Perturbation to Conservation Laws and Averaging on Manifolds

Xue-Mei Li

The University of Warwick

Durham Symposium
July, 2017

Objects

- Motivating examples, Singular perturbation,

$$
\frac{\partial}{\partial t}=\frac{1}{\epsilon} \mathcal{L}_{0}+\mathcal{L}_{1} \text { on a space } N .
$$

- Reduction to slow-fast systems on product spaces $N \times G$.
- slow-fast systems:

$$
\begin{gathered}
\frac{\partial f(x, y)}{\partial t}=\frac{1}{\epsilon} \mathcal{L}^{x} f(x, y)+\mathcal{L}_{1}^{y} f(x, y) \\
\left\{\begin{array}{c}
d x_{t}^{\epsilon}=\sum_{k=1}^{m_{1}} X_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d B_{t}^{k}+X_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t \\
d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_{2}} Y_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d W_{t}^{k}+\frac{1}{\epsilon} Y_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t \\
\mathcal{L}_{x}=\frac{1}{2} \sum_{i=1}^{m} Y_{i}^{2}(x, \cdot)+Y_{0}(x, \cdot) \text { differentiates } G \\
\text { directions, } \mathcal{L}_{1}^{y} \text { in } N \text { directions. }
\end{array}\right. \text { }
\end{gathered}
$$

Birkhoff's Ergodic Theorem

Suppose that $\left(y_{t}\right)$ is an ergodic stationary stochastic process with one-time marginal μ.
Theorem (Birkhoff's Ergodic Theorem)
Then for any $f \in L^{1}$,

$$
\left.\frac{1}{t} \int_{0}^{t} f\left(y_{r}\right) d r \xrightarrow{(t \rightarrow \infty)} \bar{f}=\int f d \mu, \quad \text { a.e. }\right)
$$

If $\left(y_{t}\right)$ is a Markov process with y_{0} a point, we need to assume that y_{t} convergence to equilibrium μ reasonably fast.

Denote by \mathcal{L} the generator, then μ is typically an invariant probability measure solving $\mathcal{L}^{*} p=0$.

Time averaging

$\dot{x}_{t}^{\epsilon}=b\left(x_{t}^{\epsilon}, y_{\frac{t}{\epsilon}}\right)$. Stratonovich, Khasminskii, Wentzell, Freidlin, Papanicolaou, Varadhan, Keller, Kurtz, Kipnis,

$$
\begin{aligned}
x_{t}^{\epsilon} & =x_{0}+\int_{0}^{t} b\left(x_{s}^{\epsilon}, y_{s / \epsilon}\right) d s \\
& =x_{0}+\epsilon \int_{0}^{t / \epsilon} b\left(x_{r \epsilon}^{\epsilon}, y_{r}\right) d r \\
& =x_{0}+\sum_{i} \Delta t_{i} \frac{\epsilon}{\Delta t_{i}} \int_{t_{i} / \epsilon}^{t_{i+1} / \epsilon} b\left(x_{r \epsilon}^{\epsilon}, y_{r}\right) d r \\
& \approx x_{0}+\sum_{i} \Delta t_{i} \frac{\epsilon}{\Delta t_{i}} \int_{t_{i} / \epsilon}^{t_{i+1} / \epsilon} b\left(x_{t_{i}}^{\epsilon}, y_{r}\right) d r \\
& \approx x_{0}+\sum_{i} \Delta t_{i} \int_{t_{i} / \epsilon}^{t_{i+1} / \epsilon} b\left(x_{t_{i}}^{\epsilon}, y\right) \mu(d y) \quad \approx x_{0}+\int_{0}^{t} \bar{b}\left(x_{s}^{\epsilon}\right) d s
\end{aligned}
$$

If $\bar{b}=0$, we investigate the limit on $\left[0, \frac{1}{\epsilon}\right]$ (diffusion creation).

