum_{k=0}^{\infty} \mathbf{A}_{s, t}^{k}
$$

and

$$
\mathbf{A}_{s, t}^{k}=\int \cdots \int_{s<u_{1}<\cdots<u_{k}<t} A\left(F_{u_{1}}\right) \cdots A\left(F_{u_{k}}\right) d u_{1} \ldots d u_{k}
$$

for $A(y)=\nabla(a+b \cdot c)(y)$.

Uniqueness

- We are studying the uniqueness of the solution to the general system of equation

$$
F_{\delta}\left(y, c_{1} ; \theta\right)=y^{\prime}
$$

Uniqueness

- We are studying the uniqueness of the solution to the general system of equation

$$
F_{\delta}\left(y, c_{1} ; \theta\right)=y^{\prime}
$$

- Note that if c_{1} and c_{2} are both solutions, then we can write

$$
\left(\int_{0}^{1} D_{c} F_{\delta}\left(y, c_{1}+s\left(c_{2}-c_{1}\right) ; \theta\right) d s\right)\left(c_{2}-c_{1}\right)=0
$$

Uniqueness

- We are studying the uniqueness of the solution to the general system of equation

$$
F_{\delta}\left(y, c_{1} ; \theta\right)=y^{\prime}
$$

- Note that if c_{1} and c_{2} are both solutions, then we can write

$$
\left(\int_{0}^{1} D_{c} F_{\delta}\left(y, c_{1}+s\left(c_{2}-c_{1}\right) ; \theta\right) d s\right)\left(c_{2}-c_{1}\right)=0
$$

- If the rank of $d \times m$ matrix $D_{c} F_{\delta}$ is always d , then we have $m-d$ degrees of freedom. I.e. if we specify $m-d$ coordinates of c, then the rest of the coordinates are uniquely defined.

Uniqueness

- We are studying the uniqueness of the solution to the general system of equation

$$
F_{\delta}\left(y, c_{1} ; \theta\right)=y^{\prime}
$$

- Note that if c_{1} and c_{2} are both solutions, then we can write

$$
\left(\int_{0}^{1} D_{c} F_{\delta}\left(y, c_{1}+s\left(c_{2}-c_{1}\right) ; \theta\right) d s\right)\left(c_{2}-c_{1}\right)=0
$$

- If the rank of $d \times m$ matrix $D_{c} F_{\delta}$ is always d , then we have $m-d$ degrees of freedom. I.e. if we specify $m-d$ coordinates of c, then the rest of the coordinates are uniquely defined.
- Since $Z_{t}(c)=D_{c} F_{t}(y, c ; \theta)$, we see that the rank will be equal to the rank of b.

Likelihood Construction

- We will construct the likelihood for the case $m=d$. If $m>d$, then the construction is similar, conditioning on the values of the free coordinates of c.

Likelihood Construction

- We will construct the likelihood for the case $m=d$. If $m>d$, then the construction is similar, conditioning on the values of the free coordinates of c.
- We can write

$$
L_{Y_{\mathcal{D}}}\left(y_{\mathcal{D}} \mid \theta\right)=L_{\Delta X_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}}\right)\right)\left|D J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}}\right)\right|,
$$

where by $L_{\Delta X^{\mathcal{D}}}\left(\Delta x_{\mathcal{D}(n)}\right)$ we denote the likelihood of observing a realisation of the piecewise linear path $X^{\mathcal{D}}$ with increments $\left\{\Delta x_{t_{i}}, t_{i} \in \mathcal{D}\right\}$.

Likelihood Construction

- We will construct the likelihood for the case $m=d$. If $m>d$, then the construction is similar, conditioning on the values of the free coordinates of c.
- We can write

$$
L_{Y_{\mathcal{D}}}\left(y_{\mathcal{D}} \mid \theta\right)=L_{\Delta X_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}}\right)\right)\left|D J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}}\right)\right|,
$$

where by $L_{\Delta X^{\mathcal{D}}}\left(\Delta x_{\mathcal{D}(n)}\right)$ we denote the likelihood of observing a realisation of the piecewise linear path $X^{\mathcal{D}}$ with increments $\left\{\Delta x_{t_{i}}, t_{i} \in \mathcal{D}\right\}$.

