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Motivation

I Data from processes modelled as diffusions does not exhibit
finite quadratic variation (ex. frequently traded stocks,
molecular dynamics).

I Statistical inference methodology for fractional diffusions is
still under developed.

I Initial motivation: speech recognition!
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The problem

I We consider the following type of differential equations

dYt = a(Yt ; θ)dt + b(Yt ; θ)dXt , Y0 = y0, t ≤ T ,

where X ∈ GΩp(Rm) is a realization of a random geometric
p-rough path defined as the limit of a random sequence
(πn(X ))n>0 of nested piecewise linear paths, that we assume
to converge almost surely in the p-variation topology. We also
assume that a and b satisfy the usual conditions.

I We want to construct the likelihood of observing

yD(n) := {yti ∈ Rd ; ti ∈ D(n)},

when we know the distribution of X .
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The Challenge

I We need to match the infinite dimensional information on the
distribution of X with the finite-dimensional information on Y .

I The Girsanov + MCMC approach.

I The Euler approach.

I The Projection + solution of the inverse problem approach.
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After projection: an approximate problem

I Let D be a fixed grid of [0,T ] and XD a piecewise linear path
on D. Let YD be the corresponding response, i.e.

dYDt = a(YDt ; θ)dt + b(YDt ; θ)dXDt , Y0 = y0, t ≤ T ,

I As before, we assume we observe YD on the grid D, denoted
by yD and we know the distribution of XD.

I In this case, the likelihood of yD can be constructed exactly.
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Likelihood construction for the approximate problem: Main
idea

I By only considering piecewise linear drivers, the problem
becomes finite dimensional. The idea is to express the data as
a function of the increments of the piecewise linear path
∆XD, i.e. we can write

yD = JD(∆XD; θ)

I Then, the likelihood can be written as

LYD(yD|θ) = L∆XD(J−1
D (yD; θ)) · |DJ−1

D (yD; θ)|.

assuming that
∆XD = J−1

D (yD; θ)

exists and is uniquely defined.
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Construction of the inverse Itô map J−1
D

I We want to compute ∆XD as a function of the data and the
parameter θ.

I By definition, YD satisfies

dYDt =
(
a(YDt ; θ)dt + b(YDt ; θ)∆Xti

)
dt

with initial conditions Yti = yti .

I This is an ODE and we have already assumed sufficient
regularity on a and b for existence and uniqueness of its
solutions. The general form of the ODE is given by

dỸt =
(
a(Ỹt ; θ) + b(Ỹt ; θ) · c

)
dt,Y0 = y0

and is solution is denoted by Ft(y0, c ; θ). Then,

YDt = Ft−ti (yti ,∆Xti ; θ), ∀t ∈ [ti , ti+1).
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Construction of the inverse Itô map J−1
D cont’d

I The next step is to solve for ∆Xti , using the terminal value,
i.e. solve

Fti+1−ti (yti ,∆Xti ; θ) = yti+1

for ∆Xti (yti , yti+1 ; θ). So, for every interval [ti , ti+1), we need
to solve an independent system of d equations and m
unknowns.

I A natural question to ask here is whether solutions to this
system exist and are unique.

I We are going to assume existence of solution, by requiring
that yti+1 ∈ ∩θ∈ΘMti+1−ti (yti ; θ), where

Mδ (y0; θ) = {Fδ(y0, c ; θ); c ∈ Rm} .
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The auxilliary process Z

I We define a new auxiliary process as
Zt(c) = DcFt(y0, c ; θ) ∈ Rd×m, or,

Z i ,α
t (c) =

∂

∂cα
F i
t (y0, c; θ), for i = 1, . . . , d , α = 1, . . . ,m.

