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Highlights I

Consider N agents, whose positions are governed by the
system of SDEs

dX i
t = b(t,X i

t , µ
N
t , u

i
t) dt + σind(X

i
t )dB

i
t + σcom(X

i
t )dWt , (1)

and who are trying to minimize certain integral and terminal
costs, where

µN
t =

1

N

N∑
i=1

δX i
t
.

For simplicity all objects are one-dimensional: x ∈ R and
independent standard BM B1, · · · ,BN ,W .



Highlights II

• We formulate the MFG limit as a single quasi-linear
deterministic infinite-dimensional partial differential second
order backward equation.

• We prove that any its (regular enough) solution represents
an 1/N-Nash equilibrium for the initial N-player game.

• We use the method of stochastic characteristics to provide
the link with the basic models of MFG with a major player.

• We develop two auxiliary theories of independent interest:
sensitivity and regularity analysis for McKean-Vlasov SPDEs
and the 1/N-convergence rate for the propagation of chaos
property of interacting diffusions.



Plan

• Formulation of the MFG consistency with common noise via
a single infinite-dimensional PDE.
• Formulation of our main result, setting the link with
McKean-Vlasov SPDEs and the propagation of chaos of
interacting diffusions; formulation of the results on their rates
of convergence as basic ingredient in the proof of the main
Theorem 1.
• Independent of the above: Regularity and sensitivity of the
McKean-Vlasov SPDEs, proving that the domain of the
corresponding measure-valued Markov process contains an
invariant sub-domain of smooth functionals.
• Consequence of the previous step: Rate of convergence 1/N
for the propagation of chaos of interacting diffusions.



Setting, I

Dynamics of N players:

dX i
t = b(t,X i

t , µ
N
t , u

i
t) dt + σind(X

i
t )dB

i
t + σcom(X

i
t )dWt ,

µN
t =

1

N

N∑
i=1

δX i
t
.

Payoffs

V i
[t,T ](x) = E

[∫ T

t

J(s,X i
s , µ

N
s , u

i
s) ds + VT (X

i
T , µ

N
T )

]
,

For simplicity, b is smooth in x , µ and linear in u:

b(t, x , µ, u) = b1(t, x , µ) + b2(t, x , µ)u.



Setting, II
It is known that, for fixed common functions ui

t(X
i
t ) = ut(X

i
t )

(and appropriate regularity assumptions) the system of N
SDEs above is well-posed and µN

t converge, as N → ∞, to the
unique solution µt of the McKean-Vlasov SPDE:

d(ϕ, µt) = (L[t, µt , ut ]ϕ, µt) dt + (σcom(.)∇ϕ, µt) dWt , (2)

L[t, µt , ut ]ϕ(x) =
1

2
(σ2

ind + σ2
com)(x)

∂2ϕ

∂x2
+ b(t, x , µt , ut(x))

∂ϕ

∂x

(written in the weak form).
Identify measures with their densities (with respect to
Lebesgue), the strong form of the above is

dµt = L′[t, µt , ut ]µt dt −∇(σcom(.)µt) dWt ,

L′[t, µ, ut ]ν =
1

2

∂2

∂x2
[
(σ2

ind + σ2
com)µ)

]
− ∂

∂x
[b(t, x , µ, ut)µ].



Setting, III

Let us mention directly that in our approach it is more
convenient to work with the equivalent Stratonovich
differentials representation:

d(ϕ, µt) = (LSt [t, µt , ut ]ϕ, µt) dt + (σcom(.)∇ϕ, µt) ◦ dWt ,

LSt [t, µt , ut ]ϕ(x) =
1

2
σ2
ind(x)

∂2ϕ

∂x2

+[b(t, x , µt , ut(x))−
1

2
σcomσ

′
com(x)]

∂ϕ

∂x
.



Setting, IV

For fixed N , if all players, apart from the first one, are using
the same control ucom(t, x , µ), the optimal payoff for the first
player is found from the HJB equation for the above diffusion
(where we denote X 1 by x):

∂V

∂t
+inf

u

[
b(t, x , µ, u)

∂V

∂x
+ J(t, x , µ, u)

]
+
1

2
(σ2

ind+σ2
com)(x)

∂2V

∂x2

+
∑
j ̸=1

b(t, xj , µ, ucom(t, xj , µ))
∂V

∂xj
+

1

2
(σ2

ind + σ2
com)(xj)

∂2V

∂x2j

+
∑
j ̸=1

σcom(x)σcom(xj)
∂2V

∂x1∂xj
+
∑
1<i<j

σcom(xi)σcom(xj)
∂2V

∂xi∂xj
= 0.



