Perturbation to Conservation Laws and Averaging on Manifolds

Xue-Mei Li

The University of Warwick

Durham Symposium July, 2017

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 ∽��?

Objects

- Motivating examples, Singular perturbation, $\frac{\partial}{\partial t} = \frac{1}{\epsilon} \mathcal{L}_0 + \mathcal{L}_1$ on a space N.
- Reduction to slow-fast systems on product spaces $N \times G$.
- slow-fast systems:

$$\frac{\partial f(x,y)}{\partial t} = \frac{1}{\epsilon} \mathcal{L}^x f(x,y) + \mathcal{L}_1^y f(x,y).$$

$$\begin{cases} dx_t^{\epsilon} = \sum_{k=1}^{m_1} X_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dB_t^k + X_0(x_t^{\epsilon}, y_t^{\epsilon}) dt, \\ dy_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_2} Y_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dW_t^k + \frac{1}{\epsilon} Y_0(x_t^{\epsilon}, y_t^{\epsilon}) dt. \end{cases}$$

$$= \frac{1}{2} \sum_{k=1}^{m_2} Y_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dW_t^k + \frac{1}{\epsilon} Y_0(x_t^{\epsilon}, y_t^{\epsilon}) dt.$$

 $\mathcal{L}_x = \frac{1}{2} \sum_{i=1}^m Y_i^2(x, \cdot) + Y_0(x, \cdot)$ differentiates G directions, \mathcal{L}_1^y in N directions.

Birkhoff's Ergodic Theorem

Suppose that (y_t) is an ergodic stationary stochastic process with one-time marginal μ .

Theorem (Birkhoff's Ergodic Theorem) Then for any $f \in L^1$,

$$\frac{1}{t} \int_0^t f(y_r) dr \xrightarrow{(t \to \infty)} \bar{f} = \int f d\mu, \qquad (a.e.)$$

If (y_t) is a Markov process with y_0 a point, we need to assume that y_t convergence to equilibrium μ reasonably fast.

Denote by \mathcal{L} the generator, then μ is typically an invariant probability measure solving $\mathcal{L}^* p = 0$.

Time averaging

 $\dot{x}^{\epsilon}_t = b(x^{\epsilon}_t, y_{\frac{t}{\epsilon}}).$ Stratonovich, Khasminskii, Wentzell, Freidlin, Papanicolaou, Varadhan, Keller, Kurtz, Kipnis,

$$\begin{split} x_t^{\epsilon} &= x_0 + \int_0^t b(x_s^{\epsilon}, y_{s/\epsilon}) ds \\ &= x_0 + \epsilon \int_0^{t/\epsilon} b(x_{r\epsilon}^{\epsilon}, y_r) dr \\ &= x_0 + \sum_i \Delta t_i \frac{\epsilon}{\Delta t_i} \int_{t_i/\epsilon}^{t_{i+1}/\epsilon} b(x_{r\epsilon}^{\epsilon}, y_r) dr \\ &\approx x_0 + \sum_i \Delta t_i \frac{\epsilon}{\Delta t_i} \int_{t_i/\epsilon}^{t_{i+1}/\epsilon} b(x_{t_i}^{\epsilon}, y_r) dr \\ &\approx x_0 + \sum_i \Delta t_i \int_{t_i/\epsilon}^{t_{i+1}/\epsilon} b(x_{t_i}^{\epsilon}, y) \mu(dy) \quad \approx x_0 + \int_0^t \bar{b}(x_s^{\epsilon}) ds. \end{split}$$

If $\bar{b} = 0$, we investigate the limit on $[0, \frac{1}{\epsilon}]$ (diffusion creation).

SDEs with Hörmander's conditions

• Suppose that
$$f^{(k)} \neq 0$$
 on $Z = \{f(y_1, y_2) = 0\}$.
 $dy_t^1 = dt, \quad dy_t^2 = f(y_t^1, y_t^2) dB_t,$

• Let $x \in \mathbf{R}$ be fixed,

$$dy_t^x = \frac{1}{\sqrt{\epsilon}}\sin(x+y_t^x)dB_t + \frac{1}{\epsilon}\cos(x+y_t^x)dt.$$

► *SU*(2), Pauli matrices

$$X_{1} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad X_{3} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$
$$dy_{t} = X_{1}(y_{t}) \circ dB_{t}^{1} + X_{2}(y_{t}) \circ dB_{t}^{2},$$
$$dy_{t}^{g} = \alpha(g)X_{1}(y_{t}^{g}) \circ dB_{t}^{1} + \alpha(g)X_{2}(y_{t}^{g}) dt.$$

• G Lie group. If $\{A_k\}$ generating the Lie algebra \mathfrak{g}

$$dg_t = \sum A_k(g_t) \circ dB_t^k.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Hörmander's conditions

If \mathcal{L} satisfies Hörmander's conditions, so does \mathcal{L}^* . Existence of an invariant prob. measure $\mu(dy)$ is easy (compact, Lyapunov function), or Krylov-Bogoliubov). Suppose the state space is compact.

