Kusuoka-Stroock gradient bounds for the filtering equation

Christian Litterer, joint work with D. Crisan and T. Lyons

University of York

Durham, July 2017

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

イロン イヨン イヨン イヨン

Kusuoka-Stroock estimates for diffusion semigroups

Kusuoka and Stroock analysed the smoothness properties of the (perturbed) semigroup associated to a diffusion process:

$$(P_t^c \varphi)(x) = \mathbb{E}\left[\varphi(X_t^x) \exp\left(\int_0^t c(X_s^x) ds\right)\right], \quad t \ge 0, \quad x \in \mathbb{R}^{d_1},$$

where

$$X_{t}^{x} = x + \int_{0}^{t} V_{0}(X_{s}^{x}) ds + \sum_{i=1}^{N} \int_{0}^{t} V_{i}(X_{s}^{x}) \circ dB_{s}^{i}, \quad t \geq 0, \quad (1)$$

- {V_i i = 0, ..., N} are C[∞]_b satisfying Kusuoka's UFG condition.
- *B* be a *N*-dimensional standard Brownian motion • $c \in C_b^{\infty}(\mathbb{R}^{d_1})$

Christian Litterer, joint work with D. Crisan and T. Lyons

The UFG condition

Notation:

٩

$$V_{[i]} = V_i, \ V_{[\alpha \star i]} = [V_{[\alpha]}, V_i], \quad i \in \{0, \ldots, N\},$$

• "lengths" of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ are used:

$$\alpha| = |(\alpha_1, \ldots, \alpha_n)| = n, \quad \|\alpha\| = \|(\alpha_1, \ldots, \alpha_n)\| = n + \sharp\{i : \alpha_i = 0\}$$

 A₁(m) = the set of multi-indices α different from (0) for which ||α|| ≤ m.

Definition

The vector fields $\{V_i, 0 \le i \le N\}$ satisfy the UFG condition of order *m* if for any $\alpha \in A_1$ there exist $\varphi_{\alpha,\beta} \in C_b^{\infty}(\mathbb{R}^{d_1})$ such that

$$V_{[\alpha]} = \sum_{eta \in \mathcal{A}_1(m)} \varphi_{lpha,eta} V_{[eta]}$$

Christian Litterer, joint work with D. Crisan and T. Lyons

The Kusuoka Stroock gradient estimate

Theorem (Kusuoka and Stroock, 1987; Kusuoka 2003)

Suppose the V_i , i = 0, ..., N satisfy the UFG condition. For any j, m > 0 and $\alpha_1, ..., \alpha_j, ..., \alpha_m \in A_1$ there there exists c > 0 such that $\begin{aligned} \left\| \left(V_{[\alpha_1]} \cdots V_{[\alpha_j]} P_t^c \left(V_{[\alpha_{j+1}]} \cdots V_{[\alpha_m]} \varphi \right) \right) \right\|_{L^p(dx)} \\ &\leq ct^{-(\|\alpha_1\| + \dots + \|\alpha_m\|)/2} \|\varphi\|_{L^p(dx)} \end{aligned}$ for all $\varphi \in C_0^\infty (\mathbb{R}^{d_1})$, $p \in [1, \infty]$, $t \in (0, 1]$.

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

A randomly perturbed semigroup

Define the randomly perturbed semigroup

$$\rho_t^{Y(\omega)}(\varphi)(x) = \mathbb{E}\left[\varphi(X_t^x)Z_t(X^x, Y)|\mathcal{Y}_t\right](\omega), \ t \ge 0, \ x \in \mathbb{R}^{d_1}, \ (2)$$

where

$$Z_t(X^x, Y) = \exp\left(\sum_{i=1}^{d_2} \int_0^t h^i(X_s^x) \, dY_s^i - \frac{1}{2} \sum_{i=1}^{d_2} \int_0^t h^i(X_s^x)^2 \, ds\right).$$

•
$$Y = \left\{ \left(Y_{t}^{\prime}\right)_{i=1}^{d_{2}}, t \geq 0 \right\}$$
 is a d_{2} -dim Bm independent of X ,
 $\mathcal{Y}_{t} = \sigma\{Y_{s}, s \in [0, t]\}.$
• $h^{i} \in C_{b}^{\infty}(\mathbb{R}^{d_{2}}), i = 1, ..., d_{2}$