- Since $\Delta X_{t_{i}}$ only depends on $y_{t_{i}}$ and $y_{t_{i+1}}$, the Jacobian matrix will be block lower triangular and consequently:

$$
\left|D J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}(n)}\right)\right|=\prod_{t_{i} \in \mathcal{D}(n)}\left|\nabla \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right)\right|_{y=y_{t_{i+1}}} \mid
$$

Likelihood Construction cont'd

- Note that, by definition,

$$
F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right) ; \theta\right) \equiv y
$$

Thus,

$$
\left.D_{c} F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, c ; \theta\right)\right|_{c=\left.\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1} ;} ; \theta\right) \cdot \nabla \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right)\right|_{y=y_{t_{i+1}}} \equiv I_{d}}
$$

and, consequently,

$$
\begin{gathered}
\left.\nabla \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right)\right|_{y=y_{t_{i+1}}}=\left(\left.D_{c} F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, c ; \theta\right)\right|_{c=\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)}\right)^{-1} \\
=\left(Z_{t_{i+1}-t_{i}}\left(\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)\right)\right)^{-1}
\end{gathered}
$$

Likelihood Construction cont'd

- Note that, by definition,

$$
F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right) ; \theta\right) \equiv y
$$

Thus,
$\left.\left.D_{c} F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, c ; \theta\right)\right|_{c=\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)} \cdot \nabla \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right)\right|_{y=y_{t_{i+1}}} \equiv I_{d}$ and, consequently,

$$
\begin{gathered}
\left.\nabla \Delta X_{t_{i}}\left(y_{t_{i}}, y ; \theta\right)\right|_{y=y_{t_{i+1}}}=\left(\left.D_{c} F_{t_{i+1}-t_{i}}\left(y_{t_{i}}, c ; \theta\right)\right|_{c=\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)}\right)^{-1} \\
=\left(Z_{t_{i+1}-t_{i}}\left(\Delta X_{t_{i}}\left(y_{t_{i}}, y_{t_{i+1}} ; \theta\right)\right)\right)^{-1}
\end{gathered}
$$

- So, $L_{Y(n)}\left(y_{\mathcal{D}(n)} \mid \theta\right)$ can be written as

$$
L_{X_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}(n)}\right)\right)\left(\prod_{t_{i} \in \mathcal{D}}\left|Z_{t_{i+1}-t_{i}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}}\right)_{t_{i}}\right)\right|\right)^{-1}
$$

Example: linear system

- Consider the equation

$$
d Y_{t}^{\mathcal{D}}=-\lambda Y_{t}^{\mathcal{D}} d t+\sigma X_{t}^{\mathcal{D}}, \quad Y_{0}^{\mathcal{D}}=0
$$

where $X_{t}^{\mathcal{D}}$ is the piecewise linear interpolation to a fractional Brownian path with Hurst parameter h on a homogeneous $\operatorname{grid} \mathcal{D}=\{k \delta ; k=0, \ldots, N\}$ where $N \delta=T$.

Example: linear system

- Consider the equation

$$
d Y_{t}^{\mathcal{D}}=-\lambda Y_{t}^{\mathcal{D}} d t+\sigma X_{t}^{\mathcal{D}}, \quad Y_{0}^{\mathcal{D}}=0
$$

where $X_{t}^{\mathcal{D}}$ is the piecewise linear interpolation to a fractional Brownian path with Hurst parameter h on a homogeneous $\operatorname{grid} \mathcal{D}=\{k \delta ; k=0, \ldots, N\}$ where $N \delta=T$.

- In this case, we can solve both the ODE and the system of equations explicitely and we get

$$
J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)_{k+1}:=\Delta x_{k+1}=\frac{\lambda \delta\left(y_{(k+1) \delta}-y_{k \delta} e^{-\lambda \delta}\right)}{\sigma\left(1-e^{-\lambda \delta}\right)}
$$

Example: linear system

- Consider the equation

$$
d Y_{t}^{\mathcal{D}}=-\lambda Y_{t}^{\mathcal{D}} d t+\sigma X_{t}^{\mathcal{D}}, \quad Y_{0}^{\mathcal{D}}=0
$$

where $X_{t}^{\mathcal{D}}$ is the piecewise linear interpolation to a fractional Brownian path with Hurst parameter h on a homogeneous grid $\mathcal{D}=\{k \delta ; k=0, \ldots, N\}$ where $N \delta=T$.