SDEs with Hörmander's conditions

- Suppose that $f^{(k)} \neq 0$ on $Z=\left\{f\left(y_{1}, y_{2}\right)=0\right\}$.

$$
d y_{t}^{1}=d t, \quad d y_{t}^{2}=f\left(y_{t}^{1}, y_{t}^{2}\right) d B_{t}
$$

- Let $x \in \mathbf{R}$ be fixed,

$$
d y_{t}^{x}=\frac{1}{\sqrt{\epsilon}} \sin \left(x+y_{t}^{x}\right) d B_{t}+\frac{1}{\epsilon} \cos \left(x+y_{t}^{x}\right) d t
$$

- $S U(2)$, Pauli matrices

$$
\begin{gathered}
X_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad X_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) . \\
d y_{t}=X_{1}\left(y_{t}\right) \circ d B_{t}^{1}+X_{2}\left(y_{t}\right) \circ d B_{t}^{2} \\
d y_{t}^{g}=\alpha(g) X_{1}\left(y_{t}^{g}\right) \circ d B_{t}^{1}+\alpha(g) X_{2}\left(y_{t}^{g}\right) d t
\end{gathered}
$$

- G Lie group. If $\left\{A_{k}\right\}$ generating the Lie algebra \mathfrak{g}

$$
d g_{t}=\sum A_{k}\left(g_{t}\right) \circ d B_{t}^{k}
$$

Hörmander's conditions

If \mathcal{L} satisfies Hörmander's conditions, so does \mathcal{L}^{*}. Existence of an invariant prob. measure $\mu(d y)$ is easy (compact, Lyapunov function), or Krylov-Bogoliubov).
Suppose the state space is compact.

Then \mathcal{L}_{0} is Fredholm, with index zero. The set of g s.t. $\mathcal{L} f=g$ is solvable iff $\langle g, \pi\rangle=0, \pi \in$ $\operatorname{ker}\left(\mathcal{L}^{*}\right)$. Invariant measures have densities, smooth in y (not necessarily strictly positive).

- Hörmander (Acta 68, Thm. 1.1): \mathcal{L} is hypo-elliptic. There exists $\delta>0$. For all $u \in C_{K}^{\infty}(M)$:

$$
\|u\|_{s+\delta} \leq c_{0}\left(\|\mathcal{L} u\|_{s}+\|u\|_{s}\right)
$$

- Sub-elliptic estimates leads to Birkhoff 's type LLN, with rate $C\left(\delta, c_{0}\right) \frac{1}{\sqrt{ } t}$ on $[0, t]$. [PTRF2016]

Locally Uniform Law of Large Numbers

$Y_{i} \in B C^{\infty}$, VF on G, compact. $x \in N$. Suppose

$$
\mathcal{L}_{x}=\frac{1}{2} \sum_{i=1}^{m} Y_{i}^{2}(x, \cdot)+Y_{0}(x, \cdot)
$$

satisfies Hörmander's conditions and has a unique invariant probability measure μ_{x}. Denote by y^{x} an \mathcal{L}_{x} diffusion.
Theorem [arxiv 2017] We conclude that
(a) Also $x \mapsto \mu_{x}$ is locally Lipschitz continuous in the total variation norm. $\mathcal{L}_{x}^{*} q=0$ implies q is smooth in x, (regularity in y follows from hypo-ellipticity)

$$
\|q\|_{s+\delta} \leq c_{0}\left(\left\|\mathcal{L}_{x}^{*} q\right\|_{s}+\|q\|_{s}\right) .
$$

(b) For every $s>1+\frac{\operatorname{dim}(G)}{2}$ there exists $C(x)$, depending continuously in x, such that for f smooth,

$$
\left|\frac{1}{T} \int_{t}^{t+T} f\left(y_{r}^{x}\right) d r-\int_{G} f(y) \mu_{x}(d y)\right|_{L_{2}(\Omega)} \leq C(x)\|f\|_{s} \frac{1}{\sqrt{T}} .
$$

Small/Large perturbations

We may want to consider a small perturbation to a dynamical system with a conservation law. Or we want to approximate a model by one with many degrees of symmetries.

- Small perturbations ignore factor that are small.
- Large perturbations ignore large influences that are oscillatory.
- The oscillation is captured in Birkhoff's ergodic theorem with rate (LLN).
- Conservation laws or symmetries are used to separate slow and fast variables.
A reduction procedure leads to a slow-fast systems on the orbit manifold N, typically we have a principal bundle $\pi: P \rightarrow N$ with G a group describing the symmetry.

