Yang–Mills measure and the master field on the sphere arxiv:1703.10578

James Norris - joint work with Antoine Dahlqvist

University of Cambridge

Durham Symposium on Stochastic Analysis 2017

・ロト・日本・モート モー うへぐ

Yang-Mills measure

Yang-Mills measure is a probability measure on connections, motivated by physical gauge theories, given formally by

$$\mu_{T}(d\omega) \propto e^{-S(\omega)/T} D\omega$$

where T is a positive parameter, S is the Yang-Mills action

$$S(\omega) = \frac{1}{2} \int_{M} \|\Omega\|^2 d\sigma$$

and Ω is the curvature of the connection ω

$$\Omega(X,Y) = d\omega(X,Y) + [\omega(X),\omega(Y)].$$

Here $D\omega$ is a formal 'translation-invariant measure' on connections.

Yang-Mills measure

Yang-Mills measure is a probability measure on connections, motivated by physical gauge theories, given formally by

$$\mu_{T}(d\omega) \propto e^{-S(\omega)/T} D\omega$$

where T is a positive parameter, S is the Yang-Mills action

$$S(\omega) = \frac{1}{2} \int_{M} \|\Omega\|^2 d\sigma$$

and Ω is the curvature of the connection ω

$$\Omega(X,Y) = d\omega(X,Y) + [\omega(X),\omega(Y)].$$

Here $D\omega$ is a formal 'translation-invariant measure' on connections.

This has been formulated as a rigorous object when the underlying space M is two-dimensional.

For comparison ...

Wiener measure of speed \mathcal{T} is a probability measure on paths, given formally by

$$\mu_T(dx) \propto e^{-E(x)/T} Dx$$

where E is the kinetic energy

$$E(x) = \frac{1}{2} \int_0^1 \|\dot{x}\|^2 dt.$$

Here Dx is a formal 'translation-invariant measure' on paths.

For comparison ...

Wiener measure of speed \mathcal{T} is a probability measure on paths, given formally by

$$\mu_{T}(dx) \propto e^{-E(x)/T}Dx$$

where E is the kinetic energy

$$E(x) = \frac{1}{2} \int_0^1 \|\dot{x}\|^2 dt.$$

Here Dx is a formal 'translation-invariant measure' on paths.

But note that

 ${E = 0} = \text{constant paths}, {S = 0} = \text{flat connections}$

and the second space is much bigger.

Outline

- Yang–Mills holonomy field $H : {paths} \rightarrow U(N)$
- Small-area limit $T \rightarrow 0$
- High-dimensional limit $N \to \infty$
- Master field $\Phi_T : {\text{loops}} \rightarrow [-1, 1]$
- Makeenko–Midgal equations
- Discrete Coulomb gas
- Characterization of the master field
- High-dimensional limit of the Brownian bridge in U(N)

Yang-Mills holonomy fields

- *M* a compact d = 2 smooth manifold (e.g. the sphere \mathbb{S})
- $\mathcal{T} \in (0,\infty)$, σ a smooth positive probability measure on M
- ► G a compact Lie group, with Lie algebra \mathfrak{g} (e.g. U(N), $\mathfrak{u}(N)$)

٨I

•
$$||.||$$
 an invariant metric on \mathfrak{g} (e.g. $||g||^2 = N \sum_{i,j=1}^{N} |g_{ij}|^2$)

Yang-Mills holonomy fields

- *M* a compact d = 2 smooth manifold (e.g. the sphere \mathbb{S})
- ▶ $\mathcal{T} \in (0,\infty)$, σ a smooth positive probability measure on M
- ▶ G a compact Lie group, with Lie algebra \mathfrak{g} (e.g. U(N), $\mathfrak{u}(N)$)

•
$$\|.\|$$
 an invariant metric on \mathfrak{g} (e.g. $\|g\|^2 = N \sum_{i,j=1}^{N} |g_{ij}|^2$)

- P(M) set of rectifiable (continuous) paths in M
- $\mathcal{M}(P(M), G)$ set of multiplicative functions

$$h: P(M) \rightarrow G, \quad h_{\gamma_1 \gamma_2} = h_{\gamma_2} h_{\gamma_1}$$

where $\gamma_1\gamma_2$ is the extension of γ_1 by γ_2

▶ $(p_t(g) : t \in (0,\infty), g \in G)$ heat kernel on G associated to $\|.\|$

N

A random process $H = (H_{\gamma} : \gamma \in P(M))$ is a Yang-Mills holonomy field in G of parameter T if

- (a) $H(\omega) \in \mathcal{M}(P(M), G)$ for all $\omega \in \Omega$
- (b) for any discretization (V, E, F) of M

$$\mathbb{P}(H_e \in dh_e \text{ for all } e \in E) \propto \prod_{f \in F} p_{T\sigma(f)}(h_{\partial f}) \prod_{e \in E} dh_e$$

(c) $H(\gamma_n) \to H(\gamma)$ in probability whenever $\gamma_n \to \gamma$ in 1-variation with fixed endpoints.