- In this case, we can solve both the ODE and the system of equations explicitely and we get

$$
J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)_{k+1}:=\Delta x_{k+1}=\frac{\lambda \delta\left(y_{(k+1) \delta}-y_{k \delta} e^{-\lambda \delta}\right)}{\sigma\left(1-e^{-\lambda \delta}\right)}
$$

- Moreover,

$$
Z_{t}=\int_{0}^{t} \exp (-\lambda(t-s)) \frac{\sigma}{\delta} d s=\frac{\sigma}{\lambda \delta}\left(1-e^{-\lambda t}\right)
$$

Example: linear system cont'd

- We can now write down the likelihood:

$$
L_{Y_{\mathcal{D}}}\left(y_{\mathcal{D}} \mid \theta\right)=L_{\Delta x_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)\right)\left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)^{N} .
$$

Example: linear system cont'd

- We can now write down the likelihood:

$$
L_{Y_{\mathcal{D}}}\left(y_{\mathcal{D}} \mid \theta\right)=L_{\Delta X_{\mathcal{D}}}\left(J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)\right)\left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)^{N}
$$

- In particular, for X fBM, this becomes
$\frac{1}{\sqrt{\left|2 \pi \Sigma_{h}^{\mathcal{D}}\right|}} \exp \left(-\frac{1}{2} J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)\left(\Sigma_{h}^{\mathcal{D}}\right)^{-1} J_{\mathcal{D}}^{-1}\left(y_{\mathcal{D}} ; \theta\right)^{*}\right)\left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)^{N}$,
where $\Sigma_{h}^{\mathcal{D}}$ is the coveriance matrix of fGN with Hurst parameter h.

Example: linear system cont'd

- Using also the expression for $J_{\mathcal{D}}^{-1}$, the log-likelihood becomes

$$
\begin{aligned}
\ell_{Y}\left(y_{\mathcal{D}} \mid \lambda, \sigma\right) \propto & -\frac{\lambda^{2} \delta^{2}}{2 \sigma^{2}\left(1-e^{-\lambda \delta}\right)^{2}}\left(\Delta^{\lambda} y\right)_{\mathcal{D}}\left(\Sigma_{h}^{\mathcal{D}}\right)^{-1}\left(\Delta^{\lambda} y\right)_{\mathcal{D}}^{*} \\
& +N \log \left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)
\end{aligned}
$$

where $\Delta^{\lambda} y_{k \delta}=y_{(k+1) \delta}-y_{k \delta} e^{\lambda \delta}$.

Main Theorem

- Let $\ell_{Y(n)}(\cdot \mid \theta)$ be the approximate likelihood, y be the response to a p-rough path x and $y(n)$ be the response to $\pi_{n}(x)$, where $\pi_{n}(x)$ is the piecewise linear interpolation of x on grid $\mathcal{D}(n)=\left\{k 2^{-n} T, k=0, \ldots, N\right\}$ for $N=2^{n} T$. Then, assuming that the determinant of b is uniformly bounded from below over both parameters y and θ and that

$$
\left|\ell_{\Delta X_{\mathcal{D}(n)}}\left(\Delta x_{\mathcal{D}(n)}\right)-\ell_{\Delta X_{\mathcal{D}(n)}}\left(\Delta \tilde{x}_{\mathcal{D}(n)}\right)\right| \leq \omega\left(d_{p}(x, \tilde{x})\right)
$$

we get that

$$
\lim _{n \rightarrow \infty} \sup _{\theta}\left|\ell_{Y(n)}\left(y_{\mathcal{D}(n)} \mid \theta\right)-\ell_{Y(n)}\left(y(n)_{\mathcal{D}(n)} \mid \theta\right)\right|=0
$$

Lemma 1

For $Z_{t_{i+1}-t_{i}}$ and $J_{\mathcal{D}(n)}^{-1}$ defined as before and under the additional assumption on b that

$$
\inf _{y, \theta}\|b(y ; \theta)\|=\frac{1}{M_{b}}>0
$$

for some $M_{b}>0$, it holds that

$$
\begin{gathered}
\left|\sum_{t_{i} \in \mathcal{D}(n)} \log \right| Z_{t_{i+1}-t_{i}}\left(J_{\mathcal{D}(n)}^{-1}\left(y_{\mathcal{D}(n)}\right)_{t_{i}}\right) \mid \\
-\sum_{t_{i} \in \mathcal{D}(n)} \log \left|Z_{t_{i+1}-t_{i}}\left(J_{\mathcal{D}(n)}^{-1}\left(\tilde{y}_{\mathcal{D}(n)}\right)_{t_{i}}\right)\right| \leq \\
C \cdot \omega\left(d_{p}\left(J_{\mathcal{D}(n)}^{-1}\left(y_{\mathcal{D}(n)}\right), J_{\mathcal{D}(n)}^{-1}\left(\tilde{y}_{\mathcal{D}(n)}\right)\right)\right)
\end{gathered}
$$

for some $C \in \mathbb{R}_{+}$and modulus of continuity function ω.

