Quasiconformal Mappings and

two-dimensional diffusion processes

joint work with N. Ikeda

Hiroyuki Matsumoto

2017/07/11 at Durham

1 One-dim diffusion processes and aim of talk

Let $X=\left\{X_{t}\right\}$ be a diffusion process generated by

$$
L=\frac{1}{2} a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}=\frac{d}{d m} \frac{d}{d s} .
$$

$m(d x)$ is the speed measure and $s(x)$ is the scale function.
\& $\left\{s\left(X_{t}\right)\right\}$ is a time-changed one-dimensional Brownian motion.

The aim of this talk is to show that, for a class of 2-dim diffusion process $\left\{X_{t}\right\}, \exists \Phi$, a function (quasiconformal mapping), such that $\left\{\Phi\left(X_{t}\right)\right\}$ is a time-changed Brownian motion.

2 Some of related works

(1) P.Lévy. $\quad g: \mathbf{C} \supset U \rightarrow \mathbf{C}$ analytic, $\quad\left\{B_{t}\right\}: \mathrm{BM}$ with $B_{0} \in U$

Then, $\left\{g\left(B_{t}\right)\right\}$ is a time-changed BM in \mathbf{C}.
(2) Csink and \emptyset ksendale (1983) et al. For diffusion processes $\left\{X_{t}\right\},\left\{Y_{t}\right\}$ on $\mathbf{R}^{d}, \mathbf{R}^{p}$, characterization a mapping φ such that $\left\{\varphi\left(X_{t}\right)\right\}$ is a time change of $\left\{Y_{t}\right\}$ is given by means of harmonic morphisms and other characterizations of φ are given.

Given such φ, the corresponding diffusion is used to study φ (e.g., boundary value)
(3) Canonical forms of 2nd order ellptic operators (Courant-Hilbert, Petrovsky)
$\%$ We concentrate on the case where $\underline{d=p=2}$ and $\underline{\left\{Y_{t}\right\} \text { is a BM. }}$
We construct the mapping φ for a class of $\left\{X_{t}\right\}$ by using quasiconformal mappings.

3 Rough story

Let $d s^{2}=g_{11} d x^{2}+2 g_{12} d x d y+g_{22} d y^{2}$ be a Riemannian metric on $U \subset \mathbf{R}^{2}$,
Assumption. $\left(g_{i j}\right)$ is bounded, measurable, uniformly elliptic.
Then we always have a coordinate system (u, v) on U such that

$$
d s^{2}=\rho(u, v)\left(d u^{2}+d v^{2}\right) \quad \text { for some function } \rho(u, v)>0
$$

(u, v) is an isothermal coordinate and
$\Phi(x, y)=(u(x, y), v(x, y))$ is a quasiconformal mapping.

The Laplace-Beltrami operator is $\frac{1}{\rho(u, v)}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right) \quad$ (2-dim !)
and the corresponding diffusion is a time-changed Brownian motion.

4 Plan

1. Isothermal coordinate (Beltrami equation)
2. Dirichlet forms
3. 2-dim diffusions with drifts
4. Remarks on 3-dim spaces

5 Isothermal coordinate (Beltrami equation)

Write in complex form

$$
\begin{aligned}
d s^{2} & =g_{11} d x^{2}+2 g_{12} d x d y+g_{22} d y^{2}=\left(\sqrt{g_{11}} d x+\frac{g_{12}}{\sqrt{g_{11}}} d y\right)^{2}+\left(\frac{\sqrt{G}}{\sqrt{g_{11}}} d y\right)^{2} \\
& =\left(\sqrt{g_{11}} d x+\frac{g_{12}+\mathrm{i} \sqrt{G}}{\sqrt{g_{11}}} d y\right)\left(\sqrt{g_{11}} d x+\frac{g_{12}-\mathrm{i} \sqrt{G}}{\sqrt{g_{11}}} d y\right),
\end{aligned}
$$

$\left(G=\operatorname{det}\left(g_{i j}\right)=g_{11} g_{22}-g_{12}^{2}\right)$ and set

$$
\lambda=g_{11}+g_{22}+2 \sqrt{G}, \quad \alpha=\frac{g_{11}-g_{22}}{\lambda} \quad \text { and } \quad \beta=\frac{2 g_{12}}{\lambda} .
$$

Put $\mu=\alpha+\mathrm{i} \beta$. Then

$$
d s^{2}=\frac{\lambda}{4}|d z+\mu d \bar{z}|^{2},
$$

where, as usual, $z=x+\mathrm{i} y$ and $\bar{z}=x-\mathrm{i} y$.

