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Goal: Obtain formulas of the type

E [ f (XT)] = E
[

f (X̄π
T)ZT

]
,

ZT = 1NT=0 + 1NT>0

NT−1∏
i=0

θτi+1−τi (X̄π
τi
, X̄π

τi+1
).

1. f ∈ Bb(Rd) ≡ { f : Rd → R is a bounded measurable function}.
2. X̄π: approximation process for X defined for any partition π of [0, T].
3. N is a Poisson process with jump times {τi}i independent of {X̄π; π}.
4. In the above formula, we abuse the notation letting π := {τi}i.

Ways of reading the formula:

1. Girsanov Theorem

2. Feynman-Kac formula

3. Multi-level Monte Carlo



Ways of obtaining this formula

1. Taylor expansion

2. Malliavin Calculus

3. Probabilistic Parametrix method

Expand f (x) − f (x0). Define g(α) = f (x0 + α(x − x0)) then by mean
value theorem

f (x)− f (x0) = g(1)−g(0) =

∫ 1

0
g′(α)dα =

∫ 1

0
f ′(x0+α(x−x0))dα(x−x0).

Notice the relation Functional Distance = Derivative × Distance between
arguments. The Taylor formula for a analytic function f can be rewritten
as

f (x) = eλE
[

f N(x0)(λ−1(x − x0))N
]

.

We intend to show one method to do this in infinite dimensions.



The probabilistic parametrix method The goal is to repeat this argument
for E[ f (XT)] for

Xt = x0 +

∫ t

0
σ(Xs)dWs

†.

The approximation is
X̄t = x0 + σ(x0)Wt .

Goal: Find an expansion for E[ f (XT)] − E[ f (X̄T)] in powers of T for a
class of functions f .
Let Pt f (x) = E[ f (Xx

t )] with generator L. By Itô’s formula and IBP:

PT−r f (X̄r)
E

= PT f (x) +

∫ r

0
(L̄ − L)PT−t f (X̄t)dt,

f (XT) E= f (X̄T) +

∫ T

0
dsPs f (X̄T−s)θT−s(x, X̄T−s).

Here for any t ∈ (0, T] and x, y ∈ Rd,a ≡ σσ∗ ∈ C2
b

and uniformly elliptic

θt(x, y) = 2−1
E

[
Hi, j(X̄t , ai, j(X̄t) − ai, j(x))

∣∣∣∣X̄t = y
]
.

†When we would like to emphasize the initial point x0, we will use Xx0
t instead of Xt .



θt(x, y) = 2−1
E

[
Hi, j(X̄t , ai, j(X̄t) − ai, j(x))

∣∣∣∣X̄t = y
]
.

The rate of degeneration of θt(x, X̄t) = O(t−1/2). Therefore, there exists a
constant C which depends on ‖ f‖∞, ‖a‖2,∞ and T such that

sup
x

∣∣∣∣E [
f (Xx

T)
]
− E

[
f (X̄x

T)
]∣∣∣∣ ≤ CT1/2

.

Here Hi(X̄T , Y) denotes the IBP weight with respect to X̄T (Gaussian) in
the sense that E[∂i f (X̄T)Y] = E[ f (X̄T)Hi(X̄T , Y)]. This is a scheme of
order one.
Now we build the unbiased scheme by randomization of time.

E

[∫ T

0
θs(x, X̄s)PT−s f (X̄s)ds

]
= TE

[
θU(x, X̄U)PT−U f (X̄U)

]
.

Here U is a uniform random variable on [0, T] independent of W.



Repeating the argument and remembering that condition on NT the jump
times of the Poisson process are distributed according to the order
statistics, one obtains the final formula.
Assume that f ∈ Bb(Rd), σ ∈ C∞

b
and uniformly elliptic. Define

Z t := eλt
Nt−1∏
i=0

λ−1θτi+1−τi (X̄π
τi
, X̄π

τi+1
).

Then
E [ f (XT)] = E

[
f (X̄π

T)ZT
]
.

But this formula due to the degeneration of θt has infinite variance in
most cases. Importance sampling in time is one solution.



Theorem Fix µ ≥ 0, q > 0. Suppose that there exists R- valued
measurable functions ηt(x, y), θt(x, y), θηt (x, y), 0 < t ≤ T, x, y ∈ Rd s.t.
they satisfy the following integrability estimate. There exists a constant C
I supx E[|θt(x, X̄x

t )(1 + ηt(x, X̄x
t )) + θ

η

t (x, X̄x
t )|] ≤ Ct(q−2)/2,

I supx sup0≤t≤T E[|ηt(x, X̄x
t )|] ≤ C.

Furthermore assume that the following first order expansion formula is
valid for f ∈ C∞c (Rd) and 0 < t ≤ r ≤ T

E

[
eµTq/2

f (XT)
]
−E

[
f (X̄T)(1 + ηT(x, X̄T))

]
= E

[∫ T

0
dseµsq/2

Ps f (X̄T−s)ΘT
T−s(x, X̄T−s)

]
,

Θr
t (x, y) := 2−1µq(r− t)(q−2)/2(1 +ηt(x, y)) +θt(x, y)(1 +ηt(x, y)) +θ

η

t (x, y).

Then one has the following error estimate. There exists a constant C
which depends on ‖ f‖∞, ‖a‖2,∞ and T such that

sup
x

∣∣∣∣E [
eµTq/2

f (Xx
T)
]
− E

[
f (X̄x

T)(1 + ηT(x, X̄x
T))

]∣∣∣∣ ≤ CTq/2
.