Lemma 2

Let $J_{\mathcal{D}(n)}^{-1}$ be the inverse Itô map previously defined. Moreover, let $Y\left(n, I_{\theta_{0}}(x)_{\mathcal{D}(n)}\right)$ and $Y\left(n, I_{\theta_{0}}\left(\pi_{n}(x)\right)_{\mathcal{D}(n)}\right)$ be the responses to the piecewise linear map, parametrised by its values on the grid $\mathcal{D}(n)$, given by $I_{\theta_{0}}(x)_{\mathcal{D}(n)}$ and $I_{\theta_{0}}\left(\pi_{n}(x)\right)_{\mathcal{D}(n)}$ respectively, where x is a fixed rough path in $G \Omega_{p}\left(\mathbb{R}^{d}\right)$ and $\theta_{0} \in \Theta$. Then,

$$
\lim _{n \rightarrow \infty} d_{p}\left(I_{\theta}^{-1}\left(Y\left(n, I_{\theta_{0}}(x)_{\mathcal{D}(n)}\right)\right), I_{\theta}^{-1}\left(Y\left(n, I_{\theta_{0}}\left(\pi_{n}(x)\right)_{\mathcal{D}(n)}\right)\right)\right)=0
$$

provided that $d_{p}\left(\pi_{n}(x), x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Example: likelihood and parameter estimation

- According to our previous analysis, the approximate likelihood of discrete observations of an OU process becomes

$$
\begin{gathered}
-\frac{\lambda^{2} \delta^{2}}{2 \sigma^{2}\left(1-e^{-\lambda \delta}\right)^{2}} \frac{1}{\delta} \sum_{k=1}^{\frac{T}{\delta}}\left(y_{t_{k}}-y_{t_{k-1}} e^{\lambda \delta}\right)^{2}+\frac{T}{\delta} \log \left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)= \\
\frac{1}{\delta}\left(-T \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{k} \Delta y_{k}^{2}\right) \\
-\left(\frac{\lambda}{\sigma^{2}} \sum_{k} y_{t_{k}}\left(y_{t_{k+1}}-y_{t_{k}}\right)+\frac{\lambda^{2}}{\sigma^{2}} \sum_{k} y_{t_{k}}^{2} \delta\right)+o(\delta)
\end{gathered}
$$

Example: likelihood and parameter estimation

- According to our previous analysis, the approximate likelihood of discrete observations of an OU process becomes

$$
\begin{gathered}
-\frac{\lambda^{2} \delta^{2}}{2 \sigma^{2}\left(1-e^{-\lambda \delta}\right)^{2}} \frac{1}{\delta} \sum_{k=1}^{\frac{T}{\delta}}\left(y_{t_{k}}-y_{t_{k-1}} e^{\lambda \delta}\right)^{2}+\frac{T}{\delta} \log \left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)= \\
\frac{1}{\delta}\left(-T \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{k} \Delta y_{k}^{2}\right) \\
-\left(\frac{\lambda}{\sigma^{2}} \sum_{k} y_{t_{k}}\left(y_{t_{k+1}}-y_{t_{k}}\right)+\frac{\lambda^{2}}{\sigma^{2}} \sum_{k} y_{t_{k}}^{2} \delta\right)+o(\delta) .
\end{gathered}
$$

- The $o\left(\frac{1}{\delta}\right)$ term converges to

$$
-T \log \sigma-\frac{1}{2 \sigma^{2}}<Y, Y>_{T}
$$

Example: likelihood and parameter estimation

- According to our previous analysis, the approximate likelihood of discrete observations of an OU process becomes

$$
\begin{gathered}
-\frac{\lambda^{2} \delta^{2}}{2 \sigma^{2}\left(1-e^{-\lambda \delta}\right)^{2}} \frac{1}{\delta} \sum_{k=1}^{\frac{T}{\delta}}\left(y_{t_{k}}-y_{t_{k-1}} e^{\lambda \delta}\right)^{2}+\frac{T}{\delta} \log \left(\frac{\lambda \delta}{\sigma\left(1-e^{-\lambda \delta}\right)}\right)= \\
\frac{1}{\delta}\left(-T \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{k} \Delta y_{k}^{2}\right) \\
-\left(\frac{\lambda}{\sigma^{2}} \sum_{k} y_{t_{k}}\left(y_{t_{k+1}}-y_{t_{k}}\right)+\frac{\lambda^{2}}{\sigma^{2}} \sum_{k} y_{t_{k}}^{2} \delta\right)+o(\delta)
\end{gathered}
$$