Functionals on particles positions and on measures
Identification of symmetric functions f on XN with the
functionals F = Ff on PN(R) via the equation

f (x1, · · · , xN) = Ff [(δx1 + · · ·+ δxN )/N].

allows one to recalculate the equations on f in terms of
F = Ff on measures by using the the following formulas for
the differentiation of functionals on measures: for
µ = h(δx1 + · · ·+ δxN ) with h = 1/N

∂

∂xj
F (µ) = h

∂

∂xj

δF (µ)

δµ(xj)
,

∂2

∂x2j
F (µ) = h

∂2

∂x2j

δF (µ)

δµ(xj)
+ h2

∂2

∂y∂z

δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=xj

,

∂2

∂xi∂xj
F (µ) = h2

∂2

∂xi∂xj

δ2F (µ)

δµ(xi)δµ(xj)
, i ̸= j .



Setting, V
Hence, in the limit (δx1 + · · ·+ δxN )/N → µt , the above HJB
turns to the limiting HJB equation

∂V

∂t
+inf

u

[
b(t, x , µ, u)

∂V

∂x
+ J(t, x , µ, u)

]
+
1

2
(σ2

ind+σ2
com)(x)

∂2V

∂x2

+

∫
R

(
[b(t, ., µ, ucom(t, ., µ))∇+

1

2
(σ2

com(.) + σ2
ind(.))∇2]

δV

δµ(.)

)
(y)µ(dy)

+
1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2V

δµ(y)δµ(z)
µ(dy)µ(dz).

+

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (x , µ)

δµ(y)
µ(dy) = 0.

If J is convex, the infimum here is achieved on the single point

ûind(t, x , µ) =

(
∂J

∂u

)−1(
b2(t, x , µt)

∂V

∂x

)
.



MFG consistency, I
The difference with the games without common noise: for
games without noise, one expects to get a deterministic curve
µt in the limit of large N , so that in the limit, each player
should solve a usual optimization problem for a diffusion in R.
Here the limit is stochastic, and thus even in the limit the
optimization problem faced by each player is an optimization
with respect to an infinite-dimensional, in fact measure-valued,
process.
As a result: instead of a pair of coupled forward-backward
equations we have now one single infinite-dimensional HJB
equation. Namely, for any curve ucom(t, x , µ) (defining Λlim),
we should solve the above HJB with a given terminal condition
leading to the optimal control ûind . The key MFG consistency
requirement is now

ûind(t, x , µ) = ucom(t, x , µ).



MFG consistency, II
Equivalently, the MFG consistency can be encoded into a
single quasi-linear deterministic infinite-dimensional partial
differential second order backward equation on the function
V (t, x , µ):

∂V

∂t
(t, xµ)+

[
b(t, x , µ, u)

∂V

∂x
+ J(t, x , µ, u)

]
+
1

2
(σ2

ind+σ2
com)(x)

∂2V

∂x2

+
1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2V (t, x , µ)

δµ(y)δµ(z)
µ(dy)µ(dz)

+

∫ ([
b(t, ., µ, u)∇+

1

2
(σ2

ind + σ2
com)(.)∇2

]
δV (t, x , µ)

δµ(.)

)
(y)µ(dy)

+

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (x , µ)

δµ(y)
µ(dy) = 0,

where everywhere

u(t, x , µ) = (∂J/∂u)−1(b2(t, x , µ)
∂V

∂x
(t, x , µ))

with a given terminal condition.



MFG consistency, III

If

J(t, x , µ, u) =
1

2
u2, b2(t, x , µ) = 1,

this equation simplifies to

∂V

∂t
+

[
b

(
t, x , µ,

∂V

∂x

)
∂V

∂x
+

1

2

(
∂V

∂x

)2
]
+
1

2
(σ2

ind+σ2
com)(x)

∂2V

∂x2

+
1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2V (t, x , µ)

δµ(y)δµ(z)
µ(dy)µ(dz)

+

∫ ([
b(t, ., µ,∇V )∇+

1

2
(σ2

ind + σ2
com)(.)∇2

]
δV (t, x , µ)

δµ(.)