A slow-fast systems of SDEs

$$
\left\{\begin{array}{l}
d x_{t}^{\epsilon}=\sum_{k=1}^{m_{1}} X_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d B_{t}^{k}+X_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t \\
d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_{2}} Y_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d W_{t}^{k}+\frac{1}{\epsilon} Y_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t
\end{array}\right.
$$

On \mathbf{R}^{n} : Khasminskii, Freidlin, Veretennikov, Also related to homogenisation of parabolic and elliptic pdes: Otto,
Sougnidis, Lions, Pardoux, ...
Olla-Liverani.
In action angle coordinates, when $X_{1}=X_{2}=\cdots=0$, L. 08 .
Ruffino et al for foliated manifolds, convergence in probability. (Method is essentially Euclidean...) Random ODE on manifolds (PTRF2016)

A slow-fast systems of SDEs

$x \in N$, non-compact, $y \in G$, compact.

$$
\left\{\begin{array}{l}
d x_{t}^{\epsilon}=\sum_{k=1}^{m_{1}} X_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d B_{t}^{k}+X_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t \\
d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_{2}} Y_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d W_{t}^{k}+\frac{1}{\epsilon} Y_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t
\end{array}\right.
$$

Theorem (arxiv 2017) If $\mathcal{L}_{x}=\frac{1}{2} \sum Y_{i}^{2}(x, \cdot)+Y_{0}(x, \cdot)$ satisfies Hörmander's conditions+ growth restrictions. As $\epsilon \rightarrow 0, x_{t}^{\epsilon}$ converges weekly on $C([0,1], N)$. Limit is:

$$
\overline{\mathcal{L}} f(x)=\int_{G}\left(\frac{1}{2} \sum_{i=1}^{m_{1}} X_{i}^{2}(\cdot, y) f+X_{0}(\cdot, y) f\right)(x) \mu^{x}(d y)
$$

Kifer, Ikeda, Ogura, L., Liverani-Olla, Gonzales-Ruffino, Hoegele-Ruffino, (foliated manifolds).

Collapsing of manifolds

$S^{3}=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w}, & \bar{z}\end{array}\right)\right\}, \mathfrak{g}=\left\langle X_{1}, X_{2}, X_{3}\right\rangle$,
Making $\left\{\frac{1}{\sqrt{\epsilon}} X_{1}, X_{2}, X_{3}\right\}$ an orthonormal frame defines
Berger's metrics $g^{\epsilon},\left(S^{3}, g^{\epsilon}\right) \xrightarrow{\epsilon \rightarrow 0} S^{2}$, curvature bounded (J. Cheeger).

- Convergence of spectra. All operators below commute:

$$
\Delta_{S^{3}}^{\epsilon}=\frac{1}{\epsilon}\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}+\left(X_{3}\right)^{2}=\frac{1}{\epsilon} \Delta_{S^{1}}+\Delta^{H} .
$$

$\lambda_{3}\left(\Delta_{S^{3}}^{\epsilon}\right)=\frac{1}{\epsilon} \lambda_{1}\left(\Delta_{S^{1}}\right)+\lambda_{2}\left(\Delta^{H}\right)$. Non-zero eigenvalues of $\Delta_{S^{1}}$ flies away. Eigenfunctions of $\lambda_{1}=0$ are fucntions on S^{2}. L. Bérard-Bergery, J.-P. Bourguignon, Urakawa, Tanno (first eigenvalues), Fukaya, Kasue-Kumura.