Christian Litterer, joint work with D. Crisan and T. Lyons

<ロト イラト イラト イラト ラーシーへ Kusuoka-Stroock gradient bounds for the filtering equation

Application to the filtering equation

- Let (Ω, \mathcal{F}, P) be the probability space on which we have defined Y.
- Y drives the following linear parabolic stochastic PDE

$$d\rho_t^{\mathsf{x}}(\varphi) = \rho_t^{\mathsf{x}}(A\varphi)dt + \sum_{k=1}^{d_2} \rho_t^{\mathsf{x}}(h_k\varphi)dY_t^k, \tag{3}$$

$$\rho_0^x = \delta_x.$$

here ρ^x_t is a measure valued process, A is the following differential operator

$$A\varphi = V_0\varphi + \frac{1}{2}\sum_{i=1}^N V_i^2\varphi \tag{4}$$

and $\varphi\,$ is a suitably chosen test function.

- equation (3) is called the Duncan-Mortensen-Zakai equation.
- plays a central role in non-linear filtering: The normalized solution of gives the conditional distribution of a partially observed stochastic process.

Christian Litterer, joint work with D. Crisan and T. Lyons

The non-linear filtering problem

 $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$ probability space, $(\mathcal{F}_t)_{t\geq 0}$ satisfies the usual conditions.

• the *signal* process:

$$dX_t = V_0(X_t)dt + \sum_{i=1}^N V_i(X_t) \circ dB_t^i, \quad X_0 = x, \quad t \ge 0,$$
 (5)

W an \mathcal{F}_t -adapted d_2 -dimensional Brownian motion independent of X.

• the *observation* process:

$$Y_t = \int_0^t h(X_s) ds + W_t, \qquad (6)$$

 $\mathcal{Y}_t = \sigma(Y_s, \ s \in [0, t]) \lor \mathcal{N}, \mathcal{N} \text{ comprises all } \tilde{\mathbb{P}}\text{-null sets.}$

The filtering problem. Determine π_t , the conditional distribution of the signal X at time t given Y in the interval [0, t]. A = A = AChristian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

The filtering problem continued

Let $\mathbb P$ be absolutely continuous with respect to $\tilde{\mathbb P}$ such that

$$\left.\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}\right|_{\mathcal{F}_t}=Z_t(X,Y).$$

$$Z_t(X,Y) = \exp\left(\sum_{i=1}^{d_2} \int_0^t h^i(X_s) \, dY_s^i - \frac{1}{2} \sum_{i=1}^{d_2} \int_0^t h^i(X_s)^2 \, ds\right).$$

By Girsanov's theorem, under \mathbb{P} , Y is a Brownian motion independent of X; additionally the law of X under $\tilde{\mathbb{P}}$ is the same as its law under \mathbb{P} .

Kallianpur-Striebel formula

$$\pi_t = \frac{\rho_t^{Y(\omega)}}{\rho_t^{Y(\omega)}(\mathbf{1})} \quad \tilde{\mathbb{P}}(\mathbb{P}) - \text{a.s.},$$
(8)

$$\rho_t^{Y(\omega)}(\varphi) = \mathbb{E}\left[\varphi(X_t)Z_t(X,Y)|\mathcal{Y}_t\right](\omega), \ t \ge 0, \tag{9}$$

- 1 is the constant function $\mathbf{1}(x) = 1$ for any $x \in \mathbb{R}^{d_1}$.

Christian Litterer, joint work with D. Crisan and T. Lyons

Main Results

• Suppose the V_i , i = 0, ..., N satisfy the UFG condition

Theorem

Let $h \in C_b^{\infty}(\mathbb{R}^{d_1}, \mathbb{R}^{d_2})$ and $\alpha_1, \ldots, \alpha_j, \ldots, \alpha_m \in \mathcal{A}_1$. Then there exists $c(\omega)$ a.s. finite such that

$$\left\| \left(V_{[\alpha_1]} \cdots V_{[\alpha_j]} \rho_t^{\mathsf{Y}(\omega)} \left(V_{[\alpha_{j+1}]} \cdots V_{[\alpha_m]} \varphi \right) \right) \right\|_{\infty}$$