)
(y)µ(dy)

+

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (x , µ)

δµ(y)
µ(dy) = 0.



More general: Argmax in convex Hamiltonians

H(p) = max
x∈X

(xp − U(x)), p ∈ Rd ,

x̂(p) = argmax (xp − U(x)) =?

Theorem Let X be a convex compact with a smooth
boundary and U(x) a strictly convex twice continuously
differentiable function, so that(

∂2U

∂x2
(x)ξ, ξ

)
≥ a(ξ, ξ)

for a constant a and all x and ξ, and such that x = 0 is the
point of the global minimum of U. Then x̂(p) : Rd → X is a
well defined (globally) Lipshitz continuous function.



Link with the usual MFG, I

To link with the usual MFG, let us notice that for the case
without common noise, our basic equation above turns to

∂V

∂t
(t, x , µ)+

[
b

(
t, x , µ,

∂V

∂x

)
∂V

∂x
+

1

2

(
∂V

∂x

)2
]
+
1

2
σ2
ind(x)

∂2V

∂x2

+

∫ ([
b(t, ., µ,∇V )∇+

1

2
σ2
ind(.)∇2

]
δV (t, x , µ)

δµ(.)

)
(y)µ(dy) = 0,

giving a single-equation approach to usual MFG.



Link with the usual MFG, II

Simple (abstract) explanation of the link between usual MFG
and common noise: if (xt , µt) is a controlled Markov process
(not necessarily measure-valued), optimal payoff is defined via
the corresponding HJB on a function V (x , µ) (corresponds to
our general common noise case).
If the evolution of the coordinate µt is deterministic and does
not depend on x and its control, one can (alternatively and
equivalently) first solve this deterministic equation on µ (usual
forward part of the basic MFG) and then substitute it in the
basic HJB to get the equation on V (t, x) only, with µt

included in the time dependence (usual backward part of the
basic MFG).
This decomposition into forward-backward system is not
available in general.



Three basic questions of MFG in our setting

The MFG methodology suggests that for large N the optimal
behavior of players arises from the control û satisfying the
basic consistency condition.
To justify this claim one is confronted essentially with the 3
problems:
MFG1): Prove well-posedness of (or at least the existence of
the solution to) the main infinite-dimensional HJB;
MFG2): Analyze the Nash equilibria of the initial N-player
game and prove that these equilibria (or at least their
subsequence) converge, as N → ∞, to a solution of the MFG
consistency equation; assess the convergence rates;
MFG3): Show that a solution to the consistency problem
provides a profile of symmetric strategies ût(x), which is an
ϵ-Nash of the N-player game; estimate the error ϵ(N).



Our main objective

Question MFG3) with the error estimate of order ϵ(N) ∼ 1/N .
Our approach is based on interpreting (by means of Ito’s
formula) the common noise as a kind of binary interaction of
agents (in addition to the usual mean-field interaction of the
standard situation without common noise) and then reducing
the problem to the sensitivity analysis for McKean-Vlasov
SPDE.



Regularity spaces, I

Standard:
Let C k = C k(R) denote the Banach space of functions with
all derivatives up to order k bounded continuous, L1, L∞ the
space of integrable and bounded measurable functions on R,
H1

1 (X ) the Sobolev space of integrable functions such that its
generalized derivative is also integrable.

Special (exotic):
Let C k×k(R2) denote the space of functions f on R2 such that
the partial derivatives

∂α+βf

∂xα∂yβ
α, β : α ≤ k , β ≤ k ,

belong to C (R2).



Regularity spaces, II

Recall: F (µ) on Msign(Rd), the variational derivative is
defined as

δF

δµ(x)
[µ] =

d

dh
|h=0F (µ+ hδx).

Here Msign(Rd) is the Banach space of signed measures on
Rd , Msign

λ (Rd) its subset of total variation bounded by λ.

We abbreviate Msign = Msign(R), Msign
λ = Msign

λ (R).

Let C k(Msign
λ ) denote the space of functionals such that the

kth order variational derivatives are well defined and represent
continuous functions. It is a Banach space with the norm

∥F∥C k (Msign
λ ) =

k∑
j=0

sup
x1,··· ,xj ,µ∈Msign

λ

∣∣∣∣ δjF

δµ(x1) · · · δµ(xj)

∣∣∣∣ .