- The $o\left(\frac{1}{\delta}\right)$ term converges to

$$
-T \log \sigma-\frac{1}{2 \sigma^{2}}<Y, Y>_{T}
$$

- The o(1) term converges to

$$
-\frac{\lambda}{\sigma^{2}} \int_{0}^{T} y_{u} d y_{u}-\frac{\lambda^{2}}{2 \sigma^{2}} \int_{0}^{T} y_{u}^{2} d u
$$

Approximate likelihood and MLEs

- To avoid losing information about certain parameters in the limit, we construct a canonical expansion of the log-likelihood as

$$
\ell_{Y(n)}\left(y_{\mathcal{D}(n)} \mid \theta\right)=\sum_{k=0}^{M} \ell_{Y(n)}^{(k)}\left(y_{\mathcal{D}(n)} \mid \theta\right) n^{-\alpha_{k}}+R_{M}\left(y_{\mathcal{D}(n)}, \theta\right)
$$

for $M>0$ and $-\infty<\alpha_{0}<\alpha_{1}<\cdots<\alpha_{M}<\infty$, where $\ell_{Y(n)}^{(k)}\left(y_{\mathcal{D}(n)} \mid \theta\right)$ converges to a non-trivial limit (finite and non-zero) for every $k=0, \ldots, M$ and the remainder $R_{M}\left(y_{\mathcal{D}(n)}, \theta\right)$ satisfies $\lim _{n \rightarrow \infty} n^{\alpha_{M}} R_{M}\left(y_{\mathcal{D}(n)}, \theta\right)=0$.

Going Further

- We have assumed that X is approximated by piecewise linear paths. Is this really necessary?

Going Further

- We have assumed that X is approximated by piecewise linear paths. Is this really necessary?
- We have assumed that the inverse problem can be solved explicitly. What if it cannot?

Generalisation of the previous set-up

- We assume that $X(n)$ are such that $\left.d_{p}(X(n)), X\right) \rightarrow 0$ as $n \rightarrow \infty$ w.p. 1 and that $X(n)$ live in a finite-dimensional sub-manifold $\mathcal{X}_{n} \subset \Omega_{p}\left(\mathbb{R}^{m}\right)$. Moreover, the response $Y(n)=I(X(n))$ also belongs to a finite-dimensional sub-manifold $\mathcal{Y}_{n} \subset \Omega_{p}\left(\mathbb{R}^{d}\right)$ that is in $1-1$ correspondence with $\mathbb{R}^{d|\mathcal{D}(n)|}$.

Generalisation of the previous set-up

- We assume that $X(n)$ are such that $\left.d_{p}(X(n)), X\right) \rightarrow 0$ as $n \rightarrow \infty$ w.p. 1 and that $X(n)$ live in a finite-dimensional sub-manifold $\mathcal{X}_{n} \subset \Omega_{p}\left(\mathbb{R}^{m}\right)$. Moreover, the response $Y(n)=I(X(n))$ also belongs to a finite-dimensional sub-manifold $\mathcal{Y}_{n} \subset \Omega_{p}\left(\mathbb{R}^{d}\right)$ that is in $1-1$ correspondence with $\mathbb{R}^{d|\mathcal{D}(n)|}$.
- The goal is to express a finite-dimensional representation of $X(n)$ (whose distribution we assume we know) in terms of the data.

Solving the 'inverse problem'

- We want to find $X(n) \in \mathcal{X}_{n}$ such that $I(X(n))_{t_{i}}=y_{t_{i}}, \forall t_{i} \in \mathcal{D}(n)$.

Solving the 'inverse problem'

- We want to find $X(n) \in \mathcal{X}_{n}$ such that $I(X(n))_{t_{i}}=y_{t_{i}}, \forall t_{i} \in \mathcal{D}(n)$.
- Most standard numerical techniques are local while we need to control the error in p-variation.