Theorem (Lévy 2003, Driver 1989, Sengupta 1997)

There is a unique probability measure μ_T on $\mathcal{M}(P(M), G)$ under which the coordinate process $H_{\gamma}(h) = h_{\gamma}$ is a Yang–Mills holonomy field in G of parameter T.

For comparison ...

A random process $B = (B_t : t \in [0, 1])$ is a Brownian bridge in G from 1 to 1 at speed T if

(a)
$$B(\omega) \in C([0,1], G)$$
 for all $\omega \in \Omega$

(b) for any partition $0 < t_1 < \cdots < t_{n-1} < 1$, setting $g_0 = g_n = 1$ and $s_k = t_k - t_{k-1}$, where $t_0 = 0$ and $t_n = 1$,

$$\mathbb{P}(B_{t_k} \in dg_k \text{ for all } k) \propto \prod_{k=1}^n p_{\mathcal{T}_{S_k}}(g_k g_{k-1}^{-1}) \prod_{k=1}^{n-1} dg_k.$$

In fact there are many such Brownian bridges embedded in a Yang–Mills holonomy field $(H_{\gamma} : \gamma \in P(\mathbb{S}))$ in G of parameter T ...

Large deviations of the Yang–Mills measure in the small-area limit

We give $\mathcal{M}(P(M), G)$ the weakest topology making the coordinate maps continuous. Thus $h(n) \to h$ iff $h_{\gamma}(n) \to h_{\gamma}$ for all paths γ .

Theorem (Lévy & N. 2005)

In the limit $T \to 0$, the family of Yang–Mills measures $(\mu_T : T \in (0, \infty))$ satisfies a large deviations principle with speed T and rate function S.

Large deviations of the Yang–Mills measure in the small-area limit

We give $\mathcal{M}(P(M), G)$ the weakest topology making the coordinate maps continuous. Thus $h(n) \to h$ iff $h_{\gamma}(n) \to h_{\gamma}$ for all paths γ .

Theorem (Lévy & N. 2005)

In the limit $T \to 0$, the family of Yang–Mills measures $(\mu_T : T \in (0, \infty))$ satisfies a large deviations principle with speed T and rate function S.

This makes a rigorous link between the Yang–Mills measure and the Yang–Mills action similar to that made by Schilder's theorem between Wiener measure and the kinetic energy.

The Yang-Mills measures disintegrate over bundle topologies: the LDP holds also conditional on the bundle topology.

High-dimensional limit of the Yang-Mills holonomy field

Let $(H_{\gamma} : \gamma \in P(\mathbb{S}))$ be a Yang-Mills holonomy field in U(N) of parameter T. Write $L(\mathbb{S})$ for the set of loops in $P(\mathbb{S})$. Set

$$\mathsf{tr}(g) = rac{1}{N} \sum_{i=1}^N g_{ii}$$

Theorem

There is a function $\Phi_T : L(\mathbb{S}) \to \mathbb{C}$ such that

$$\operatorname{tr}(H_{\ell}) \to \Phi_{\mathcal{T}}(\ell)$$

in probability as $N \to \infty$ for all $\ell \in L(\mathbb{S})$.

The function Φ_T is the master field on the sphere.

Brian Hall has independently obtained such a statement for regular loops, conditional on its validity for simple loops.

Easy properties of the master field

The master field inherits a number of properties from its finite N approximations

- $\Phi_T = 1$ on constant loops
- $\Phi_T(\gamma_1\gamma_2) = \Phi_T(\gamma_2\gamma_1)$ whenever $\gamma_1\gamma_2 \in L(\mathbb{S})$
- Φ_T is invariant under reduction: $\Phi_T(\ell_1) = \Phi_T(\ell_2)$ whenever $\ell_1 \sim \ell_2$
- Φ_T(θ(ℓ)) = Φ_T(ℓ) whenever θ is an area-preserving diffeomorphism of S.