Regularity spaces, III
Let C k,l(Msign

λ ) denote the subspace of C k(Msign
λ ) such that

all derivatives up to order k have continuous bounded
derivatives up to order l as functions of their spatial variables.
It is a Banach space with the norm

∥F∥C k,l (Msign
λ ) =

k∑
j=0

sup
µ∈Msign

λ

∥∥∥∥ δjF

δµ(.) · · · δµ(.)
[µ]

∥∥∥∥
C l (Rj )

.

Finally, let C 2,k×k(Msign
λ ) be the space of functionals with the

norm

∥F∥C2,k×k (Msign
λ ) = sup

µ∈Msign
λ

∥∥∥∥ δ2F

δµ(.)δµ(.)

∥∥∥∥
C k×k (R2)

.

As we are interested mostly in probability measures, we shall
usually tacitly assume λ = 1 for these spaces.



Regularity spaces, IV
As the derivatives of measures are not always measures (say,
the derivative of δx is δ′x), to study the derivatives of the
nonlinear evolutions one needs the spaces dual to the spaces of
smooth functions. Namely, for a generalized function
(distribution) ξ on Rd we say that it belongs to the space
[C k(Rd)]′ if the norm

∥ξ∥[C k (Rd )]′ = sup
ϕ:∥ϕ∥

Ck (Rd )
≤1

|(ξ, ϕ)|

is finite. Exam. 1:

∥δ(k)x ∥[C k (R)]′ = 1.

Exam. 2: For functions, [C (Rd)]′-norm coincides with the L1
norm.
Exam. 3: The spatial derivative of the heat kernel has
L1-norm of order t−1/2 for small t, but its [C ′(Rd)]′-norm is
uniformly bounded.



Main Theorem
Theorem 1. Let V (t, x , µ) be a solution to the main MFG
problem.
Assumption A): Assume σind , σcom ∈ C 3(R) and are positive
functions never approaching zero. Assume

b(t, x , ., ût(x , .)) ∈ (C 2,1×1 ∩ C 1,2)(Msign
1 ),

b(t, ., µ, ût(., µ)) ∈ C 2,
∂b

∂x
(t, x , ., û(t, x , .)) ∈ C 1,0(Msign

1 )

with bounds uniform with respect to all variables.
Assumption B): Assume J(t, x , µ, u(t, x , µ)) and V (t, x , µ)
belong to (C 2,1×1 ∩ C 1,2)(Msign

1 (R)) as functions of µ, belong
to C 2 as functions of x and ∂J

∂x
(x , .) ∈ C 1,1(Msign

1 (R)),
∂V
∂x
(x , .) ∈ C 1,1(Msign

1 (R)).
Then the profile of symmetric strategies ût(x , µ) given by V is
an ϵ-Nash equilibrium of the N-player game.



Statistical mechanics ingredient, I
Let us explain our strategy for proving the main Theorem.
For any N and a fixed common strategy ut(x , µ), solutions
(X1, · · · ,XN)s,t(x1, · · · , xN) to the initial system of SDEs on
t ∈ [0,T ] with the initial condition

(X1, · · · ,XN)s,s(x1, · · · , xN) = (x1, · · · , xN)

at time s define a backward propagator (also referred in the
literature as a flow or as a two-parameter semigroup)
U s,t
N = U s,t

N [u(.)], 0 ≤ s ≤ t ≤ T , of linear contractions on the
space Csym(RN) of symmetric functions via the formula

(U s,t
N f )(x1, · · · , xN) = Ef (X1, · · · ,XN)s,t(x1, · · · , xN).

The corresponding dual forward propagator V t,s
N = (U s,t

N )′ acts
on probability measures on RN and is defined by the equation

(f ,V t,s
N µ) = (U s,t

N f , µ).