Solving the 'inverse problem'

- We want to find $X(n) \in \mathcal{X}_{n}$ such that $I(X(n))_{t_{i}}=y_{t_{i}}, \forall t_{i} \in \mathcal{D}(n)$.
- Most standard numerical techniques are local while we need to control the error in p-variation.
- Idea: work on the signature space.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.
- $X(n, k)=I^{-1}(Y(n, k))$.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.
- $X(n, k)=I^{-1}(Y(n, k))$.
- $\tilde{X}(n, k)=\arg \min _{\tilde{X} \in \mathcal{X}(n)} d_{p}(X(n, k) \tilde{X})$.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.
- $X(n, k)=I^{-1}(Y(n, k))$.
- $\tilde{X}(n, k)=\arg \min _{\tilde{X} \in \mathcal{X}(n)} d_{p}(X(n, k) \tilde{X})$.
- $\tilde{Y}(n, k)=I(\tilde{X}(n, k))$.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.
- $X(n, k)=I^{-1}(Y(n, k))$.
- $\tilde{X}(n, k)=\arg \min _{\tilde{X} \in \mathcal{X}(n)} d_{p}(X(n, k) \tilde{X})$.
- $\tilde{Y}(n, k)=I(\tilde{X}(n, k))$.
- $Y(n, k+1)=Y(n, k)+$ tree-like path going through observations.

A general algorithm

- Initialization: $Y(n, 0)$ is a linear interpolation of observations.
- Step $Y(n, k) \rightarrow Y(n, k+1), k \geq 0$.
- $\underset{\tilde{X}}{ }(n, k)=I^{-1}(Y(n, k))$.
- $\tilde{X}(n, k)=\arg \min _{\tilde{X} \in \mathcal{X}(n)} d_{p}(X(n, k) \tilde{X})$.
- $\tilde{Y}(n, k)=I(\tilde{X}(n, k))$.
- $Y(n, k+1)=Y(n, k)+$ tree-like path going through observations.
- Intuition: try to correct the path so that it satisfies required conditions by changing the signature as little as possible.

First iteration

- The data:

First iteration

- Initialization. $Y(0)$:

First iteration

- Solving for the noise. $X(0)=I_{\theta}^{-1}(Y(0))$:

First iteration

- Linear interpolation of $X(0) . \tilde{X}(0)$:

First iteration

- $\tilde{Y}(0)=I_{\theta}(\tilde{X}(0)):$

First iteration

- $Y(1)$ connects $\tilde{Y}(0)$ to observations:

Evolution of Y

- Second iteration:

Evolution of Y

- Third iteration:

Evolution of Y

- Fourth iteration:

Evolution of Y

- Fifth iteration:

Evolution of X

- First iteration:

Evolution of X

- Fifth iteration:

A conjecture

- The map $Y(n, k) \rightarrow Y(n, k+1)$ is a contraction in the signature space, i.e.
$d\left(S(Y(n, k+1))_{0, T}, S(Y(n, k))_{0, T}\right)<c \cdot d\left(S(Y(n, k))_{0, T}, S(Y(n, k-1))\right.$ for $c<1$.

A conjecture

- The map $Y(n, k) \rightarrow Y(n, k+1)$ is a contraction in the signature space, i.e.
$d\left(S(Y(n, k+1))_{0, T}, S(Y(n, k))_{0, T}\right)<c \cdot d\left(S(Y(n, k))_{0, T}, S(Y(n, k-1))\right.$ for $c<1$.
- Convergence will also imply convergence in p-variation.

Summary

- We have constructed a general framework for constructing an approximate likelihood for discretely observed RDEs.

Summary

- We have constructed a general framework for constructing an approximate likelihood for discretely observed RDEs.
- There are still numerous issues to be addressed:

Summary

- We have constructed a general framework for constructing an approximate likelihood for discretely observed RDEs.
- There are still numerous issues to be addressed:
- Solving the inverse problem in the general framework.

Summary

- We have constructed a general framework for constructing an approximate likelihood for discretely observed RDEs.
- There are still numerous issues to be addressed:
- Solving the inverse problem in the general framework.
- 'Exact' construction.

Summary

- We have constructed a general framework for constructing an approximate likelihood for discretely observed RDEs.
- There are still numerous issues to be addressed:
- Solving the inverse problem in the general framework.
- 'Exact' construction.
- Properties of estimators.