$$\leq c(\omega) t^{-(\|lpha_1\|+\dots+\|lpha_m\|)/2} \|arphi\|_{\infty}$$

for any $\varphi \in C_b^{\infty}(\mathbb{R}^{d_1})$ and $t \in (0, 1]$. If $h \in C_0^{\infty}(\mathbb{R}^{d_1}, \mathbb{R}^{d_2})$. There exists $c(\omega)$ a.s. finite such that

$$\left\| \left(V_{[\alpha_1]} \cdots V_{[\alpha_j]} \rho_t^{Y(\omega)} \left(V_{[\alpha_{j+1}]} \cdots V_{[\alpha_m]} \varphi \right) \right) \right\|_{\mu}$$

$$\leq c(\omega) t^{-(\|\alpha_1\|+\cdots+\|\alpha_m\|)/2} \|\varphi\|_p$$

for all $\varphi \in C_0^{\infty}\left(\mathbb{R}^{d_1}\right), \ p \in [1,\infty], \ t \in (0,1].$

Christian Litterer, joint work with D. Crisan and T. Lyons

Results continued

Corollary

Let $h \in C_b^{\infty}(\mathbb{R}^{d_1}, \mathbb{R}^{d_2})$. There exists $c(\omega)$ a.s. finite such that $\begin{aligned} \left\| \left(V_{[\alpha_1]} \cdots V_{[\alpha_j]} \pi_t \left(V_{[\alpha_{j+1}]} \cdots V_{[\alpha_m]} \varphi \right) \right) \right\|_{\infty} \\ &\leq c(\omega) t^{-(\|\alpha_1\| + \dots + \|\alpha_m\|)/2} \|\varphi\|_{\infty} \end{aligned}$ for any $\varphi \in C_b^{\infty}(\mathbb{R}^N)$ and $t \in (0, 1]$.

 V_i, i = 0, ..., N satisfy the Hörmander condition: an estimate for the product of the likelihood function and the density of the signal follows

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

<ロ> (四) (四) (三) (三) (三)

Step 1. Expand $\rho_t^{Y(\omega)}$

- Let S (k) the set of all multi-indices q
 q with k entries in the set {1,..., d₂}.
- Introduce operators $R_{q,\bar{q}}$ where $q = (t_1, t_2, \dots, t_k)$ is a non-empty multi-index with entries $0 < t_1 < t_2 < \dots < t_k < 1$ and $\bar{q} = (i_1, \dots, i_{k-1})$ is a multi-index in S(k-1)

$$R_{(s,t),\varnothing}(\varphi) = P_{t-s}(\varphi)$$

and, inductively, for k > 1,

$$\begin{aligned} R_{(s,t_1,t_2,\ldots,t_k),(i_1,\ldots,i_{k-1})}(\varphi) &= R_{(s,t_1,t_2,\ldots,t_{k-1})}(h_{i_{k-1}}P_{t_k-t_{k-1}}(\varphi)) \\ &= P_{t_1-s}(h_{i_1}P_{t_2-t_1}\dots(h_{i_{k-1}}P_{t_k-t_{k-1}}(\varphi))) \end{aligned}$$

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

イロン スロン イヨン イヨン

Lemma

We have almost surely that

$$\rho_t^{\mathsf{x}}(\varphi) = P_t(\varphi)(\mathsf{x}) + \sum_{m=1}^{\infty} \sum_{\bar{q} \in S(m)} R_{0,t}^{m,\bar{q}}(\varphi)$$
(10)

where, for $\bar{q} = (i_1, ..., i_m)$,

$$R_{0,t}^{m,\bar{q}}(\varphi) = \underbrace{\int_0^t \int_0^{t_m} \dots \int_0^{t_2}}_{m \text{ times}} R_{(0,t_1,\dots,t_m,t),\bar{q}}(\varphi)(x) dY_{t_1}^{i_1} \dots dY_{t_m}^{i_m}.$$

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Э

Step 2. Pathwise representation of the $R_t^m(\varphi)$

$$q_{s,t}^{k}(Y) = \underbrace{\int_{s}^{t} \int_{s}^{t_{k}} \dots \int_{s}^{t_{2}}}_{k \text{ times}} dY_{t_{1}} \dots dY_{t_{k}}^{j}$$

and $q_{\bar{t}}^{\bar{k}}(Y), \bar{k} = (k_1, ..., k_r) t = (t_1, ...t_r)$ be the products of iterated integrals

$$q_{s,\bar{t}}^{\bar{k}}(Y) = \prod_{i=1}^{r} q_{s,t_i}^{k_i}(Y)$$

We define a formal degree on these products of iterated integrals by letting

$$\deg\left(q_{s,\bar{t}}^{\bar{k}}(Y)\right) = \sum_{i=1}^{r} k_{i}.$$

Next define the sets Θ_k

$$\Theta_{k}= \sup\left\{ q_{\tilde{t}}^{\tilde{k}}\left(Y
ight), \;\; \tilde{k}=\left(k_{1},...,k_{r}
ight), \;\sum_{i=1}^{r}k_{i}\leq k
ight\}.$$