Statistical mechanics ingredient, II
By the standard inclusion

(x1, · · · , xN) →
1

N
(δx1 + · · ·+ δXN

)

the set RN is mapped to the set PN(R) of normalized sums of
N Dirac’s measures, so that U s,t

N , V t,s
N can be considered as

propagators in C (PN(R)) and P(PN(R)) respectively.
On the other hand, for a fixed function ut(x , µ), the solution
of the limiting McKean-Vlasov SPDE

d(ϕ, µt) = (L[t, µt , ut ]ϕ, µt) dt + (σcom(.)∇ϕ, µt) dWt ,

specifies a stochastic process, a diffusion, on the space of
probability measures P(R) defining the backward propagator
U s,t = U s,t [u(.)] on C (P(R)):

(U s,tf )(µ) = Ef (µs,t(µ)),

where µs,t(µ) is the solution to the SPDE above at time t
with a given initial condition µ at time s ≤ t.
From the convergence of the empirical measures µN

t ,
mentioned above, it follows that U s,t

N tend U s,t , as N → ∞.
The following result provides the rates for the weak
convergence.



Statistical mechanics ingredient, III
Theorem 2 (Main theorem on the interacting diffusions).
Assume σind , σcom ∈ C 3(R) and are positive functions never
approaching zero. Assume b is in C 2 as a function of the
space variable and

b(t, x , ., u(t, x , .)) ∈ (C 2,1×1 ∩ C 1,2)(Msign
1 (R)),

∂b

∂x
(t, x , ., u(t, x , .)) ∈ C 1,0(Msign

1 (R)).

with bounds uniform with respect to all variables, for
0 ≤ s ≤ t ≤ T . Then, for any µ ∈ PN(R) and
F ∈ (C 2,1×1 ∩ C 1,2)(Msign

1 (R))

∥(U s,t − U s,t
N )F (µ)∥C(Msign

1 (R))

≤ C (T )

N

(
∥F∥C2,1×1(Msign

1 (R)) + ∥F∥C1,2(Msign
1 (R))

)
.

This result belongs to the statistical mechanics of interacting
diffusions.



Statistical mechanics with a tagged particle, I

This result is not sufficient for us, as we have to allow one of
the agent to behave differently from the others. To tackle this
case we shall considered the corresponding problem with a
tagged agent.
Consider the Markov process on pairs
(X 1,N

t , µN
t )[u

ind(.), ucom(.)], where uind , ucom are some
U-valued functions uind

t (x , µ), ucom
t (x , µ), (X 1,N

t , · · · ,XN,N
t )

solves our initial system (1) under the assumptions that the
first agent uses the control uind

t (X 1,N
t , µN

t ) and all other agents
i ̸= 1 use the control ucom

t (X i ,N
t , µN

t ), and µN
t = 1

N

∑N
i=1 δX i,N

t
.

(Instead of our µt one can use µ̃N
t = 1

N

∑N
i=2 δX i,N

t
, which does

not include X 1
t .)



Statistical mechanics with a tagged particle, II
The corresponding tagged propagators
U s,t
N,tag = U s,t

N,tag [u
ind(.), ucom(.)] and

U s,t
tag = U s,t

tag [u
ind(.), ucom(.)]:

(U s,t
N,tagF )(x , µ) = EF (X 1,N

t , µN
t )[u

ind(.), ucom(.)](x , µ),

where µ = 1
N

∑N
j=1 δxj is the position of the process at time s

and where x = x1;

(U s,t
tagF )(x , µ) = EF (X 1

t , µt)[u
ind(.), ucom(.)](x , µ),

where the process (X 1
t , µt)[u

ind(.), ucom(.)](x , µ) with the
initial data x , µ at time s is the solution to the system of
stochastic equations

dX 1
t = b(t,X 1

t , µt , u
ind
t (X 1

t , µt))+σind(X
1
t )dB

1
t +σcom(X

1
t )dWt ,

d(ϕ, µt) = (L[t, µt , u
com
t (., µt)]ϕ, µt) dt+(σcom(.)∇ϕ, µt) dWt .



Statistical mechanics with a tagged particle, III
Theorem 3 (Interacting diffusions with a tagged particle).
Under the assumptions of Theorem 2 (with both ucom

t , uind
t

satisfying these assumptions), let F (x , µ), x ∈ R, belongs to
the space (C 2,1×1 ∩ C 1,2)(Msign

1 (R)) as a function of µ,
F ∈ C 2(R) as a function of x and ∂F

∂x
(x , .) ∈ C 1,1(Msign

1 (R)).
Then, for any µ ∈ PN(R)

∥(U s,t
tag − U s,t

N,tag )F∥C(R×Msign
1 (R)) ≤

C (T )

N
.

Theorem 2 is a particular case of Theorem 3.