Dynamical models

1. $d y_{t}^{\epsilon}=\frac{1}{\epsilon} X_{1}\left(y_{t}^{\epsilon}\right) \circ d B_{t}^{1}+X_{2}\left(y_{t}^{\epsilon}\right) \circ d B_{t}^{2}+X_{3}\left(y_{t}^{\epsilon}\right) \circ d B_{t}^{3}$.
2. $Y_{0}=a X_{2}+b X_{3}$, (arxiv2012)

$$
d y_{t}^{\epsilon}=\frac{1}{\epsilon} X_{1}\left(y_{t}^{\epsilon}\right) \circ d B_{t}+Y_{0}\left(y_{t}^{\epsilon}\right) d t
$$

Convergence of slow variables on $\left[0, \frac{1}{\epsilon}\right]+$ their horizontal lifts (e.g. Heisenberg group). See also Friz-Lyons-2014, Baillul-Gubinelli (rough paths)
3. This extends to inhomogenously scaled Riemannian metric on $\pi: \rightarrow G / H . \mathfrak{g}=\left(\frac{1}{\epsilon}\right) \mathfrak{h} \oplus\left(\mathfrak{m}_{0} \oplus \mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{l}\right)$. (To appear: J. Math. Soc. Japan)

$$
d y_{t}^{\epsilon}=\frac{1}{\epsilon} \sum_{k=1}^{p} A_{k}\left(y_{t}^{\epsilon}\right) \circ d B_{t}^{k}+Y_{0}\left(y_{t}^{\epsilon}\right) d t
$$

$\left\{A_{1}, \ldots, A_{p}\right\}$ generates the Lie algebra \mathfrak{h} of H.
Convergence on $\left[0, \frac{1}{\epsilon}\right]$ (diffusion creation).

A dynamical description for Brownian motions

Einstein's atom theory (1905) leads to the formulation for $\mathrm{BM}: \frac{\partial}{\partial t}=D \Delta, D=\frac{k T}{m \beta}$, $m \beta=6 \pi \eta a$. J. Perrin (1926 Nobel): $k=$ $10^{-23} \mathrm{Jk}^{-1}$. Smoluchowski: BM in a force field.

- Langevin, Ornstein-Uhlenbeck (1930): $\frac{1}{\beta}$ small:

$$
\left\{\begin{array}{l}
\dot{x}(t)=v(t) \\
\dot{v}(t)=-\beta v(t) d t+\sqrt{2 D} \beta d B_{t} .
\end{array}\right.
$$

$x(t)$ is approximately $N\left(x_{0}, 2 D t\right)$-distributed.
Kramers (1940), Nelson (1967).

PDEs, multi-scale

Does the solutions f^{ϵ} converges? where

$$
\frac{\partial f^{\epsilon}}{\partial t}=\left(\frac{1}{\epsilon} \mathcal{L}_{0}+\mathcal{L}_{1}\right) f^{\epsilon} .
$$

1. In O-U model, the slow and fast are separate:

$$
\mathcal{L}^{\epsilon}=\frac{1}{\epsilon}\left(\frac{1}{2} \frac{\partial^{2}}{\partial v^{2}}+v \frac{\partial}{\partial v}\right)+v \frac{\partial}{\partial x} .
$$

2. Not separate:

$$
\frac{\partial f^{\epsilon}(u)}{\partial t}=\left(\frac{1}{\epsilon}\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}+\left(X_{3}\right)^{2}\right) f^{\epsilon}(u)
$$

Extensions to manifolds

- R.W. Dowell (1980) extended this to manifolds. Bismut and Lebeaux [2005].
- Let $\left\{A_{1}, \ldots, A_{N}\right\}$ be an o.n.b of $\mathfrak{s o}(n)$.

$$
d u_{t}^{\epsilon}=H_{u_{t}^{\epsilon}}\left(e_{0}\right) d t+\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{N} A_{k}^{*}\left(u_{t}^{\epsilon}\right) \circ d w_{t}^{k}
$$

Then $\pi\left(u_{\frac{t}{\epsilon}}^{\epsilon}, 0 \leq t \leq T\right)$ converges to a Brownian motion with generator $\lambda_{0} \Delta$ where $\lambda_{0}=\frac{4}{n(n-1)}$. Parallel translations also converge. [Ann.Prob. 2016]. As minimiser of energy...

- Using a theorem of [PTRF2016], this can be extend to hypo-elliptic situation.
- Angst-Bailleul-Tardiff (2016), Birrel-Hottovy-Volpe (2017),
- Also, in progress with Xin Chen, Riemannian manifold evolving with curvature flow.

End of the Talk