Then
E [ f (XT)] = E

[
f (X̄π

T)ZT

]
,

ZT := eλT−µTq/2
(1 + ηT−τNT

(X̄π
τNT
, X̄π

T))
NT−1∏
i=0

λ−1Θ
T−τi
τi+1−τi

(X̄π
τi
, X̄π

τi+1
).

Moreover, suppose that q ≥ 2 and if for fixed p > 0, one has that there
exists a constant C such that

I supx E[|θt(x, X̄x
t )(1 + ηt(x, X̄x

t )) + θ
η

t (x, X̄x
t )|p] ≤ Ct(q−2)p/2,

I supx sup0≤t≤T E[|ηt(x, X̄x
t )|p] ≤ C.

Then E
[
|ZT |

p] < ∞ .

Exponential scaling: e−µTq/2
. Poisson sampling: eλT

Next: How to obtain a second order method.



Studying the residue for a second order method (but it has to be simple
and iterative)

E

[
f (X̄t)θt(x, X̄t)

]
= E

[
f (X̄t)2−1Hi, j(X̄t , ai, j(X̄t) − ai, j(x))

]
= 2−1∂mai, j(x)E

[
∂i, j f (X̄t)(X̄t − x)m

]
+ O(1)

= 2−1ak,l∂l ai, j(x)E
[
∂i, j f (X̄t)a−1

k,m
(X̄t − x)m

]
+ O(1)

= 2−1 tak,l∂l ai, j(x)E
[
∂i, j,k f (X̄t)

]
+ O(1)

= 2−1 tak,l∂l ai, j(x)E
[

f (X̄T)Hi, j,k(X̄T , 1)
]

+ O(1).

The (explicit) correction term is then

ηt(x, X̄t) := 4−1 t2ak,l∂l ai, j(x)Hi, j,k(X̄t , 1),

E

[
eµT f (XT)

]
−E

[
f (X̄T)(1 + ηT(x, X̄T))

]
= E

[∫ T

0
dseµs Ps f (X̄s)ΘT−s(x, X̄T−s)

]
‡.

sup
x

∣∣∣∣E [
eµT f (Xx

T)
]
− E

[
f (X̄x

T)(1 + ηT(x, X̄x
T))

]∣∣∣∣ ≤ CT.

‡In this case Θ does not depend on r, we will shorten the notation Θt (x, y) ≡ Θr
t (x, y).



sup
x

∣∣∣∣E [
eµT f (Xx

T)
]
− E

[
f (X̄x

T)(1 + ηT(x, X̄x
T))

]∣∣∣∣ ≤ CT.

Therefore this gives a method of order two and then the probabilistic
representation is valid for

ZT := e(λ−µ)T(1 + ηT−τNT
(X̄π

τNT
, X̄π

T))
NT−1∏
i=0

λ−1Θτi+1−τi (X̄π
τi
, X̄π

τi+1
).

The p-moments of ZT are finite.

Θt(x, X̄t) = µ(1 + ηt(x, X̄t)) + θt(x, X̄t)(1 + ηt(x, X̄t)) + θ
η

t (x, X̄t),

θ
η

t (x, X̄t) = 2−1Hi, j(X̄t , ηt(x, X̄t)(ai, j(X̄t) − ai, j(x)))

− θt(x, X̄t)ηt(x, X̄t) − 2−1 tak,l∂l ai, j(x)Hi, j,k(X̄t , 1).

Recall
θt(x, X̄t) = 2−1Hi, j(X̄t , ai, j(X̄t) − ai, j(x)).



Experiment set-up: σ(x) = σ(sin(ωx) + 2) and b(x) = − x
x2+

c1
3c3

σ2(x). We

consider the payoff function f (x) = c3x3 + c1x + c0. Then since,

b(x) f ′(x) + 2−1σ2(x) f ′′(x) = 0,

f (Xt) is a martingale and E[ f (XT)] = f (X0).
In the experiment we choose the parameters given in Table 1.

c0 c1 c3 X0
0 1 1 1

Table: Parameters in experiment

Here f (X0) = 2. The interest is in large parameters for σ and ω.
First, we discuss about the choice of Poisson sampling by taking the
general set-up to optimize the variance over {pn; n ∈ N}

E [ f (XT)] =

∞∑
n=0

E [Jn] = E

[ JN

pN

]
.
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Figure: σ = ω = 0.9.

Variances at each level depending on the value of µ. No λ component is
used. Optimization criteria is:

∞∑
n=0

Ep−1
n

[
J2

n

]
.
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Figure: σ = ω = 0.9.

Simulated variance, varying λ = µ, and fitted curve.
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Figure: σ = ω = 1.0.

Simulated inverse efficiency, varying λ = µ, and fitted curve.
σ = ω = 0.9.
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Simulated efficiencies with optimal simulation parameters, when varying
σ = ω. Observe improvement from first order to second order scheme. It
is comparable to RMLMC. µ = 0 indicates no exponential rescaling.



1. We have presented a general set-up for higher order methods based
on the parametrix approach

2. The order of the method is tied with the required accuracy and
parameter values

3. One advantage is the fact that there is only one parameter to tune:
the frequency of the Poisson process N

4. Preparations are on the way for other situations. Eg.: Stopping
times, local times, jumps, non-bounded coefficients (the extension to
uniformly elliptic linearly growing smooth coefficients is clear after
[7]), etc.
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