I Then, under suitable regularity conditions, Zt(c) satisfies

d

dt
Z̄αt (c) = 5 (a + b · c) (Ft) · Z̄αt (c) + b̄α(Ft),

with initial conditions Z0(c) ≡ 0, where by Z̄αt (c) and b̄α(y)
we denote column α ∈ {1, . . . ,m} of matrix Zt(c) and b(y)
respectively.
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The auxilliary process Z

I We conclude that

Z̄αt (c) =

∫ t

0
exp (A)s,t b̄α(Fs)ds,

where by exp (A)s,t we denote the sum of iterated integrals

exp (A)s,t =
∞∑
k=0

Ak
s,t

and

Ak
s,t =

∫
· · ·
∫
s<u1<···<uk<t

A(Fu1) · · ·A(Fuk )du1 . . . duk

for A(y) = 5 (a + b · c) (y).



Uniqueness

I We are studying the uniqueness of the solution to the general
system of equation

Fδ(y , c1; θ) = y ′.

I Note that if c1 and c2 are both solutions, then we can write(∫ 1

0
DcFδ(y , c1 + s(c2 − c1); θ)ds

)
(c2 − c1) = 0.

I If the rank of d ×m matrix DcFδ is always d, then we have
m− d degrees of freedom. I.e. if we specify m− d coordinates
of c , then the rest of the coordinates are uniquely defined.

I Since Zt(c) = DcFt(y , c; θ), we see that the rank will be
equal to the rank of b.
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Likelihood Construction

I We will construct the likelihood for the case m = d . If m > d ,
then the construction is similar, conditioning on the values of
the free coordinates of c .

I We can write

LYD (yD|θ) = L∆XD
(
J−1
D (yD)

)
|DJ−1
D (yD)|,

where by L∆XD(∆xD(n)) we denote the likelihood of observing

a realisation of the piecewise linear path XD with increments
{∆xti , ti ∈ D}.

I Since ∆Xti only depends on yti and yti+1 , the Jacobian matrix
will be block lower triangular and consequently:

|DJ−1
D (yD(n))| =

∏
ti∈D(n)

∣∣∣O∆Xti (yti , y ; θ)|y=yti+1

∣∣∣ .
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Likelihood Construction cont’d

I Note that, by definition,

Fti+1−ti (yti ,∆Xti (yti , y ; θ); θ) ≡ y .

Thus,

DcFti+1−ti (yti , c ; θ)|c=∆Xti
(yti ,yti+1

;θ)·O∆Xti (yti , y ; θ)|y=yti+1
≡ Id

and, consequently,

O∆Xti (yti , y ; θ)|y=yti+1
=
(
DcFti+1−ti (yti , c ; θ)|c=∆Xti

(yti ,yti+1
;θ)

)−1

=
(
Zti+1−ti (∆Xti (yti , yti+1 ; θ))

)−1
.

I So, LY (n)

(
yD(n)|θ

)
can be written as

LXD
(
J−1
D (yD(n))

)∏
ti∈D

∣∣Zti+1−ti
(
J−1
D (yD)ti

)∣∣−1

.
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Example: linear system

I Consider the equation

dYDt = −λYDt dt + σXDt , YD0 = 0,

where XDt is the piecewise linear interpolation to a fractional
Brownian path with Hurst parameter h on a homogeneous
grid D = {kδ; k = 0, . . . ,N} where Nδ = T .

I In this case, we can solve both the ODE and the system of
equations explicitely and we get

J−1
D (yD; θ)k+1 := ∆xk+1 =

λδ
(
y(k+1)δ − ykδe

−λδ)
σ (1− e−λδ)

I Moreover,

Zt =

∫ t

0
exp(−λ(t − s))

σ

δ
ds =

σ

λδ
(1− e−λt).
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Example: linear system cont’d

I We can now write down the likelihood:

LYD (yD| θ) = L∆XD

(
J−1
D (yD; θ)

)( λδ

σ(1− e−λδ)

)N

.