We have $d s^{2}=\frac{\lambda}{4}|d z+\mu d \bar{z}|^{2}$ and

$$
|\mu|^{2}=\frac{g_{11}+g_{22}-2 \sqrt{G}}{g_{11}+g_{22}+2 \sqrt{G}} \leqq{ }^{\exists} k<1
$$

Then, we see that the equation, called the Beltrami equation,

$$
\frac{\partial w}{\partial \bar{z}}=\mu \frac{\partial w}{\partial z} \quad \text { or } \quad \mu=\frac{w_{\bar{z}}}{w_{z}}
$$

has a unique solution $w(w(O)=0$ for a fixed $O \in U)$ with $w_{z} \in L^{p}(U)(\exists p>2)$ and, setting

$$
\rho=\frac{1}{4} \lambda\left|\frac{\partial w}{\partial z}\right|^{2} \quad \text { and } \quad w=u+\mathrm{i} v
$$

we obtain

$$
d s^{2}=\frac{\lambda}{4}|d z+\mu d \bar{z}|^{2}=\rho\left|w_{z} d z+w_{\bar{z}} d \bar{z}\right|^{2}=\rho|d w|^{2}=\rho\left(d u^{2}+d v^{2}\right)
$$

and w is the desired quasiconformal mapping or the isothermal coordinate.

6 Dirichlet forms

We have shown ($x_{1}=x, x_{2}=y, u_{1}=u, u_{2}=v$)

$$
d s^{2}=\sum_{i, j=1}^{2} g_{i j} d x_{i} d x_{j}=\rho\left(d u_{1}^{2}+d u_{2}^{2}\right), \quad \text { where } w=u_{1}+\mathrm{i} u_{2} \text { satisfies } \frac{\partial w}{\partial \bar{z}}=\mu \frac{\partial w}{\partial z} .
$$

The Jacobian is

$$
\frac{\partial\left(u_{1}, u_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\frac{1}{\rho} \sqrt{G}, \quad G=g_{11} g_{22}-g_{12}^{2} .
$$

Theorem. For any C^{1} functions φ and ψ on U with compact support,
$\sum_{i, j=1}^{2} \int_{U} g^{i j}\left(x_{1}, x_{2}\right) \frac{\partial \varphi}{\partial x_{i}}\left(x_{1}, x_{2}\right) \frac{\partial \psi}{\partial x_{j}}\left(x_{1}, x_{2}\right) \sqrt{G}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$
$=\sum_{i=1}^{2} \int_{\Phi(U)} \frac{\partial \varphi}{\partial u_{i}}\left(u_{1}, u_{2}\right) \frac{\partial \psi}{\partial u_{i}}\left(u_{1}, u_{2}\right) d u_{1} d u_{2}$.
Extention to a subspace of $L^{2}\left(\sqrt{G} d x_{1} d x_{2}\right)=L^{2}\left(\rho d u_{1} d u_{2}\right)!!$

7 2-dim diffusions with drifts

Let U be convex and L is given by

$$
L=\lambda(x, y)\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+b_{1}(x, y) \frac{\partial}{\partial x}+b_{2}(x, y) \frac{\partial}{\partial y} .
$$

Fix y and define the functions s_{y} and m_{y} on U by

$$
s_{y}(x)=\int_{c}^{x} \exp \left(-\int_{c}^{v} \frac{b_{1}(u, y)}{a(u, y)} d u\right) d v, \quad \text { and } \quad m_{y}^{\prime}(x)=\frac{1}{a(x, y)} \exp \left(\int_{c}^{x} \frac{b_{1}(u, y)}{a(u, y)} d u\right) .
$$