Here, we write $\ell_1 \sim \ell_2$ if ℓ_1 and ℓ_2 have a common reduction ℓ_0 , where ℓ_0 is a reduction of ℓ if it may be obtained by cutting finitely many treelike paths from ℓ .

Makeenko-Migdal equations

Given a regular loop ℓ and a point v of self-intersection of ℓ , let

$$(\theta(\tau,.): \tau \in (-\varepsilon,\varepsilon))$$

be a *Makeenko–Migdal flow* at (ℓ, v) , that is, a smooth family of diffeomorphisms of \mathbb{S} which preserve the areas of all faces of ℓ , except for the faces f_1, \ldots, f_4 around v, for which we have

$$rac{d}{d au}\sigma(heta(au,f_i))=(-1)^{i+1}$$

Makeenko-Migdal equations

Given a regular loop ℓ and a point v of self-intersection of ℓ , let

 $(\theta(\tau,.): \tau \in (-\varepsilon,\varepsilon))$

be a *Makeenko–Migdal flow* at (ℓ, ν) , that is, a smooth family of diffeomorphisms of \mathbb{S} which preserve the areas of all faces of ℓ , except for the faces f_1, \ldots, f_4 around ν , for which we have

$$rac{d}{d au}\sigma(heta(au, extsf{f}_i))=(-1)^{i+1}.$$

Let $(H_{\gamma} : \gamma \in P(\mathbb{S}))$ be a Yang-Mills holonomy field in U(N) of parameter T.

Theorem (Driver, Gabriel, Hall & Kemp 2016) Set $\ell(\tau) = \theta(\tau, \ell)$ and write $\ell_v, \hat{\ell}_v$ for the loops obtained by splitting ℓ at v. Then

$$\frac{d}{d\tau}\Big|_{\tau=0}\mathbb{E}(\mathrm{tr}(H_{\ell(\tau)}))=T\mathbb{E}(\mathrm{tr}(H_{\ell_{\nu}})\mathrm{tr}(H_{\hat{\ell}_{\nu}})).$$

Makeenko-Migdal equations

Theorem (Driver, Gabriel, Hall & Kemp 2016) Set $\ell(\tau) = \theta(\tau, \ell)$ and write $\ell_v, \hat{\ell}_v$ for the loops obtained by splitting ℓ at v. Then

$$\frac{d}{d\tau}\bigg|_{\tau=0}\mathbb{E}(\operatorname{tr}(H_{\ell(\tau)}))=T\mathbb{E}(\operatorname{tr}(H_{\ell_{\nu}})\operatorname{tr}(H_{\hat{\ell}_{\nu}})).$$

On letting $N \to \infty$, we deduce that the master field Φ_T satisfies the Makeenko-Migdal equations

$$\frac{d}{d\tau}\Big|_{\tau=0} \Phi_T(\ell(\tau)) = T \Phi_T(\ell_v) \Phi_T(\hat{\ell}_v).$$

Representation by a discrete Coulomb gas

Let $\ell \in L(\mathbb{S})$ be a simple loop which divides \mathbb{S} into components of areas *a* and *b*. Then, for all $m, n \in \mathbb{Z}$,

$$\mathbb{E}(\mathrm{tr}(H_{\ell}^{-m})\mathrm{tr}(H_{\ell}^{n})) = \mathbb{E}(I_{m}^{a}(\Lambda)I_{n}^{b}(\Lambda)).$$

Here Λ is the discrete Coulomb gas in \mathbb{Z} given by

$$\mathbb{P}(\Lambda = \lambda) \propto \prod_{1 \leqslant j < k \leqslant N} (\lambda_j - \lambda_k)^2 \prod_{j=1}^N e^{-N\lambda_j^2 T/2}$$

where λ runs over increasing sequences $(\lambda_1, \ldots, \lambda_N)$ in \mathbb{Z} . Also, for $a \in [0, 1]$, $I_0^a(\lambda) = 1$ and, for $n \in \mathbb{Z} \setminus \{0\}$,

$$I_n^a(\lambda) = \frac{e^{-aTn^2/(2N)}}{2\pi in} \int_{\gamma} \exp\{-n(aTz - G_{\lambda}^{N/n}(z))\} dz$$

where γ is a contour around the set $[\lambda_1, \lambda_N] + \{|z| \leq |n|/N\}$ and

$$G_{\lambda}^{\alpha}(z) = rac{lpha}{N} \sum_{j=1}^{N} \log\left(1 + rac{1}{lpha(z - \lambda_j)}
ight).$$

Large deviations of the Coulomb gas

For $\mu \in \mathcal{M}_1(\mathbb{R})$, set

$$\mathcal{I}_{\mathcal{T}}(\mu) = \int_{\mathbb{R}^2} \left\{ (x^2 + y^2) \mathcal{T} + \log|x - y| \right\} \mu(dx) \mu(dy)$$

if $\mu([a, b]) \leq b - a$ for all intervals [a, b], and set $\mathcal{I}_T(\mu) = \infty$ otherwise.