I In particular, for X fBM, this becomes

1√
|2πΣDh |

exp

(
−1

2
J−1
D (yD; θ)

(
ΣDh
)−1

J−1
D (yD; θ)∗

)(
λδ

σ(1− e−λδ)

)N

,

where ΣDh is the coveriance matrix of fGN with Hurst
parameter h.
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Example: linear system cont’d

I Using also the expression for J−1
D , the log-likelihood becomes

`Y (yD| λ, σ) ∝ − λ2δ2

2σ2(1− e−λδ)2

(
∆λy

)
D

(
ΣDh
)−1

(
∆λy

)∗
D

+N log

(
λδ

σ(1− e−λδ)

)
,

where ∆λykδ = y(k+1)δ − ykδe
λδ.



Main Theorem

I Let `Y (n)(·|θ) be the approximate likelihood, y be the
response to a p-rough path x and y(n) be the response to
πn(x), where πn(x) is the piecewise linear interpolation of x
on grid D(n) = {k2−nT , k = 0, . . . ,N} for N = 2nT . Then,
assuming that the determinant of b is uniformly bounded from
below over both parameters y and θ and that∣∣∣`∆XD(n)

(
∆xD(n)

)
− `∆XD(n)

(
∆x̃D(n)

)∣∣∣ ≤ ω (dp(x , x̃)) ,

we get that

lim
n→∞

sup
θ

∣∣`Y (n)

(
yD(n)|θ

)
− `Y (n)

(
y(n)D(n)|θ

)∣∣ = 0.



Lemma 1

For Zti+1−ti and J−1
D(n) defined as before and under the additional

assumption on b that

inf
y ,θ
||b(y ; θ)|| =

1

Mb
> 0,

for some Mb > 0, it holds that

|
∑

ti∈D(n) log |Zti+1−ti

(
J−1
D(n)(yD(n))ti

)
|

−
∑

ti∈D(n) log |Zti+1−ti

(
J−1
D(n)(ỹD(n))ti

)
| ≤

C · ω(dp(J−1
D(n)(yD(n)), J−1

D(n)(ỹD(n))))

for some C ∈ R+ and modulus of continuity function ω.



Lemma 2

Let J−1
D(n) be the inverse Itô map previously defined. Moreover, let

Y (n, Iθ0(x)D(n)) and Y (n, Iθ0(πn(x))D(n)) be the responses to the
piecewise linear map, parametrised by its values on the grid D(n),
given by Iθ0(x)D(n) and Iθ0(πn(x))D(n) respectively, where x is a

fixed rough path in GΩp(Rd) and θ0 ∈ Θ. Then,

lim
n→∞

dp
(
I−1
θ

(
Y (n, Iθ0(x)D(n))

)
, I−1
θ

(
Y (n, Iθ0(πn(x))D(n))

))
= 0,

provided that dp(πn(x), x)→ 0 as n→∞.



Example: likelihood and parameter estimation

I According to our previous analysis, the approximate likelihood
of discrete observations of an OU process becomes

− λ2δ2

2σ2(1−e−λδ)2
1
δ

∑T
δ
k=1(ytk − ytk−1

eλδ)2 + T
δ log

(
λδ

σ(1−e−λδ)

)
=

1
δ

(
−T log σ − 1

2σ2

∑
k ∆y2

k

)
−
(
λ
σ2

∑
k ytk (ytk+1

− ytk ) + λ2

σ2

∑
k y

2
tk
δ
)

+ o(δ).

I The o( 1
δ ) term converges to

−T log σ − 1

2σ2
< Y ,Y >T .

I The o(1) term converges to

− λ

σ2

∫ T

0
yudyu −

λ2

2σ2

∫ T

0
y2
udu.
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Example: likelihood and parameter estimation

I According to our previous analysis, the approximate likelihood
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Approximate likelihood and MLEs

I To avoid losing information about certain parameters in the
limit, we construct a canonical expansion of the log-likelihood
as

`Y (n)

(
yD(n)|θ

)
=

M∑
k=0

`
(k)
Y (n)

(
yD(n)|θ

)
n−αk + RM(yD(n), θ)

for M > 0 and −∞ < α0 < α1 < · · · < αM <∞, where
`

(k)
Y (n)

(
yD(n)|θ

)
converges to a non-trivial limit (finite and

non-zero) for every k = 0, . . . ,M and the remainder
RM(yD(n), θ) satisfies limn→∞ nαMRM(yD(n), θ) = 0.