Theorem 1 is deduced (roughly) as follows: Since the
evolutions U s,t

tag and U s,t
N,tag are close to each other, the

corresponding optimal policies of the tagged agent should also
be close (detail - next slide).

Theorems 2 and 3 follow from the analysis of McKean-Vlasov
SPDE – our last theme below.



Main Theorem from Ths 2 and 3
Let u1 be any adaptive control of the first player and V1 the
corresponding payoff in the game of N players, where all other
players are using ucom(t, x , µ) arising from a solution to the
main MFG consistency. Then V1 ≥ V2, where V2 is obtained
by playing optimally in N player game. By Theorem 3,

|V2 − V2,lim| ≤ C/N ,

where V2,lim is obtained by playing u2 in the limiting game.
But V2,lim ≥ V , where V is the optimal payoff for the first
player in the limiting game of two players, where the second,
measure-valued, player uses ucom. Consequently,

V1 ≥ V2 ≥ V2,lim − C

N
≥ V − C

N
,

completing the proof.



New start: McKean-Vlasov SPDE

For a function v(t, x), t ≥ 0, x ∈ R, let us consider the
McKean-Vlasov SPDE

dv = Lt(v) dt + Ωv ◦ dWt , (3)

where Wt is a one-dimensional Brownian motion,

Ωv(x) = A(x)
∂v

∂x
+ B(x)v(x),

Lt(v) =
1

2
σ2(x)

∂2v

∂x2
+ b(t, x , [v ])

∂v

∂x
+ c(t, x , [v ])v ,

with some functions A(x),B(x), σ(x) and the functions b, c
depending in a smooth way on a function (or measure) v .



McKean-Vlasov SPDE, II

In the equation above, ◦ denotes the Stratonovich differential.
From the usual rule Y ◦ dX = Y dX + 1

2
dY dX , one can

rewrite it as an equation with Ito’s differential of the similar
kind:

dv = Lt(v) dt + Ωv dWt +
1

2
Ω2v dt.

Our objective is to study the well-posedness of the
McKean-Vlasov SPDE in various classes of regular and
generalized functions and more importantly its sensitivity with
respect to initial conditions.



McKean-Vlasov SPDE, III

Main assumptions: σ ∈ C 2(R),B ∈ C 2(R),A ∈ C 3(R) and

0 < σ1 ≤ σ(x) ≤ σ2, 0 < A1 ≤ A(x) ≤ A2;

and

max
(
∥b(t, ., [v ])∥C1(R), ∥c(t, ., [v ])∥C(R)

)
≤ b1,

sup
∥v∥M(R)≤λ

max

(∥∥∥∥δb(t, y , [v ])δv(.)

∥∥∥∥
C1(R)

,

∥∥∥∥δc(t, y , [v ])δv(.)

∥∥∥∥
C(R)

)
≤ C (λ),

sup
∥v∥M(R)≤λ

∥∥∥∥ δ

δv(.)

∂b(t, y , [v ])

∂y

∥∥∥∥
C(R)

≤ C (λ).



Method of stochastic characteristics
Our basic approach will be the method of stochastic
characteristics (generally developed by Kunita, but here in its
simplest, direct form, available for one-dimensional noise).
This method allows one to turn equation with stochastic
differential into a non-stochastic equation of the second order,
but with random coefficients.
For mean-field games, this is the reduction of models with
common noise to models with a major player (as developed by
Caines et al).
Namely, for A(x),B(x) ∈ C 1(R), the operator

Ωv(x) = A(x)
∂v

∂x
+ B(x)v(x),

generates the contraction group etΩ in C (R), so that etΩv0(x)
is the unique solution to the equation

∂v

∂t
= Ωv

with the initial condition v(0, x) = v0(x).



Method of stochastic characteristics, II

Explicitly,

etΩv0(x) = v0(Y (t, x))G (t, x), t ∈ R,

where Y (t, x) is the unique solution to the ODE Ẏ = −A(Y )
with the initial condition Y (0, x) = x and

G (t, x) = exp{
∫ t

0

B(Y (s, x)) ds}.



Method of stochastic characteristics, III

Since the product-rule of calculus is valid for the Stratonovich
differentials, making the change of unknown function v to
g = exp{−ΩWt}v rewrites the McKean-Vlasov SPDE in
terms of g as (deterministic equation with random coefficients)

ġt = L̃t [W ](gt) = exp{−ΩWt}Lt(exp{ΩWt}gt).

