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Objects

I Motivating examples, Singular perturbation,
∂
∂t

= 1
ε
L0 + L1 on a space N .

I Reduction to slow-fast systems on product spaces N ×G.

I slow-fast systems:

∂f(x, y)

∂t
=

1

ε
Lxf(x, y) + Ly1f(x, y).

dxεt =

m1∑
k=1

Xk(x
ε
t, y

ε
t) ◦ dBk

t +X0(xεt, y
ε
t) dt,

dyεt =
1√
ε

m2∑
k=1

Yk(x
ε
t, y

ε
t) ◦ dW k

t +
1

ε
Y0(xεt, y

ε
t) dt.

Lx = 1
2

∑m
i=1 Y

2
i (x, ·) + Y0(x, ·) differentiates G

directions, Ly1 in N directions.



Birkhoff’s Ergodic Theorem

Suppose that (yt) is an ergodic stationary stochastic process
with one-time marginal µ.

Theorem (Birkhoff’s Ergodic Theorem)
Then for any f ∈ L1,

1

t

∫ t

0

f(yr)dr
(t→∞)−→ f̄ =

∫
fdµ, (a.e.)

If (yt) is a Markov process with y0 a point, we need
to assume that yt convergence to equilibrium µ rea-
sonably fast.

Denote by L the generator, then µ is typically an invariant
probability measure solving L∗p = 0.



Time averaging

ẋεt = b(xεt, y tε ). Stratonovich, Khasminskii, Wentzell, Freidlin,
Papanicolaou, Varadhan, Keller, Kurtz, Kipnis,

xεt = x0 +

∫ t

0

b(xεs, ys/ε)ds

= x0 + ε

∫ t/ε

0

b(xεrε, yr)dr

= x0 +
∑
i

∆ti
ε

∆ti

∫ ti+1/ε

ti/ε

b(xεrε, yr)dr

≈ x0 +
∑
i

∆ti
ε

∆ti

∫ ti+1/ε

ti/ε

b(xεti , yr)dr

≈ x0 +
∑
i

∆ti

∫ ti+1/ε

ti/ε

b(xεti , y)µ(dy) ≈ x0 +

∫ t

0

b̄(xεs)ds.

If b̄ = 0, we investigate the limit on [0, 1
ε
] (diffusion creation).



SDEs with Hörmander’s conditions

I Suppose that f (k) 6= 0 on Z = {f(y1, y2) = 0}.
dy1

t = dt, dy2
t = f(y1

t , y
2
t )dBt,

I Let x ∈ R be fixed,

dyxt =
1√
ε

sin(x+ yxt )dBt +
1

ε
cos(x+ yxt )dt.

I SU(2), Pauli matrices

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
.

dyt = X1(yt) ◦ dB1
t +X2(yt) ◦ dB2

t .

dygt = α(g)X1(ygt ) ◦ dB1
t + α(g)X2(ygt ) dt.

I G Lie group. If {Ak} generating the Lie algebra g

dgt =
∑

Ak(gt) ◦ dBk
t .



Hörmander’s conditions

If L satisfies Hörmander’s conditions, so does L∗. Existence of
an invariant prob. measure µ(dy) is easy (compact, Lyapunov
function), or Krylov-Bogoliubov).
Suppose the state space is compact.

I

Then L0 is Fredholm, with index
zero. The set of g s.t. Lf = g
is solvable iff 〈g, π〉 = 0, π ∈
ker(L∗). Invariant measures have
densities, smooth in y (not neces-
sarily strictly positive).

I Hörmander (Acta 68, Thm. 1.1): L is hypo-elliptic.
There exists δ > 0. For all u ∈ C∞K (M):

‖u‖s+δ ≤ c0(‖Lu‖s + ‖u‖s).
I Sub-elliptic estimates leads to Birkhoff ’s type LLN, with

rate C(δ, c0) 1√
t

on [0, t]. [PTRF2016]



Locally Uniform Law of Large Numbers

Yi ∈ BC∞, VF on G, compact. x ∈ N . Suppose

Lx =
1

2

m∑
i=1

Y 2
i (x, ·) + Y0(x, ·)

satisfies Hörmander’s conditions and has a unique invariant
probability measure µx. Denote by yx an Lx diffusion.
Theorem [arxiv 2017] We conclude that
(a) Also x 7→ µx is locally Lipschitz continuous in the total

variation norm. L∗xq = 0 implies q is smooth in x,
(regularity in y follows from hypo-ellipticity)

‖q‖s+δ ≤ c0(‖L∗xq‖s + ‖q‖s).

(b) For every s > 1 + dim(G)
2

there exists C(x), depending
continuously in x, such that for f smooth,∣∣∣∣ 1

T

∫ t+T

t

f(yxr ) dr −
∫
G

f(y)µx(dy)

∣∣∣∣
L2(Ω)

≤ C(x)‖f‖s
1√
T
.



Small/Large perturbations

We may want to consider a small perturbation to a dynamical
system with a conservation law. Or we want to approximate a
model by one with many degrees of symmetries.

I Small perturbations ignore factor that are small.

I Large perturbations ignore large influences that are
oscillatory.

I The oscillation is captured in Birkhoff’s ergodic theorem
with rate (LLN).

I Conservation laws or symmetries are used to separate
slow and fast variables.
A reduction procedure leads to a slow-fast systems on the
orbit manifold N , typically we have a principal bundle
π : P → N with G a group describing the symmetry.