Theorem (Guionnet & Maïda 2005)

The laws of the empirical distributions

$$\mu_{\Lambda} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\Lambda_{i}}$$

on $\mathcal{M}_1(\mathbb{R})$ satisfy a large deviations principle with speed N^2 and rate function \mathcal{I}_T .

Bulk scaling limit of the Coulomb gas

Theorem (Lévy & Maïda 2015)

The functional \mathcal{I}_T has a unique minimizer μ_T on $\mathcal{M}_1(\mathbb{R})$, which has a continuous, symmetric, unimodal and compactly supported density ρ_T with respect to Lebesgue measure, with $\rho_T(x) \in [0, 1]$ for all x.

For $T \in (0, \pi^2]$,

$$ho_T(x) = rac{T}{2\pi} \sqrt{rac{4}{T} - x^2}, \quad |x| \leqslant rac{2}{\sqrt{T}}.$$

For $T \in (\pi^2, \infty)$, the density ρ_T may be expressed in terms of the complete elliptic integrals K and E of the first and second kind. In particular, there is a non-trivial interval around 0 where $\rho_T = 1$.

The master field on simple loops

Set

$$G_T(z) = \int_{\mathbb{R}} \frac{\rho_T(x)}{z-x} dx.$$

The following limit holds in probability as $N \to \infty$ for all $n \in \mathbb{N}$

$$I_n^a(\Lambda) \to \frac{1}{2\pi i n} \int_{\gamma} \exp\{-n(aTz - G_T(z))\} dz$$
$$= \frac{2}{n\pi} \int_0^\infty \cosh\{n(a-b)Tx/2\} \sin\{n\pi\rho_T(x)\} dx.$$

So, by the representation formula, for any simple loop ℓ which divides \mathbb{S} into components of areas *a* and *b*, tr(H_{ℓ}^n) also converges in probability, with the same limit.

Characterization of the master field on the sphere

Theorem

The master field Φ_T has the following properties, which characterize it uniquely among functions $L(\mathbb{S}) \to \mathbb{C}$:

- (a) Φ_T is continuous for the 1-variation topology on $L(\mathbb{S})$
- (b) Φ_T is invariant under reduction
- (c) Φ_T satisfies the Makeenko-Migdal equations
- (d) for all simple loops ℓ , dividing \mathbb{S} into components of areas a and b, and all $n \in \mathbb{N}$,

$$\Phi_{\mathcal{T}}(\ell^n) = \frac{2}{n\pi} \int_0^\infty \cosh\left\{n(a-b)Tx/2\right\} \sin\left\{n\pi\rho_{\mathcal{T}}(x)\right\} dx.$$

High-dimensional limit of the Brownian bridge in U(N)

There is a unique family of probability measures $(\nu_T(t) : t \in [0, 1])$ on the unit circle $\mathbb{T} = \{|z| = 1\}$ such that, for all $n \in \mathbb{N}$,

$$\int_{\mathbb{T}} z^n \nu_T(t, dz) = \frac{1}{2\pi i n} \int_{\gamma} \exp\{-n(tTz - G_T(z))\} dz$$

For $\mathcal{T} \in (0,\pi^2]$ and $t \in [0,1]$, consider the random variable

$$\beta_T(t) = e^{i\sqrt{Tt(1-t)}X}, \quad X \sim \frac{\sqrt{4-x^2}}{2\pi} \text{ on } [-2,2]$$

Then $\beta_T(t)$ has law $\nu_T(t)$ on \mathbb{T} .

Theorem

Let $(B_t : t \in [0,1])$ be a Brownian bridge in U(N) from 1 to 1 at speed T. The empirical distribution of eigenvalues of B_t converges weakly in probability to $\nu_T(t)$ as $N \to \infty$ for all $t \in [0,1]$.