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

イロト イヨト イヨト イヨト 三日

Also for $\bar{q} \in S(k)$ let $\bar{q} \in (i_1, ..., i_k)$ define $\Phi_{\bar{q}}, \Psi_{\bar{q}}$, be the following operators

$$\begin{split} \Phi_{\bar{q}}\varphi &= h^{i_1}...h^{i_k}\varphi \\ \Psi_{\bar{q}}\varphi &= A(h^{i_1}...h^{i_k})\varphi + \sum_{i=1}^d V_i(h^{i_1}...h^{i_k})V_i\varphi. \end{split}$$

and Γ be the set of operators

$$\mathsf{\Gamma}=\left\{\Phi_{\bar{q}_{1}},\Psi_{\bar{q}_{2}},\Psi_{\bar{q}_{1}}\Phi_{\bar{q}_{2}},\quad\bar{q}_{1},\bar{q}_{2}\in\mathsf{S}\left(k\right),\ k\geq1\right\}.$$

Christian Litterer, joint work with D. Crisan and T. Lyons

イロン スロン イヨン イヨン Kusuoka-Stroock gradient bounds for the filtering equation

Э

Theorem

$$R_{s,t}^{m}(\varphi) = P_{t-s}(h^{m}\varphi)(x) \underbrace{\int_{s}^{t} \int_{s}^{t_{m}} \dots \int_{s}^{t_{2}} dY_{t_{1}} \dots dY_{t_{m}}}_{m \text{ times}} + \sum_{k=1}^{m-1} q_{s,t}^{k,m}(Y) \underbrace{\int_{s}^{t} \int_{s}^{t_{k}} \dots \int_{s}^{t_{2}} q_{(s,t_{1},\dots,t_{k})}^{k,m}(Y) \bar{R}_{(s,t_{1},\dots,t_{k},t)}^{k}(\varphi)(x) dt_{1} \dots dt_{k}}_{k \text{ times}} + \sum_{k=1}^{m} \underbrace{\int_{s}^{t} \int_{s}^{t_{k}} \dots \int_{s}^{t_{2}} \bar{q}_{(s,t_{1},\dots,t_{k})}^{k,m}(Y) \hat{R}_{(s,t_{1},\dots,t_{k},t)}^{k}(\varphi)(x) dt_{1} \dots dt_{k}}_{k \text{ times}} + \sum_{k=1}^{m} \underbrace{\int_{s}^{t} \int_{s}^{t_{k}} \dots \int_{s}^{t_{2}} \bar{q}_{(s,t_{1},\dots,t_{k})}^{k,m}(Y) \hat{R}_{(s,t_{1},\dots,t_{k},t)}^{k}(\varphi)(x) dt_{1} \dots dt_{k}}_{k \text{ times}}$$
(11)
and $q_{(s,t_{1},\dots,t_{k})}^{k,m}(Y), \ \bar{q}_{(s,t_{1},\dots,t_{k})}^{k,m}(Y) \in \Theta_{m}$ are linear combinations of (products)

of) iterated integrals of Y and $\bar{R}^k_{(t_1,...,t_k)}(\varphi)$ are given by

$$\bar{R}^{k}_{(s,t_{1},\ldots,t_{k},t)}(\varphi) = P_{t_{1}-s}\left(\bar{\Phi}_{1}P_{t_{2}-t_{1}}\ldots\left(\bar{\Phi}_{k}P_{t-t_{k}}(\varphi)\right)\right)$$

and $\bar{\Phi}_i \in \Gamma$, i = 1, .., k.