Going Further

I We have assumed that X is approximated by piecewise linear
paths. Is this really necessary?

I We have assumed that the inverse problem can be solved
explicitly. What if it cannot?
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Generalisation of the previous set-up

I We assume that X (n) are such that dp(X (n)),X )→ 0 as
n→∞ w.p. 1 and that X (n) live in a finite-dimensional
sub-manifold Xn ⊂ Ωp(Rm). Moreover, the response
Y (n) = I (X (n)) also belongs to a finite-dimensional
sub-manifold Yn ⊂ Ωp(Rd) that is in 1− 1 correspondence
with Rd |D(n)|.

I The goal is to express a finite-dimensional representation of
X (n) (whose distribution we assume we know) in terms of the
data.
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Solving the ‘inverse problem’

I We want to find X (n) ∈ Xn such that
I (X (n))ti = yti , ∀ti ∈ D(n).

I Most standard numerical techniques are local while we need
to control the error in p-variation.

I Idea: work on the signature space.
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A general algorithm

I Initialization: Y (n, 0) is a linear interpolation of observations.

I Step Y (n, k)→ Y (n, k + 1), k ≥ 0.

I X (n, k) = I−1 (Y (n, k)).
I X̃ (n, k) = arg minX̃∈X (n) dp(X (n, k)X̃ ).

I Ỹ (n, k) = I
(
X̃ (n, k)

)
.

I Y (n, k + 1) = Y (n, k)+ tree-like path going through
observations.

I Intuition: try to correct the path so that it satisfies required
conditions by changing the signature as little as possible.
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First iteration

I The data:

I

Data visualization

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

0 5 10 15 20

Simulated OU data points

t

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y t

Problem Setup The Algorithm An Example Work in Progress 18/48



First iteration

I Initialization. Y (0):

I

Initialization of z
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First iteration

I Solving for the noise. X (0) = I−1
θ (Y (0)):

I

Iteration 1: solution of inverse problem
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First iteration

I Linear interpolation of X (0). X̃ (0):

I

Iteration 1: coarsening solution of inverse problem
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First iteration

I Ỹ (0) = Iθ(X̃ (0)):

I

Iteration 1: solution of forward problem
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First iteration

I Y (1) connects Ỹ (0) to observations:

I

Iteration 1: correction of solution of forward problem
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Evolution of Y

I Second iteration:

I

Shrinking of stitches - iteration 2
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Evolution of Y

I Third iteration:

I

Shrinking of stitches - iteration 3
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Evolution of Y

I Fourth iteration:

I

Shrinking of stitches - iteration 4
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Evolution of Y

I Fifth iteration:

I

Shrinking of stitches - iteration 5
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Evolution of X

I First iteration:

I

Iteration 1: solution of inverse problem
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Evolution of X

I Fifth iteration:

I

Iteration 5: solution of inverse problem
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A conjecture

I The map Y (n, k)→ Y (n, k + 1) is a contraction in the
signature space, i.e.

d (S(Y (n, k + 1))0,T ,S(Y (n, k))0,T ) < c ·d (S(Y (n, k))0,T ,S(Y (n, k − 1))0,T ) ,

for c < 1.

I Convergence will also imply convergence in p-variation.
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Summary

I We have constructed a general framework for constructing an
approximate likelihood for discretely observed RDEs.

I There are still numerous issues to be addressed:

I Solving the inverse problem in the general framework.
I ‘Exact’ construction.
I Properties of estimators.
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