Since the operators etΩ form a bounded semigroup in L1(R),
as well as in C k(R) and C k

∞(R) whenever A,B ∈ C k(R),
equations (??) and our initial McKean-Vlasov SPDE (3) are
equivalent in the strongest possible sense.



Method of stochastic characteristics, IV

Concrete version of ġt = L̃t [W ](gt) (by inspection):

L̃t [W ](gt)(x) =
1

2
σ̃2(x)

∂2gt
∂x2

+ b̃(t, x , [gt ])
∂gt
∂x

+ c̃(t, x , [gt ])gt ,

with

σ̃2(x) = σ2(Y (−Wt , x))

(
∂Y

∂z
(Wt , z)|z=Y (−Wt ,x)

)2

,

b̃(t, x , [g ]) =

(
b(t, z , [exp{ΩWt}g ])

∂Y

∂z
(Wt , z)

)
|z=Y (−Wt ,x)

+

[
1

2
σ2(z)

(
∂2Y

∂z2
(Wt , z) + 2

∂ lnG

∂z
(Wt , z)

∂Y

∂z
(Wt , z)

)]
|z=Y (−Wt ,x),

and similarly c̃ (Y ,G are defined two slides above).



One-dimensional simplifications
The simplification arising from working in one-dimension is as
follows:

Y (t, x) = Φ−1(t + Φ(x)),

where

Φ(y) =

∫ y

0

dz

A(z)
.

Hence, under above conditions operator L̃ is uniformly (even
with resect to the noise) elliptic and

b̃(t, x , [g ]) ≤ C (T )(1 + W̄T ), c̃(t, x , [g ]) ≤ C (T )(1 + W̄t),

with some constants C (T ) and W̄T = maxt∈[0,T ] |Wt |.
Thus on any finite interval of time [0,T ] the equation
ġt = L̃t [W ]gt is the usual nonlinear McKean-Vlasov diffusion
equation with uniformly elliptic second order part and bounded
coefficients a.s. But: use the known results for it carefully – to
assess the expectation with respect to the noise W .



McKean-Vlasov SPDE regularity, I

Theorem 4. (On McKean-Vlasov SPDE)
Assume above conditions (7 slides back). Then
(i) For any v0 ∈ Msign(R) there exists a unique solution vt on
[0,T ] such that vt ∈ L1(R) for all t > 0, positive whenever v0
is positive, and

E∥vt∥L1 ≤ C2(T )∥v0∥M(R);

(ii) If v0 ∈ H1
1 , then

E∥gt∥H1
1
≤ C2(T )∥g0∥H1

1
;

(iii) The variational derivative ξt(.; x)[v0] =
δvt

δv0(x)
of the

solution vt with respect to initial data exists a.s. as a measure
of finite total variation.



McKean-Vlasov SPDE: particular case

The particular case which is mostly relevant to the
applications to MFG:

dv = L′t,vv dt −∇(A(x)v) ◦ dWt , (4)

where

Lt,vϕ =
1

2
σ2(x)

∂2ϕ

∂x2
+ b(t, x , [v ])

∂ϕ

∂x
,

and L′t,v , its dual, defined as

L′t,vu =
1

2

∂2

∂x2
(σ2(x)u(x))− ∂

∂x
(b(t, x , [v ])u(x)).



McKean-Vlasov SPDE: sensitivity (assumptions)

Let T > 0, σ ∈ C 2(R),A ∈ C 3(R) and

0 < σ1 ≤ σ(x) ≤ σ2, 0 < A1 ≤ A(x) ≤ A2,

∥b(t, ., [v ])∥C2(R) ≤ b1,

sup
t,y

sup
∥v∥M(R)≤λ

∥∥∥∥δb(t, y , [v ])δv(.)

∥∥∥∥
C2(R)

≤ C (λ),

sup
t,y

sup
∥v∥M(R)≤λ

∥∥∥∥ δ

δv(.)