Christian Litterer, joint work with D. Crisan and T. Lyons

A first a priori estimate

Proposition

Under the assumptions of Theorem 3 let $\alpha, \beta \in A_1(\ell)$, $\gamma \in (1/3, 1/2)$ then there exists a r.v. $C(\omega, m, \gamma) > 0$ a.s. finite such that

$$\left\| V_{\left[\alpha\right]} R^{m}_{0,t} V_{\left[\beta\right]} \varphi \right\|_{\infty} \leq C\left(\omega, m, \gamma\right) t^{-\left(\left\|\alpha\right\| + \left\|\beta\right\|\right)/2 + m\gamma} \left\|\varphi\right\|_{\infty}$$

for all $\varphi \in C_b^{\infty}(\mathbb{R}^N)$ and $t \in (0, 1]$.

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

Proof ideas

• We have Hölder type controls on the iterated integrals

$$\left|q_{s,t}^{k}\left(Y\right)\right| \leq rac{\left(c\left(\omega,\gamma
ight)|s-t|
ight)^{k\gamma}}{ heta\left(k\gamma
ight)!}$$

for all $0 \le s \le t \le 1$,

- estimate the regularity of the integral kernels $\bar{R}^k_{(s,t_1,...,t_k,t)}$ using the Kusuoka-Stroock techniques
- the kernels roughly have the form

$$P_{t_1-t_0}W_1P_{t_2-t_1}W_2\cdots W_kP_{t-t_k},$$

where
$$W_j = u_i V_{i_j} + v_j$$
 for some $u_i, v_i \in C_b^\infty$

Proof ideas continued

In spirit we have two kinds of regularity estimates for the heat $\ensuremath{\mathsf{kernel}}$

• first:

$$\|\nabla P_t \varphi\|_{\infty} \leq C \left(\|\varphi\|_{\infty} + \|\nabla \varphi\|_{\infty}\right)$$

second:

$$\|\nabla P_t \varphi\|_{\infty} \leq C t^{-\ell/2} \|\varphi\|_{\infty}$$

- kernels are integrated over a simplex
- use the second estimate on the largest interval of the partition
- this interval is always at least T/k

イロン 不同 とうほう 不同 とう

Proof of the main theorem ct'ed

- the estimate for the R^m follows
- Back to the perturbation expansion: the asymptotics of the series are determined by the lower order terms
- Are we done?
- no : the estimates are not summable!

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

take a step back:

- define Sobolev and distribution type spaces H¹ and H⁻¹: encode the effect of V_[α] and V_[β]
- regard the $R_{s,t}^m$ as operators from H^{-1} to H^1
- The $R^m_{s,t}$ satisfy for $0 \le s < u < t \le T$

$$R_{s,t}^m = \sum_{j=0}^m R_{s,u}^j R_{u,t}^{m-j}$$

an algebraic relation known as the multiplicative property in the rough path context

- such functionals also arise in the work of Deya, Gubinelli, Tindel et al when analysing the rough heat equation
- the a priori estimates provide us with bounds for the first few R^m
- Can we use the arguments of the extension theorem to get factorial decay?

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

3

Rough paths

• introduced by T. Lyons in the 90s to model and analyse the interaction of highly oscillatory and potentially non-differentiable systems

$$dY_t = f(Y_t) dX_t$$

 A rough path X of order p ∈ [2,3) with values in a Banach space W is a pair of functions

$$\mathbf{X}_{s,t} := (x_{s,t}, \mathbb{X}_{s,t}) \in W \oplus W \otimes W,$$

where $0 \le s \le t \le T$.

- think of x_{s,t} as the increment of the path x itself and X_{s,t} as an area term.
- satisfy an analytic p- variation type constraint on increments and area
- satisfy an algebraic constraint

$$\mathbb{X}_{s,t} - \mathbb{X}_{u,t} - \mathbb{X}_{s,u} = x_{s,u} \otimes x_{u,t}$$

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

A D D A D D A D D A D D A

Stochastic processes lifted to rough paths

Motivating this definition: The (truncated) signature

$$S_{s,t}(\varphi) = \sum_{j=0}^{\infty} \int_{s < t_1 < \cdots < t_j < t} d\varphi_{t_1} \otimes \cdots \otimes d\varphi_{t_j}$$

• A great variety of stochastic processes lift to rough paths e.g. every \mathbb{R}^d valued continuous semi-martingale, a great number of Gaussian processes, etc. If x_t is a semi-martingale we may define

$$\mathbb{X}_{s,t} = \int_{s \le \tau \le t} x_{\tau} \otimes dx_{\tau}$$

- the choice of the stochastic integration matters!
- obtain a pathwise approach to stochastic calculus