Then \mathcal{L}_0 is Fredholm, with index zero. The set of g s.t. $\mathcal{L}f = g$ is solvable iff $\langle g, \pi \rangle = 0$, $\pi \in$ ker (\mathcal{L}^*) . Invariant measures have densities, smooth in y (not necessarily strictly positive).

► Hörmander (Acta 68, Thm. 1.1): \mathcal{L} is hypo-elliptic. There exists $\delta > 0$. For all $u \in C_K^{\infty}(M)$:

 $||u||_{s+\delta} \le c_0(||\mathcal{L}u||_s + ||u||_s).$

▶ Sub-elliptic estimates leads to Birkhoff 's type LLN, with rate $C(\delta, c_0) \frac{1}{\sqrt{t}}$ on [0, t]. [PTRF2016]

Locally Uniform Law of Large Numbers

 $Y_i \in BC^{\infty}$, VF on G, compact. $x \in N$. Suppose

$$\mathcal{L}_{x} = \frac{1}{2} \sum_{i=1}^{m} Y_{i}^{2}(x, \cdot) + Y_{0}(x, \cdot)$$

satisfies Hörmander's conditions and has a unique invariant probability measure μ_x . Denote by y^x an \mathcal{L}_x diffusion. **Theorem** [arxiv 2017] We conclude that

(a) Also $x \mapsto \mu_x$ is locally Lipschitz continuous in the total variation norm. $\mathcal{L}_x^*q = 0$ implies q is smooth in x, (regularity in y follows from hypo-ellipticity)

$$||q||_{s+\delta} \le c_0(||\mathcal{L}_x^*q||_s + ||q||_s).$$

(b) For every $s > 1 + \frac{\dim(G)}{2}$ there exists C(x), depending continuously in x, such that for f smooth,

$$\left\| \frac{1}{T} \int_{t}^{t+T} f(y_{r}^{x}) \, dr - \int_{G} f(y) \mu_{x}(dy) \right\|_{L_{2}(\Omega)} \leq C(x) \|f\|_{s} \frac{1}{\sqrt{T}}.$$

Small/Large perturbations

We may want to consider a small perturbation to a dynamical system with a conservation law. Or we want to approximate a model by one with many degrees of symmetries.

- Small perturbations ignore factor that are small.
- Large perturbations ignore large influences that are oscillatory.
 - The oscillation is captured in Birkhoff's ergodic theorem with rate (LLN).
- Conservation laws or symmetries are used to separate slow and fast variables.

A reduction procedure leads to a slow-fast systems on the orbit manifold N, typically we have a principal bundle $\pi: P \to N$ with G a group describing the symmetry.

A slow-fast systems of SDEs

$$\begin{cases} dx_t^{\epsilon} = \sum_{k=1}^{m_1} X_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dB_t^k + X_0(x_t^{\epsilon}, y_t^{\epsilon}) dt, \\ dy_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_2} Y_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dW_t^k + \frac{1}{\epsilon} Y_0(x_t^{\epsilon}, y_t^{\epsilon}) dt. \end{cases}$$

On **R**ⁿ: Khasminskii, Freidlin, Veretennikov, Also related to homogenisation of parabolic and elliptic pdes: Otto, Sougnidis, Lions, Pardoux, ... Olla-Liverani.

In action angle coordinates, when $X_1 = X_2 = \cdots = 0$, L.08. Ruffino et al for foliated manifolds, convergence in probability. (Method is essentially Euclidean...) Random ODE on manifolds (PTRF2016)

A slow-fast systems of SDEs

 $x \in N$, non-compact, $y \in G$, compact.

$$\begin{cases} dx_t^{\epsilon} = \sum_{k=1}^{m_1} X_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dB_t^k + X_0(x_t^{\epsilon}, y_t^{\epsilon}) dt, \\ dy_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_2} Y_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dW_t^k + \frac{1}{\epsilon} Y_0(x_t^{\epsilon}, y_t^{\epsilon}) dt. \end{cases}$$

Theorem (arxiv 2017) If $\mathcal{L}_x = \frac{1}{2} \sum Y_i^2(x, \cdot) + Y_0(x, \cdot)$ satisfies Hörmander's conditions+ growth restrictions. As $\epsilon \to 0$, x_t^{ϵ} converges weekly on C([0, 1], N). Limit is:

$$\bar{\mathcal{L}}f(x) = \int_G \left(\frac{1}{2}\sum_{i=1}^{m_1} X_i^2(\cdot, y)f + X_0(\cdot, y)f\right)(x)\mu^x(dy).$$

Kifer, Ikeda, Ogura, L., Liverani-Olla, Gonzales-Ruffino, Hoegele-Ruffino, (foliated manifolds).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ の々で

Collapsing of manifolds

$$S^{3} = \left\{ \begin{pmatrix} z & w \\ -\bar{w}, & \bar{z} \end{pmatrix} \right\}, \ \mathfrak{g} = \langle X_{1}, X_{2}, X_{3} \rangle,$$

Making $\{\frac{1}{\sqrt{\epsilon}}X_1, X_2, X_3\}$ an orthonormal frame defines Berger's metrics g^{ϵ} , $(S^3, g^{\epsilon}) \xrightarrow{\epsilon \to 0} S^2$, curvature bounded (J. Cheeger).