Then, setting $\xi=s_{y}(x)$, we have

$$
L=a_{1}(\xi, y) \frac{\partial^{2}}{\partial \xi^{2}}+\widetilde{a}(\xi, y) \frac{\partial^{2}}{\partial y^{2}}+\widetilde{b}_{2}(\xi, y) \frac{\partial}{\partial y}
$$

where

$$
a_{1}(\xi, y)=\frac{s_{y}^{\prime}\left(s_{y}^{-1}(\xi)\right)}{m_{y}^{\prime}\left(s_{y}^{-1}(\xi)\right)}, \quad \widetilde{a}(\xi, y)=a\left(s_{y}^{-1}(\xi), y\right) \quad \text { and } \quad \widetilde{b}_{2}(\xi, y)=b_{2}\left(s_{y}^{-1}(\xi), y\right)
$$

Next fix ξ. Then, in the same way, L is transformed into the form

$$
L=a_{1}\left(\xi, \widehat{s}_{\xi}^{1}(\eta)\right) \frac{\partial^{2}}{\partial \xi^{2}}+\widehat{a}_{2}(\xi, \eta) \frac{\partial^{2}}{\partial \eta^{2}}
$$

Finally, using the result on the isothermal coordinate again, we see that there exists a coordinate $(\widetilde{x}, \widehat{y})$ and a function $a^{*}(\widehat{x}, \widehat{y})$ satisfying

$$
L=a^{*}(\widehat{x}, \widehat{y})\left(\frac{\partial^{2}}{\partial \widehat{x}^{2}}+\frac{\partial^{2}}{\partial \widehat{y}^{2}}\right)
$$

8 Remarks on 3-dim spaces

$\sum_{i, j=1}^{3} g_{i j} d x_{i} d x_{j}$ has an isothermal coordinate \Longleftrightarrow The Cotton tensor $R_{i j k}$ is zero, where

$$
R_{i j k}=R_{i j, k}-R_{i k, j}+\frac{1}{4}\left(g_{i k} R_{, j}-g_{i j} R_{, k}\right), \quad R: \text { scalar curvature }
$$

A map $\Phi: M \rightarrow N$ is a harmonic morphism (preserves the harmonic structure)
if and only if Φ is harmonic and conformal (${ }^{\exists}$ isothermal coordinate).

References. [1] L.P.Eisenhart, Riemannian Geometry, 1925.
[2] L.V.Ahlfors, Lectures on Quasiconformal Mappings, 1966.
[3] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Fourier (1978).
(1) Riemannian metric ${ }^{2}=d x^{2}+d y^{2}+f(x, y)^{2} d z^{2}$ has an isothermal coordinate iff

$$
\begin{aligned}
& -f_{x x} f_{y}+2 f_{x y} f_{x}+y_{y y} f_{y}-\left(f_{x x}+f_{y y}\right)_{y} f=0 \\
& -f_{y y} f_{x}+2 f_{x y} f_{y}+f_{x x} f_{x}-\left(f_{x x}+f_{y y}\right)_{x} f=0
\end{aligned}
$$

(i) $f(x, y)=1+x^{2}+y^{2}$ OK \quad (ii) $f(x, y)=\sqrt{1+x^{2}+y^{2}}$ does not satisfy.
(2) Let $\left(B_{1}(t), B_{2}(t), B_{3}(t)\right)$ be a 3-dim BM and
$S(t)=\frac{1}{2} \int_{0}^{t}\left(B_{2}(s) d B_{1}(s)-B_{1}(s) d B_{2}(s)\right)$ be the stochastic area of $B_{1}(t)$ and $B_{2}(t)$.
\& $\left(B_{1}(t), B_{2}(t), B_{3}(t)+S(t)\right)$ cannnot be written as a time-change of 3-dim BM , because this process corresponds to the metric

$$
d s^{2}=\left(1+\frac{1}{4} y^{2}\right) d x^{2}+\left(1+\frac{1}{4} x^{2}\right) d y^{2}+d z^{2}-\frac{1}{2} x y d x d y+x d y d z-y d x d z
$$

and the Cotton tensor of this metric is not zero.