The rough path extension theorem

Theorem (Lyons)

Let $p \ge 1$ and $n \ge \lfloor p \rfloor$ and suppose $X : \Delta_T \to T^n(V)$ is a multiplicative function with finite p-variation controlled by ω . Then for every $m \ge \lfloor p \rfloor + 1$ there exists a unique continuous function $X^m : \Delta_T \to V^{\otimes m}$ such that

$$(s,t) \rightarrow X_{s,t} = \left(1, X_{s,t}^1, \dots, X_{s,t}^{\lfloor p \rfloor}, \dots, X_{s,t}^m, \dots\right) \in T((V))$$

is a multiplicative functional with

$$\left\|X_{s,t}^{i}\right\| \leq \frac{\omega\left(s,t\right)^{i/p}}{\theta\left(i/p\right)!}$$

for all $i \geq 1$, $(s, t) \in \Delta_T$.

Christian Litterer, joint work with D. Crisan and T. Lyons

The neo-classical inequality

Theorem (Neo-classical inequality, Lyons 98)

For any $q \in [1,\infty)$, $n \in \mathbb{N}$ and $s, t \ge 0$

$$\frac{1}{q^2}\sum_{i=0}^n \frac{s^{\frac{i}{q}}t^{\frac{n-i}{q}}}{\left(\frac{i}{q}\right)!\left(\frac{n-i}{q}\right)!} \leq \frac{(s+t)^{n/q}}{(n/q)!}.$$

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

イロト イヨト イヨト イヨト

Consequences of the a priori estimates

Let ℓ be the smallest number for which we can satisfy UFG.

Lemma

For any $0 < \gamma < 1/2$, $m \ge 1$ there exist random variables $c(\gamma, m, \omega)$ such that, almost surely

$$\left\|R_{s,t}^{m}\right\|_{H^{-1}\to H^{-1}} \leq c\left(\gamma,m,\omega\right)\left|t-s\right|^{m\gamma}.$$
(12)

$$\left\|R_{s,t}^{m}\right\|_{H^{1}\to H^{1}} \leq c\left(\gamma, m, \omega\right) |t-s|^{m\gamma}.$$
(13)

and finally

$$\left\| R_{s,t}^{m} \right\|_{H^{-1} \to H^{1}} \leq c\left(\gamma, m, \omega\right) \left| t - s \right|^{m\gamma - 2\ell}.$$
 (14)

for all 0 < s < t < 1.

Christian Litterer, joint work with D. Crisan and T. Lyons

イロト イヨト イヨト イヨト Kusuoka-Stroock gradient bounds for the filtering equation

э

Preliminary factorial decay estimates

Lemma

For any $1/3 < \gamma < 1/2$ there exist a constant $\theta > 0$ and random variables $c(\gamma, \omega)$, almost surely finite, such that

$$\left\|R_{s,t}^{n}\right\|_{H^{1}\to H^{1}} \leq \frac{\left(c\left(\gamma,\omega\right)|t-s|\right)^{n\gamma}}{\theta\left(n\gamma\right)!}.$$
(15)

and

$$\left\| R_{s,t}^{n} \right\|_{H^{-1} \to H^{-1}} \le \frac{\left(c\left(\gamma, \omega\right) | t - s | \right)^{n\gamma}}{\theta\left(n\gamma \right)!} \tag{16}$$

for all $n \in \mathbb{N}$, $0 < s < t \leq 1$.

<ロト イラト イラト イラト ラーシス Kusuoka-Stroock gradient bounds for the filtering equation

The main decay estimate

Proposition

Under the assumptions of Theorem 3 there exist constants $\theta > 0$, $\gamma' \in (1/3, 1/2)$, $m_0(\gamma', \ell) \in \mathbb{N}$ and a random variable $c(\gamma', \omega)$, almost surely finite, such that

$$\left\| R_{0,t}^{m} \right\|_{H^{-1} \to H^{1}} \le \frac{\left(c\left(\gamma', \omega\right) t \right)^{m\gamma'}}{\theta\left(m\gamma'\right)!} \tag{17}$$

for all $m \ge m_0$ and $t \in (0, 1]$.