A slow-fast systems of SDEs


dxεt =

m1∑
k=1

Xk(x
ε
t, y

ε
t) ◦ dBk

t +X0(xεt, y
ε
t) dt,

dyεt =
1√
ε

m2∑
k=1

Yk(x
ε
t, y

ε
t) ◦ dW k

t +
1

ε
Y0(xεt, y

ε
t) dt.

On Rn: Khasminskii, Freidlin, Veretennikov, Also related to
homogenisation of parabolic and elliptic pdes: Otto,
Sougnidis, Lions, Pardoux, ...
Olla-Liverani.
In action angle coordinates, when X1 = X2 = · · · = 0, L.08.
Ruffino et al for foliated manifolds, convergence in probability.
(Method is essentially Euclidean...) Random ODE on
manifolds (PTRF2016)



A slow-fast systems of SDEs

x ∈ N , non-compact, y ∈ G, compact.
dxεt =

m1∑
k=1

Xk(x
ε
t, y

ε
t) ◦ dBk

t +X0(xεt, y
ε
t) dt,

dyεt =
1√
ε

m2∑
k=1

Yk(x
ε
t, y

ε
t) ◦ dW k

t +
1

ε
Y0(xεt, y

ε
t) dt.

Theorem (arxiv 2017) If Lx = 1
2

∑
Y 2
i (x, ·) + Y0(x, ·)

satisfies Hörmander’s conditions+ growth restrictions. As
ε→ 0, xεt converges weekly on C([0, 1], N). Limit is:

L̄f(x) =

∫
G

(
1

2

m1∑
i=1

X2
i (·, y)f +X0(·, y)f

)
(x)µx(dy).

Kifer, Ikeda, Ogura, L., Liverani-Olla, Gonzales-Ruffino,
Hoegele-Ruffino, (foliated manifolds).



Collapsing of manifolds

S3 =

{(
z w
−w̄, z̄

)}
, g = 〈X1, X2, X3〉,

Making { 1√
ε
X1, X2, X3} an orthonormal frame defines

Berger’s metrics gε, (S3, gε)
ε→0−→ S2, curvature bounded (J.

Cheeger).

I Convergence of spectra. All operators below commute:

∆ε
S3 =

1

ε
(X1)2 + (X2)2 + (X3)2 =

1

ε
∆S1 + ∆H .

λ3(∆ε
S3) = 1

ε
λ1(∆S1) + λ2(∆H). Non-zero eigenvalues of

∆S1 flies away. Eigenfunctions of λ1 = 0 are fucntions on
S2. L. Bérard-Bergery, J.-P. Bourguignon, Urakawa,
Tanno (first eigenvalues), Fukaya, Kasue-Kumura.



Dynamical models

1. dyεt = 1
ε
X1(yεt) ◦ dB1

t +X2(yεt) ◦ dB2
t +X3(yεt) ◦ dB3

t .
2. Y0 = aX2 + bX3, (arxiv2012 )

dyεt =
1

ε
X1(yεt) ◦ dBt + Y0(yεt) dt.

Convergence of slow variables on [0, 1
ε
] +their horizontal

lifts (e.g. Heisenberg group). See also Friz-Lyons-2014,
Baillul-Gubinelli (rough paths)

3. This extends to inhomogenously scaled Riemannian
metric on π :→ G/H. g = (1

ε
)h⊕ (m0 ⊕m1 ⊕ · · · ⊕ml).

(To appear: J. Math. Soc. Japan )

dyεt =
1

ε

p∑
k=1

Ak(y
ε
t) ◦ dBk

t + Y0(yεt)dt.

{A1, . . . , Ap} generates the Lie algebra h of H.
Convergence on [0, 1

ε
] (diffusion creation).



A dynamical description for Brownian motions
Einstein’s atom theory (1905) leads to the
formulation for BM: ∂

∂t
= D∆, D = kT

mβ ,

mβ = 6πηa. J. Perrin (1926 Nobel): k =
10−23Jk−1. Smoluchowski: BM in a force
field.

I Langevin, Ornstein-Uhlenbeck (1930): 1
β

small:{
ẋ(t)= v(t)

v̇(t)= −βv(t)dt+
√

2DβdBt.

x(t) is approximately N(x0, 2Dt)-distributed.
Kramers (1940), Nelson (1967).



PDEs, multi-scale

Does the solutions f ε converges? where

∂f ε

∂t
= (

1

ε
L0 + L1)f ε.

1. In O-U model, the slow and fast are separate:

Lε =
1

ε

(
1

2

∂2

∂v2
+ v

∂

∂v

)
+ v

∂

∂x
.

2. Not separate:

∂f ε(u)

∂t
=

(
1

ε
(X1)2 + (X2)2 + (X3)2

)
f ε(u).



Extensions to manifolds

I R.W. Dowell (1980) extended this to manifolds. Bismut
and Lebeaux [2005].

I Let {A1, . . . , AN} be an o.n.b of so(n).

duεt = Huεt
(e0)dt+

1√
ε

N∑
k=1

A∗k(u
ε
t) ◦ dwkt .

Then π(uεt
ε

, 0 ≤ t ≤ T ) converges to a Brownian motion

with generator λ0∆ where λ0 = 4
n(n−1)

. Parallel

translations also converge. [Ann.Prob. 2016]. As
minimiser of energy...

I Using a theorem of [PTRF2016], this can be extend to
hypo-elliptic situation.

I Angst-Bailleul-Tardiff (2016), Birrel-Hottovy-Volpe
(2017),

I Also, in progress with Xin Chen, Riemannian manifold
evolving with curvature flow.



End of the Talk