∂b(t, y , [v ])

∂y

∥∥∥∥
C(R)

≤ C (λ),

with some constants σ1, σ2,A1,A2, b1 and a function C (λ).
Then the following holds:



McKean-Vlasov SPDE: sensitivity (result), I

Theorem (i) For any v0 ∈ Msign(R) there exists a unique
solution vt of equation (3) on [0,T ] such that vt ∈ L1(R) for
all t > 0, positive whenever v0 is positive, and with the norm
not exceeding ∥v0∥M(R) for all realization of the noise W .
Moreover, vt ∈ H1

1 for all t > 0 and the following estimates
hold

E∥vt∥H1
1
≤ C (T )∥v0∥H1

1
,

E∥vt∥H1
1
≤ C (T )

1√
t
∥v0∥M(R).



McKean-Vlasov SPDE: sensitivity (result), II
Theorem (ii) The variational derivative ξt(.; x)[v0] =

δvt
δv0(x)

of
the solution vt with respect to initial data are well defined as
elements of L1(R) for any x and t > 0, and their first and
second derivatives with respect to x are bounded elements of
the dual spaces (C 1(R))′ and (C 2(R))′ respectively, so that

∥ξ0(., x)∥L1 ≤ C (T ),

∥ ∂

∂x
ξ0(., x)∥(C1(R))′ ≤ C (T ), ∥ ∂2

∂x2
ξ0(., x)∥(C2(R))′ ≤ C (T ),

with constants C (T ) depending only on the norm ∥v0∥M(R)

and independent of the noise.
Similarly one analyzes the second derivatives

ηt(.; x1, x2) =
d

dh
|h=0ξt(.; x1)[v0 + hδx ].



Domain of the Markov propagator generated by

the McKean-Vlasov SPDEs, I
The Markov propagator defined by the solutions to the
McKean-Vlasov SPDE is given on the continuous functionals
of measures in the usual way:

U s,tF (v) = EF (vt(v , [W ])),

where vt is the solution to the McKean-Vlasov SPDE for t > s
with given v = vs at time s.
The main conclusion from the sensitivity analysis:
Theorem. (On the invariant domain of the
McKean-Vlasov-SPDEs propagator)
The spaces C 1,2(Msign

λ ) and its intersection with

C 2,1×1(Msign
λ ) are invariant under U s,t , so that

∥U s,tF∥C1,2(Msign
λ ) ≤ C (T )∥F∥C1,2(Msign

λ ),

∥U s,tF∥C2,1×1(Msign
λ ) ≤ C (T )

(
∥F∥C2,1×1(Msign

λ ) + ∥F∥C1,2(Msign
λ )

)
.



The generator for the N interacting diffusions

Recall the standard inclusion

(x1, · · · , xN) →
1

N
(δx1 + · · ·+ δXN

)

that maps RN to the set PN(R). We can rewrite the generator
AN of our initial N interacting diffusions in terms of
functionals on measures, via the link

f (x1, · · · , xN) = Ff [(δx1 + · · ·+ δxN )/N].

We get

ANF (µ) = ΛlimF (µ) +
1

N
ΛcorrF (µ),

where (see next slide):



The generator for the N interacting diffusions, II

ΛlimF (µ) =

∫
R

(
Bµ

δF

δµ(.)

)
(y)µ(dy)

+
1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2F

δµ(y)δµ(z)
µ(dy)µ(dz),

ΛcorrF (µ) =
1

2

∫
R

σ2
ind(x)

∂2

∂y∂z

δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=x

µ(dx).

with

Bµg(x) = b(t, x , µ, u(t, x , µ))
∂g

∂x
+

1

2
(σ2

com(x) + σ2
ind(x))

∂2g

∂x2
.



Sensitivity of McKean-Vlasov and Ths. 2 and 3
Thus we have an explicit expression for the limit of AN as
N → ∞ and for the correction term, which are well defined for
functional F from the space C̃ = C 1,2(Msign)∩C 2,1×1(Msign).
Hence we have the convergence of the generators of N-particle
approximations to the generator of the process arising from
the McKean-Vlasov SPDE on the space C̃ with the uniform
rates of order 1/N .
According to the Theorem above ’On the invariant domain of
the McKean-Vlasov-SPDEs propagator’, the propagator of the
process generated by the McKean-Vlasov SPDE acts by
bounded operators on C̃ . Hence Ths 2 and 3 follow from the
standard representation of the difference of two propagators in
terms of the difference of their generators:

U t,r
N − U t,r =

∫ r

t

U t,s
N (AN − Λlim)sU

s,rds

or similarly for the tagged particle version of it.



THANK YOU