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

Proof ideas

- pick $\gamma' \in (1/3, \gamma)$
- ullet for $m\geq m_0$ sufficiently large $m\gamma-2\ell\geq m\gamma'$ and

$$\left\|R_{s,t}^{m}\right\|_{H^{-1}\to H^{1}} \leq c\left(\gamma, m, \omega\right) |t-s|^{m\gamma'}.$$
 (18)

イロト イヨト イヨト イヨト

- m_0 depends on γ' and ℓ
- the estimate in (18) with $m \in [m_0, 2m_0]$ serves as inductive hypothesis
- construct the extension for $n > 2m_0$

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

Proof ideas continued

- Two ways to estimate the operator norm $H^{-1} \to H^1$ of the composition $R^m_{s,u} R^m_{u,t}$
- Suppose $m \ge 2m_0$

$$\|R_{s,u}^{j}R_{u,t}^{m-j}\|_{H^{-1}\to H^{1}}$$

$$\leq \min\left(\|R_{s,u}^{j}\|_{H^{1}\to H^{1}}\|R_{u,t}^{m-j}\|_{H^{-1}\to H^{1}}, \|R_{s,u}^{j}\|_{H^{-1}\to H^{1}}\|R_{u,t}^{m-j}\|_{H^{-1}\to H^{-1}}\right)$$

A D D A D D A D D A D D A

- consequence: for $m \ge 2m_0$ we can always find a Hölder type bound for $\|R_{s,u}^j R_{u,t}^{m-j}\|_{H^{-1} \to H^1}$
- use the preliminary factorial decay estimates and the inductive hypothesis
- the missing ingredient to apply the arguments of the extension theorem

Putting it all together

recall

$$\rho_t^{Y(\omega)}(\varphi) = P_t(\varphi) + \sum_{m=1}^{\infty} R_{0,t}^m(\varphi)$$
(19)

イロト イボト イヨト イヨト

- ullet the second, factorially decaying, estimate holds for $m\geq m_0$
- m_0 depends on γ' and the geometry of the problem
- the small time asymptotics of these estimates are not sharp
- consider a mix of the a priori and the factorially decaying estimates
- cut off depends in an explicit way on the number of derivatives we are considering
- the resulting estimate has sharp small time asymptotics

Proof of the L^p estimate

۲

- follow the arguments of Kusuoka and Stroock
- prove an L¹ estimate by duality arguments and deduce the claim using Riesz-Thorin interpolation

$$\|\varphi\|_{1} = \sup_{\substack{\|g\|_{\infty} \leq 1 \\ g \in C_{0}^{\infty}(\mathbb{R}^{N})}} \left| \int \varphi g \right|.$$
(20)

イロン スロン イヨン イヨン

• identify the (formal) adjoint of the semi-group P_t

Christian Litterer, joint work with D. Crisan and T. Lyons Kusuoka-Stroock gradient bounds for the filtering equation

Proof of the L^p estimate continued

Let

$$\widetilde{c} = \operatorname{div}(V_0) + \frac{1}{2}\sum_{j=1}^{d} V_j(\operatorname{div}(V_j)) + \frac{1}{2}\sum_{j=1}^{d} (\operatorname{div}(V_j))^2$$

and

$$\widetilde{V}_0 = -V_0 + rac{1}{2}\sum_{j=1}^d V_j\left(\operatorname{div}\left(V_j\right)\right).$$

Let \widetilde{X}_t be the diffusion associated to the vector fields $\left(\widetilde{V}_0, V_1, \ldots, V_d\right)$. Set

$$P_t^*\varphi(x) := E\left(\exp\left(\int_0^t \widetilde{c}\left(\widetilde{X}_s^x\right) ds\right)\varphi\left(\widetilde{X}_t^x\right)\right)$$

Christian Litterer, joint work with D. Crisan and T. Lyons

Kusuoka-Stroock gradient bounds for the filtering equation

イロン 不同 とくほど 不良 とう

Э

Theorem (Kusuoka-Stroock)

Let
$$\varphi \in C_0^{\infty}(\mathbb{R}^N)$$
 and $g \in C_0^{\infty}(\mathbb{R}^N)$ then we have
$$\int P_t \varphi(x) g(x) dx = \int \varphi(x) P_t^* g(x) dx,$$

i.e. the semi group P_t^* is the (formal) adjoint to P_t .

- iteratively use the adjoint relation on each term R^m in the perturbation expansion
- conclude the estimate by applying (appropriately modified versions of) the forward estimates