Convergence of spectra. All operators below commute:

$$\Delta_{S^3}^{\epsilon} = \frac{1}{\epsilon} (X_1)^2 + (X_2)^2 + (X_3)^2 = \frac{1}{\epsilon} \Delta_{S^1} + \Delta^H.$$

 $\lambda_3(\Delta_{S^3}^{\epsilon}) = \frac{1}{\epsilon}\lambda_1(\Delta_{S^1}) + \lambda_2(\Delta^H)$. Non-zero eigenvalues of Δ_{S^1} flies away. Eigenfunctions of $\lambda_1 = 0$ are fucntions on S^2 . L. Bérard-Bergery, J.-P. Bourguignon, Urakawa, Tanno (first eigenvalues), Fukaya, Kasue-Kumura.

Dynamical models

1.
$$dy_t^{\epsilon} = \frac{1}{\epsilon} X_1(y_t^{\epsilon}) \circ dB_t^1 + X_2(y_t^{\epsilon}) \circ dB_t^2 + X_3(y_t^{\epsilon}) \circ dB_t^3.$$

2.
$$Y_0 = aX_2 + bX_3, \text{ (arxiv2012)}$$

$$dy_t^{\epsilon} = \frac{1}{\epsilon} X_1(y_t^{\epsilon}) \circ dB_t + Y_0(y_t^{\epsilon}) dt.$$

Convergence of slow variables on $[0, \frac{1}{\epsilon}]$ +their horizontal lifts (e.g. Heisenberg group). See also Friz-Lyons-2014, Baillul-Gubinelli (rough paths)

This extends to inhomogenously scaled Riemannian metric on π :→ G/H. g = (¹/_ε)h ⊕ (m₀ ⊕ m₁ ⊕ · · · ⊕ m_l). (To appear: J. Math. Soc. Japan)

$$dy_t^{\epsilon} = \frac{1}{\epsilon} \sum_{k=1}^p A_k(y_t^{\epsilon}) \circ dB_t^k + Y_0(y_t^{\epsilon}) dt.$$

 $\{A_1, \ldots, A_p\}$ generates the Lie algebra \mathfrak{h} of H. Convergence on $[0, \frac{1}{\epsilon}]$ (diffusion creation).

A dynamical description for Brownian motions

Einstein's atom theory (1905) leads to the formulation for BM: $\frac{\partial}{\partial t} = D\Delta$, $D = \frac{kT}{m\beta}$, $m\beta = 6\pi\eta a$. J. Perrin (1926 Nobel): $k = 10^{-23}Jk^{-1}$. Smoluchowski: BM in a force field.

< □ > < (四 > < (回 >) < (u = 1) <

• Langevin, Ornstein-Uhlenbeck (1930): $\frac{1}{\beta}$ small:

$$\begin{cases} \dot{x}(t) = v(t) \\ \dot{v}(t) = -\beta v(t)dt + \sqrt{2D}\beta dB_t. \end{cases}$$

x(t) is approximately $N(x_0, 2Dt)$ -distributed. Kramers (1940), Nelson (1967).

PDEs, multi-scale

Does the solutions f^{ϵ} converges? where

$$\frac{\partial f^{\epsilon}}{\partial t} = (\frac{1}{\epsilon}\mathcal{L}_0 + \mathcal{L}_1)f^{\epsilon}.$$

1. In O-U model, the slow and fast are separate:

$$\mathcal{L}^{\epsilon} = \frac{1}{\epsilon} \left(\frac{1}{2} \frac{\partial^2}{\partial v^2} + v \frac{\partial}{\partial v} \right) + v \frac{\partial}{\partial x}.$$

2. Not separate:

$$\frac{\partial f^{\epsilon}(u)}{\partial t} = \left(\frac{1}{\epsilon}(X_1)^2 + (X_2)^2 + (X_3)^2\right) f^{\epsilon}(u).$$

・ロト ・日下 ・日下 ・日下 ・ うくの

Extensions to manifolds

- R.W. Dowell (1980) extended this to manifolds. Bismut and Lebeaux [2005].
- Let $\{A_1, \ldots, A_N\}$ be an o.n.b of $\mathfrak{so}(n)$.

$$du_t^{\epsilon} = H_{u_t^{\epsilon}}(e_0)dt + \frac{1}{\sqrt{\epsilon}}\sum_{k=1}^N A_k^*(u_t^{\epsilon}) \circ dw_t^k.$$

Then $\pi(u_{\frac{t}{\epsilon}}^{\epsilon}, 0 \leq t \leq T)$ converges to a Brownian motion with generator $\lambda_0 \Delta$ where $\lambda_0 = \frac{4}{n(n-1)}$. Parallel translations also converge. [Ann.Prob. 2016]. As minimiser of energy...

- Using a theorem of [PTRF2016], this can be extend to hypo-elliptic situation.
- Angst-Bailleul-Tardiff (2016), Birrel-Hottovy-Volpe (2017),
- ► Also, in progress with Xin Chen, Riemannian manifold evolving with curvature flow

End of the Talk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで