

A Dirichlet Form approach to MCMC Optimal Scaling

Giacomo Zanella, Wilfrid S. Kendall, and Mylène Bédard.

g.zanella@warwick.ac.uk, w.s.kendall@warwick.ac.uk, mylene.bedard@umontreal.ca

Supported by EPSRC Research Grants EP/D002060, EP/K013939

LMS Durham Symposium on Stochastic Analysis

12th July 2017

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000 000	00	0 00000		

Introduction

Introduction

MCMC and optimal scaling

Dirichlet forms and optimal scaling

Results and methods of proofs

Conclusion

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000 000	00 0	0 00000		

General reference: Brooks et al. (2011) MCMC Handbook. Suppose x represents an unknown (and therefore random!) parameter, and y represents data depending on the unknown parameter, joint probability density p(x, y).

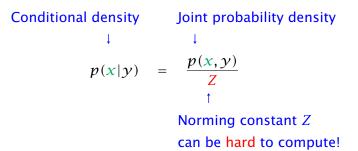
Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

General reference: Brooks et al. (2011) MCMC Handbook. Suppose x represents an unknown (and therefore random!) parameter, and y represents data depending on the unknown parameter, joint probability density p(x, y).

Joint probability density \downarrow p(x, y)

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

General reference: Brooks et al. (2011) MCMC Handbook. Suppose x represents an unknown (and therefore random!) parameter, and y represents data depending on the unknown parameter, joint probability density p(x, y).



Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

General reference: Brooks et al. (2011) MCMC Handbook. Suppose x represents an unknown (and therefore random!) parameter, and y represents data depending on the unknown parameter, joint probability density p(x, y).

Conditional densityJoint probability density \downarrow \downarrow p(x|y)=p(x|y)= \uparrow \uparrow Build Markov chain with
this as equilibrium
(no need to know Z)Norming constant Z
can be hard to compute!

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000 000	00 0	0 00000		

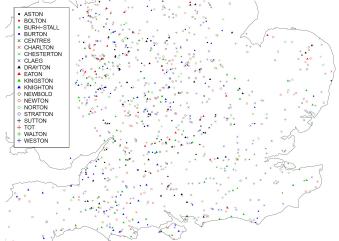
General reference: Brooks et al. (2011) MCMC Handbook. Suppose x represents an unknown (and therefore random!) parameter, and y represents data depending on the unknown parameter, joint probability density p(x, y).

Conditional density	Joint probability density
Ļ	↓
p(x y)	$= \frac{p(x,y)}{Z}$
1	1
Build Markov chain with	Norming constant Z
this as equilibrium	can be hard to compute!
(no need to know <i>Z</i>)	

Simulate Markov chain till approximate equilibrium.

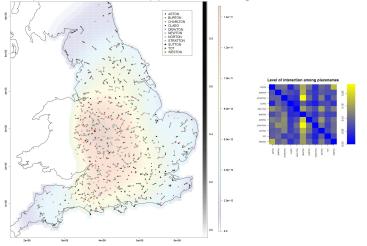
Example: MCMC for Anglo-Saxon statistics

Some historians conjecture, Anglo-Saxon placenames cluster by *dissimilar* names. Zanella (2015, 2016) uses MCMC: data provides some support, resulting in useful clustering.



Example: MCMC for Anglo-Saxon statistics

Some historians conjecture, Anglo-Saxon placenames cluster by *dissimilar* names. Zanella (2015, 2016) uses MCMC: data provides some support, resulting in useful clustering.



MCMC and optimal scaling

Introduction

MCMC and optimal scaling

Dirichlet forms and optimal scaling

Results and methods of proofs

Conclusion

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000 000	00 0	0 00000		

MCMC idea

Goal: estimate $E = \mathbb{E}_{\pi}[h(X)]$.

МСМС	Dirichlet	Results	Conc
0000 000	00	00000	

MCMC idea

Goal: estimate $E = \mathbb{E}_{\pi}[h(X)]$.

Method: simulate ergodic Markov chain with stationary distribution π : use empirical estimate $\hat{E}_n = \frac{1}{n} \sum_{n=n_0}^{n_0+n} h(X_n)$.

o o ooooo Con

Refs

MCMC idea

Goal: estimate $E = \mathbb{E}_{\pi}[h(X)]$.

MCMC

•000

Method: simulate ergodic Markov chain with stationary distribution π : use empirical estimate $\hat{E}_n = \frac{1}{n} \sum_{n=n_0}^{n_0+n} h(X_n)$. (Much easier to apply theory if chain is reversible.)

Intro

Diric	
00	
0	

MCMC

0000

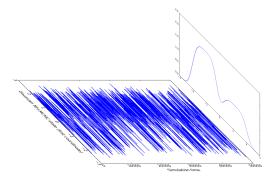
Results

Con

Refs

MCMC idea

Goal: estimate $E = \mathbb{E}_{\pi}[h(X)]$. **Method:** simulate ergodic Markov chain with stationary distribution π : use empirical estimate $\hat{E}_n = \frac{1}{n} \sum_{n=n_0}^{n_0+n} h(X_n)$. (Much easier to apply theory if chain is reversible.) **Theory:** $\hat{E}_n \to E$ almost surely.



	r	÷	r	0
1	1	L	1	U

MCMC

0000

Results o ooooo

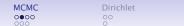
Conc

Refs

Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing from a distribution with density f:

Propose Y using conditional density q(y|x); Accept/Reject move from X to Y, based on ratio f(Y) q(X|Y) / f(X) q(Y|X)



Results o ooooo Conc

Refs

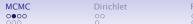
Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing from a distribution with density $f\colon$

Propose Y using conditional density q(y|x); Accept/Reject move from X to Y, based on ratio f(Y) q(X|Y) / f(X) q(Y|X)

Options:

1. Independence sampler: proposal q(y|x) = q(y) doesn't depend on x;



Results 0 00000 Conc

Refs

Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing from a distribution with density f:

Propose Y using conditional density q(y|x); Accept/Reject move from X to Y, based on ratio f(Y) q(X|Y) / f(X) q(Y|X)

Options:

- 1. Independence sampler: proposal q(y|x) = q(y) doesn't depend on x;
- 2. Random walk (RW MH-MCMC): proposal q(y|x) = q(y x) behaves as a random walk;

Results o ooooo Conc

Refs

Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing from a distribution with density $f\colon$

Propose Y using conditional density q(y|x); Accept/Reject move from X to Y, based on ratio f(Y) q(X|Y) / f(X) q(Y|X)

Options:

- 1. Independence sampler: proposal q(y|x) = q(y) doesn't depend on x;
- 2. Random walk (RW MH-MCMC): proposal q(y|x) = q(y x) behaves as a random walk;
- 3. MALA MH-MCMC: proposal $q(y|x) = q(y x \lambda \operatorname{grad} \log f)$ drifts towards high target density f.

Results 0 00000 Conc

Refs

Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing from a distribution with density $f\colon$

Propose Y using conditional density q(y|x); Accept/Reject move from X to Y, based on ratio f(Y) q(X|Y) / f(X) q(Y|X)

Options:

- 1. Independence sampler: proposal q(y|x) = q(y) doesn't depend on x;
- 2. Random walk (RW MH-MCMC): proposal q(y|x) = q(y x) behaves as a random walk;
- 3. MALA MH-MCMC: proposal $q(y|x) = q(y - x - \lambda \operatorname{grad} \log f) \operatorname{dri}$

 $q(y|x) = q(y - x - \lambda \operatorname{grad} \log f)$ drifts towards high target density f.

We shall focus on RW MH-MCMC with Gaussian proposals.

Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

Propose multivariate Gaussian step;

Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

- Propose multivariate Gaussian step;
- Test whether to accept proposal by comparing exponential random variable with log MH ratio;

Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

- Propose multivariate Gaussian step;
- Test whether to accept proposal by comparing exponential random variable with log MH ratio;
- Implement step if accepted (vector addition).

Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

```
while not mcmc.stopped():
    z = normal(0, tau, size=mcmc.dim)
    if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):
        mcmc.x += z
mcmc.record_result()
```


Simple Python code for Gaussian RW MH-MCMC, using normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

```
while not mcmc.stopped():
    z = normal(0, tau, size=mcmc.dim)
    if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):
        mcmc.x += z
mcmc.record_result()
```

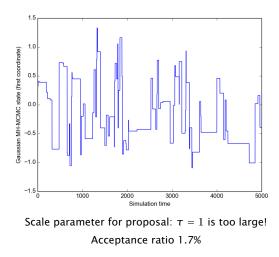
What is best choice of scale / standard deviation tau?

Intro	MCMC	Dirichlet	Results	Conc	Ref
	000 000	00	0 00000		

RW MH-MCMC with Gaussian proposals

(smooth target, marginal $\propto \exp(-x^4)$)

Target is given by 10 *i.i.d.* coordinates.

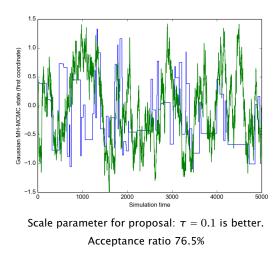


Intro	MCMC	Dirichlet	Results	Conc	Ref
	000 000	00	0 00000		

RW MH-MCMC with Gaussian proposals

(smooth target, marginal $\propto \exp(-x^4)$)

Target is given by 10 *i.i.d.* coordinates.

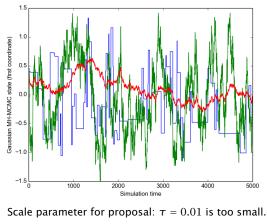


Intro	MCMC	Dirichlet	Results	Conc	Re
	000 000	00	0 00000		

RW MH-MCMC with Gaussian proposals

(smooth target, marginal $\propto \exp(-x^4)$)

Target is given by 10 *i.i.d.* coordinates.



Acceptance ratio 98.5%

Results

RW MH-MCMC on $(\mathbb{R}^d, \pi^{\otimes d})$

MCMC

0000 000

 $\pi(dx_i) = e^{-\phi(x_i)} dx_i$; MH acceptance rule $A^{(d)} = 0$ or 1.

$$\underline{X}_0^{(d)} = (X_1, \dots, X_d) \qquad X_i \stackrel{iid}{\sim} \pi$$

$$\underline{X}_1^{(d)} = (X_1 + A^{(d)}W_1, \dots, X_d + A^{(d)}W_d) \qquad W_i \stackrel{iid}{\sim} N(0, \sigma_d^2)$$

Results

RW MH-MCMC on $(\mathbb{R}^d, \pi^{\otimes d})$

MCMC

0000 000

 $\pi(dx_i) = e^{-\phi(x_i)} dx_i$; MH acceptance rule $A^{(d)} = 0$ or 1.

$$\underline{X}_0^{(d)} = (X_1, \dots, X_d) \qquad X_i \stackrel{iid}{\sim} \pi$$
$$\underline{X}_1^{(d)} = (X_1 + A^{(d)}W_1, \dots, X_d + A^{(d)}W_d) \qquad W_i \stackrel{iid}{\sim} N(0, \sigma_d^2)$$

Questions: (1) complexity as $d \uparrow \infty$? (2) optimal σ_d ?

Results

RW MH-MCMC on $(\mathbb{R}^d, \pi^{\otimes d})$

MCMC

000

 $\pi(dx_i) = e^{-\phi(x_i)} dx_i$; MH acceptance rule $A^{(d)} = 0$ or 1.

$$\underline{X}_0^{(d)} = (X_1, \dots, X_d) \qquad X_i \stackrel{iid}{\sim} \pi$$

$$\underline{X}_1^{(d)} = (X_1 + A^{(d)}W_1, \dots, X_d + A^{(d)}W_d) \qquad W_i \stackrel{iid}{\sim} N(0, \sigma_d^2)$$

Questions: (1) complexity as $d \uparrow \infty$? (2) optimal σ_d ?

Theorem (Roberts, Gelman and Gilks, 1997) Given $\sigma_d^2 = \frac{\sigma^2}{d}$, Lipschitz ϕ' , and finite $\mathbb{E}_{\pi}[(\phi')^8]$, $\mathbb{E}_{\pi}[(\phi'')^4]$ $\{X_{\lfloor td \rfloor,1}^{(d)}\}_t \Rightarrow Z$ where $dZ_t = s(\sigma)^{\frac{1}{2}} dB_t + \frac{1}{2}s(\sigma) \phi'(Z_t) dt$.

Results

Refs

RW MH-MCMC on $(\mathbb{R}^d, \pi^{\otimes d})$

MCMC

000

 $\pi(dx_i) = e^{-\phi(x_i)} dx_i$; MH acceptance rule $A^{(d)} = 0$ or 1.

$$\underline{X}_0^{(d)} = (X_1, \dots, X_d) \qquad X_i \stackrel{iid}{\sim} \pi$$
$$\underline{X}_1^{(d)} = (X_1 + A^{(d)}W_1, \dots, X_d + A^{(d)}W_d) \qquad W_i \stackrel{iid}{\sim} N(0, \sigma_d^2)$$

Questions: (1) complexity as $d \uparrow \infty$? (2) optimal σ_d ?

Theorem (Roberts, Gelman and Gilks, 1997)

Given $\sigma_d^2 = \frac{\sigma^2}{d}$, Lipschitz ϕ' , and finite $\mathbb{E}_{\pi}[(\phi')^8]$, $\mathbb{E}_{\pi}[(\phi'')^4]$ $\{X_{\lfloor td \rfloor \downarrow}^{(d)}\}_t \Rightarrow Z$ where $dZ_t = s(\sigma)^{\frac{1}{2}} dB_t + \frac{1}{2}s(\sigma) \phi'(Z_t) dt$.

Answers: (1) mix in O(d) steps; (2) $\sigma_{\max} = \arg \max_{\sigma} s(\sigma)$.

Results

Optimization: maximize $s(\sigma)$!

MCMC

Given $\mathcal{I} = \mathbb{E}_{\pi}[\phi'(X)^2]$ and normal CDF Φ ,

$$s(\sigma) = \sigma^2 \frac{2\Phi(-\frac{\sigma\sqrt{7}}{2})}{2} = \sigma^2 A(\sigma) = \frac{4}{7} \left(\Phi^{-1}(\frac{A(\sigma)}{2}) \right)^2 A(\sigma)$$

So σ_{\max} maximized by choosing asymptotic acceptance rate $A(\sigma_{\max}) = \arg \max_{A \in [0,1]} \left\{ \left(\Phi^{-1}(\frac{A}{2}) \right)^2 A \right\} \right\} \approx 0.234$

Results

Optimization: maximize $s(\sigma)$!

MCMC

000

Given $\mathcal{I} = \mathbb{E}_{\pi}[\phi'(X)^2]$ and normal CDF Φ ,

$$s(\sigma) = \sigma^2 2\Phi(-\frac{\sigma\sqrt{7}}{2}) = \sigma^2 A(\sigma) = \frac{4}{7} \left(\Phi^{-1}(\frac{A(\sigma)}{2}) \right)^2 A(\sigma)$$

So σ_{\max} maximized by choosing asymptotic acceptance rate $A(\sigma_{\max}) = \arg \max_{A \in [0,1]} \left\{ \left(\Phi^{-1}(\frac{A}{2}) \right)^2 A \right\} \right\} \approx 0.234$

Optimization: maximize $s(\sigma)$!

MCMC

Given $\mathcal{I} = \mathbb{E}_{\pi}[\phi'(X)^2]$ and normal CDF Φ ,

$$s(\sigma) = \sigma^2 2\Phi(-\frac{\sigma\sqrt{7}}{2}) = \sigma^2 A(\sigma) = \frac{4}{7} \left(\Phi^{-1}(\frac{A(\sigma)}{2}) \right)^2 A(\sigma)$$

So σ_{\max} maximized by choosing asymptotic acceptance rate $A(\sigma_{\max}) = \arg \max_{A \in [0,1]} \left\{ \left(\Phi^{-1}(\frac{A}{2}) \right)^2 A \right\} \right\} \approx 0.234$

Strengths:

- Establish complexity as $d \rightarrow \infty$;
- Practical information on how to tune proposal;
- Does not depend on ϕ (CLT-type universality).

Optimization: maximize $s(\sigma)$!

MCMC

Given $\mathcal{I} = \mathbb{E}_{\pi}[\phi'(X)^2]$ and normal CDF Φ ,

$$s(\sigma) = \sigma^2 2\Phi(-\frac{\sigma\sqrt{7}}{2}) = \sigma^2 A(\sigma) = \frac{4}{7} \left(\Phi^{-1}(\frac{A(\sigma)}{2})\right)^2 A(\sigma)$$

So σ_{\max} maximized by choosing asymptotic acceptance rate $A(\sigma_{\max}) = \arg \max_{A \in [0,1]} \left\{ \left(\Phi^{-1}(\frac{A}{2}) \right)^2 A \right\} \approx 0.234$

Strengths:

- Establish complexity as $d \rightarrow \infty$;
- Practical information on how to tune proposal;
- Does not depend on ϕ (CLT-type universality).

Some weaknesses that we will address: (there are others)

- Convergence of marginal rather than joint distribution
- Strong regularity assumptions: Lipschitz g', finite $\mathbb{E}[(g')^8]$, $\mathbb{E}[(g'')^4]$.

There is a wide range of extensions: for example,

 Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);

There is a wide range of extensions: for example,

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);

Refs

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);
- Gibbs random fields (Breyer and Roberts, 2000);

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);
- Gibbs random fields (Breyer and Roberts, 2000);
- Infinite dimensional random fields (Mattingly, Pillai and Stuart, 2012);

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);
- Gibbs random fields (Breyer and Roberts, 2000);
- Infinite dimensional random fields (Mattingly, Pillai and Stuart, 2012);
- Markov chains on a hypercube (Roberts, 1998);

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);
- Gibbs random fields (Breyer and Roberts, 2000);
- Infinite dimensional random fields (Mattingly, Pillai and Stuart, 2012);
- Markov chains on a hypercube (Roberts, 1998);
- Adaptive MCMC; adjust online to optimize acceptance probability (Andrieu and Thoms, 2008; Rosenthal, 2011).

- Langevin / MALA, for which the magic acceptance probability is 0.574 (Roberts and Rosenthal, 1998);
- Non-identically distributed independent target coordinates (Bédard, 2007);
- Gibbs random fields (Breyer and Roberts, 2000);
- Infinite dimensional random fields (Mattingly, Pillai and Stuart, 2012);
- Markov chains on a hypercube (Roberts, 1998);
- Adaptive MCMC; adjust online to optimize acceptance probability (Andrieu and Thoms, 2008; Rosenthal, 2011).
 All these build on the s.d.e. approach of Roberts, Gelman and Gilks (1997); hence regularity conditions tend to be severe (but see Durmus et al., 2016).

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	00000		

Dirichlet forms and optimal scaling

Introduction

MCMC and optimal scaling

Dirichlet forms and optimal scaling

Results and methods of proofs

Conclusion

1

Dirichlet

Results o ooooo Conc

Refs

Dirichlet forms and MCMC 1

Definition of Dirichlet form

A (symmetric) Dirichlet form \mathcal{E} on a Hilbert space H is a closed bilinear function $\mathcal{E}(u, v)$, defined / finite for any $u, v \in \mathcal{D} \subseteq H$, which satisfies:

- 1. \mathcal{D} is a dense linear subspace of H;
- 2. $\mathcal{E}(u, v) = \mathcal{E}(v, u)$ for $u, v \in \mathcal{D}$, so \mathcal{E} is symmetric;
- 3. $\mathcal{E}(u) = \mathcal{E}(u, u) \ge 0$ for $u \in \mathcal{D}$;
- 4. \mathcal{D} is a Hilbert space under the ("Sobolev") inner product $\langle u, v \rangle + \mathcal{E}(u, v);$
- 5. If $u \in \mathcal{D}$ then $u_* = (u \land 1) \lor 0 \in \mathcal{D}$, moreover $\mathcal{E}(u_*, u_*) \le \mathcal{E}(u, u)$.

Relate to Markov process if (quasi)-regular.

1

Dirichlet

Results 0 00000 Conc

Refs

Dirichlet forms and MCMC 1

Definition of Dirichlet form

A (symmetric) Dirichlet form \mathcal{E} on a Hilbert space H is a closed bilinear function $\mathcal{E}(u, v)$, defined / finite for any $u, v \in \mathcal{D} \subseteq H$, which satisfies:

- 1. \mathcal{D} is a dense linear subspace of H;
- 2. $\mathcal{E}(u, v) = \mathcal{E}(v, u)$ for $u, v \in \mathcal{D}$, so \mathcal{E} is symmetric;

3.
$$\mathcal{E}(u) = \mathcal{E}(u, u) \ge 0$$
 for $u \in \mathcal{D}$;

- 4. \mathcal{D} is a Hilbert space under the ("Sobolev") inner product $\langle u, v \rangle + \mathcal{E}(u, v);$
- 5. If $u \in \mathcal{D}$ then $u_* = (u \land 1) \lor 0 \in \mathcal{D}$, moreover $\mathcal{E}(u_*, u_*) \le \mathcal{E}(u, u)$.

Relate to Markov process if (quasi)-regular. Regular Dirichlet form for locally compact Polish *E*: $\mathcal{D} \cap C_0(E)$ is $\mathcal{E}^{\frac{1}{2}}$ -dense in \mathcal{D} , uniformly dense in $C_0(E)$.

Results o ooooo Conc

Refs

Dirichlet forms and MCMC 2 Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

$$\mathcal{E}_d(h) = \frac{d}{2} \mathbb{E}\left[\left(h(\underline{X}_1^{(d)}) - h(\underline{X}_0^{(d)})\right)^2\right].$$

(\mathcal{E}_d can be viewed as the Dirichlet form arising from speeding up the RW MH-MCMC by rate d.)

Dirichlet ⊙● O O OOOOOO Conc

Refs

Dirichlet forms and MCMC 2 Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

$$\mathcal{E}_d(h) = \frac{d}{2} \mathbb{E}\left[\left(h(\underline{X}_1^{(d)}) - h(\underline{X}_0^{(d)})\right)^2\right].$$

(\mathcal{E}_d can be viewed as the Dirichlet form arising from speeding up the RW MH-MCMC by rate d.)

2. Heuristic "infinite-dimensional diffusion" limit of this form under scaling:

$$\mathcal{E}_{\infty}(h) = \frac{s(\sigma)}{2} \mathbb{E}_{\pi^{\otimes \infty}} \left[|\nabla h|^2 \right].$$

Dirichlet forms and MCMC 2

Dirichlet

Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

$$E_d(h) = \frac{d}{2} \mathbb{E}\left[\left(h(\underline{X}_1^{(d)}) - h(\underline{X}_0^{(d)})\right)^2\right].$$

(\mathcal{E}_d can be viewed as the Dirichlet form arising from speeding up the RW MH-MCMC by rate d.)

2. Heuristic "infinite-dimensional diffusion" limit of this form under scaling:

$$\mathcal{E}_{\infty}(h) = \frac{s(\sigma)}{2} \mathbb{E}_{\pi^{\otimes \infty}} \left[\left| \nabla h \right|^2 \right].$$

Under mild conditions this is: closable $\sqrt{}$, Dirichlet $\sqrt{}$, quasi-regular $\sqrt{}$.

Dirichlet	
0.	
0	

Results 0 00000 Conc

Refs

Dirichlet forms and MCMC 2

Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

$$E_d(h) = \frac{d}{2} \mathbb{E}\left[\left(h(\underline{X}_1^{(d)}) - h(\underline{X}_0^{(d)})\right)^2\right].$$

(\mathcal{E}_d can be viewed as the Dirichlet form arising from speeding up the RW MH-MCMC by rate d.)

2. Heuristic "infinite-dimensional diffusion" limit of this form under scaling:

$$\mathcal{E}_{\infty}(h) = \frac{s(\sigma)}{2} \mathbb{E}_{\pi^{\otimes \infty}} \left[\left| \nabla h \right|^2 \right].$$

Under mild conditions this is: closable \checkmark , Dirichlet \checkmark , quasi-regular \checkmark . Can we deduce that the RW MH-MCMC scales to look like the "infinite-dimensional diffusion", by showing that \mathcal{E}_d "converges" to \mathcal{E}_∞ ?

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	•	0 00000		

1. Gamma-convergence; \mathcal{E}_n " Γ -converges" to \mathcal{E}_∞ if

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00 ●	000000		

- 1. Gamma-convergence; \mathcal{E}_n " Γ -converges" to \mathcal{E}_∞ if
 - (Γ 1) $\mathcal{F}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{F}_n(h_n)$ whenever $h_n \to h \in H$;

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00 ●	0 00000		

- 1. Gamma-convergence; \mathcal{E}_n " Γ -converges" to \mathcal{E}_∞ if
 - (Γ 1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n} \mathcal{E}_{n}(h_{n})$ whenever $h_{n} \rightarrow h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \rightarrow h \in H$ such that

 $\mathcal{F}_{\infty}(h) \geq \limsup_{n} \mathcal{F}_{n}(h_{n}).$

- 1. Gamma-convergence; \mathcal{E}_n " Γ -converges" to \mathcal{E}_∞ if
 - (Γ 1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;

- 1. Gamma-convergence; \mathcal{L}_n " Γ -converges" to \mathcal{L}_∞ if
 - (Γ 1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Г2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \geq \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;
 - (M1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{I}} \mathcal{E}_{n}(h_{n})$ whenever $h_{n} \rightarrow h$ weakly in H;

- 1. Gamma-convergence; \mathcal{E}_n " Γ -converges" to \mathcal{E}_∞ if
 - (Γ 1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;
 - (M1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{E}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h$ weakly in H;
 - (M2) For every $h \in H$ there are $h_n \to h$ strongly in H such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.

- 1. Gamma-convergence; \mathcal{L}_n " Γ -converges" to \mathcal{L}_∞ if
 - (Γ 1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;
 - (M1) $\mathcal{F}_{\infty}(h) \leq \liminf_{n \in \mathcal{F}_n} \mathcal{F}_n(h_n)$ whenever $h_n \to h$ weakly in H;
 - (M2) For every $h \in H$ there are $h_n \rightarrow h$ strongly in H such that $\mathcal{E}_{\infty}(h) \geq \limsup_n \mathcal{E}_n(h_n)$.
- 3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1): conditions (M1) and (M2) imply convergence of associated resolvent operators,

Intro MCMC Dirichlet Results Conc Refs

Useful modes of convergence for Dirichlet forms

- 1. Gamma-convergence; \mathcal{L}_n " Γ -converges" to \mathcal{L}_∞ if
 - (Γ 1) $\mathcal{I}_{\infty}(h) \leq \liminf_{n \in \mathcal{I}_n} \mathcal{I}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;
 - (M1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{E}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h$ weakly in H;
 - (M2) For every $h \in H$ there are $h_n \rightarrow h$ strongly in H such that $\mathcal{E}_{\infty}(h) \geq \limsup_n \mathcal{E}_n(h_n)$.
- 3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1): conditions (M1) and (M2) imply convergence of associated resolvent operators,

and indeed of associated semigroups.

Intro MCMC Dirichlet Results Conc Refs

Useful modes of convergence for Dirichlet forms

- 1. Gamma-convergence; \mathcal{L}_n " Γ -converges" to \mathcal{L}_∞ if
 - (Γ 1) $\mathcal{I}_{\infty}(h) \leq \liminf_{n \in \mathcal{I}_n} \mathcal{I}_n(h_n)$ whenever $h_n \to h \in H$;
 - (Γ 2) For every $h \in H$ there are $h_n \to h \in H$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.
- 2. Mosco (1994) introduces stronger conditions;
 - (M1) $\mathcal{E}_{\infty}(h) \leq \liminf_{n \in \mathcal{E}_n} \mathcal{E}_n(h_n)$ whenever $h_n \to h$ weakly in H;
 - (M2) For every $h \in H$ there are $h_n \rightarrow h$ strongly in H such that $\mathcal{E}_{\infty}(h) \geq \limsup_n \mathcal{E}_n(h_n)$.
- 3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1): conditions (M1) and (M2) imply convergence of associated resolvent operators,

and indeed of associated semigroups.

4. Sun (1998) gives further conditions which imply weak convergence of the associated processes: these conditions are implied by existence of a finite constant *C* such that $\mathcal{E}_n(h) \leq C(|h|^2 + \mathcal{E}(h))$ for all $h \in H$.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	00000		

Results and methods of proofs

Introduction

MCMC and optimal scaling

Dirichlet forms and optimal scaling

Results and methods of proofs

Conclusion

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	00000		

Results

Theorem (Zanella, Bédard and WSK, 2016)

Consider the Gaussian RW MH-MCMC based on proposal variance σ^2/d with target $\pi^{\otimes d}$, where $d\pi = f dx = e^{-\phi} dx$. Suppose $\mathcal{I} = \int_{\infty}^{\infty} |\phi'|^2 f dx < \infty$ (finite Fisher information), and $|\phi'(x + v) - \phi'(x)| < \kappa \max\{|v|^{\gamma}, |v|^{\alpha}\}$ for some $\kappa > 0, 0 < \gamma < 1$, and $\alpha > 1$.

Let \mathcal{E}_d be the corresponding Dirichlet form scaled as above. \mathcal{E}_d Mosco-converges to $\mathbb{E}\left[1 \wedge \exp(\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I}))\right]\mathcal{E}_{\infty}$, so corresponding L^2 semigroups also converge.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	00000		

Results

Theorem (Zanella, Bédard and WSK, 2016)

Consider the Gaussian RW MH-MCMC based on proposal variance σ^2/d with target $\pi^{\otimes d}$, where $d\pi = f dx = e^{-\phi} dx$. Suppose $\mathcal{I} = \int_{\infty}^{\infty} |\phi'|^2 f dx < \infty$ (finite Fisher information), and $|\phi'(x + v) - \phi'(x)| < \kappa \max\{|v|^{\gamma}, |v|^{\alpha}\}$ for some $\kappa > 0, 0 < \gamma < 1$, and $\alpha > 1$.

Let \mathcal{E}_d be the corresponding Dirichlet form scaled as above. \mathcal{E}_d Mosco-converges to $\mathbb{E}\left[1 \wedge \exp(\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I}))\right]\mathcal{E}_{\infty}$, so corresponding L^2 semigroups also converge.

Corollary

Suppose in the above that φ' is globally Lipschitz. The correspondingly scaled processes exhibit weak convergence.

Results o eoooo

Refs

Methods of proof 1: a CLT result

Lemma (A conditional CLT)

Under the conditions of the Corollary, almost surely (in <u>x</u> with invariant measure $\pi^{\otimes \infty}$) the log Metropolis-Hastings ratio converges weakly (in <u>W</u>) as follows as $d \to \infty$:

$$\begin{split} \log \left(\prod_{i=1}^d \frac{f(x_i + \frac{\sigma W_i}{\sqrt{d}})}{f(x_i)} \right) &= \\ & \sum_{i=1}^d \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) \quad \Rightarrow \quad \mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I}, \sigma^2\mathcal{I}) \,. \end{split}$$

C

Refs

Methods of proof 1: a CLT result

Lemma (A conditional CLT)

Under the conditions of the Corollary, almost surely (in <u>x</u> with invariant measure $\pi^{\otimes \infty}$) the log Metropolis-Hastings ratio converges weakly (in <u>W</u>) as follows as $d \to \infty$:

$$\begin{split} \log \left(\prod_{i=1}^d \frac{f(x_i + \frac{\sigma W_i}{\sqrt{d}})}{f(x_i)} \right) &= \\ & \sum_{i=1}^d \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) \quad \Rightarrow \quad \mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I}, \sigma^2\mathcal{I}) \,. \end{split}$$

We may use this to deduce the asymptotic acceptance rate of the RW MH-MCMC sampler.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	_ ⊙●○○○		

Use exact Taylor expansion techniques:

$$\begin{split} &\sum_{i=1}^d \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) = \\ &\sum_{i=1}^d \phi'(x_i) \frac{\sigma W_i}{\sqrt{d}} + \sum_{i=1}^d \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u) - \phi'(x_i) \right) du \,. \end{split}$$

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	_ ⊙●○○○		

Use exact Taylor expansion techniques:

$$\sum_{i=1}^{d} \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) =$$

$$\sum_{i=1}^{d} \phi'(x_i) \frac{\sigma W_i}{\sqrt{d}} + \sum_{i=1}^{d} \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u) - \phi'(x_i) \right) du.$$

Condition implicitly on \underline{x} for first 2.5 steps.

1. First summand converges weakly to $\mathcal{N}(0, \sigma^2 \mathcal{I})$.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	_ ⊙●○○○		

Use exact Taylor expansion techniques:

$$\begin{split} &\sum_{i=1}^d \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) &= \\ &\sum_{i=1}^d \phi'(x_i) \frac{\sigma W_i}{\sqrt{d}} + \sum_{i=1}^d \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u) - \phi'(x_i) \right) \, \mathrm{d}u \,. \end{split}$$

Condition implicitly on \underline{x} for first 2.5 steps.

- 1. First summand converges weakly to $\mathcal{N}(0, \sigma^2 \mathcal{I})$.
- 2. Decompose variance of second summand to deduce $\operatorname{Var}\left[\sum_{i=1}^{d} \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u \phi'(x_i)\right) du\right] \to 0.$

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	_ ⊙●000		

Use exact Taylor expansion techniques:

$$\sum_{i=1}^{d} \left(\phi(x_i + \frac{\sigma W_i}{\sqrt{d}}) - \phi(x_i) \right) =$$

$$\sum_{i=1}^{d} \phi'(x_i) \frac{\sigma W_i}{\sqrt{d}} + \sum_{i=1}^{d} \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u) - \phi'(x_i) \right) du.$$

Condition implicitly on \underline{x} for first 2.5 steps.

- 1. First summand converges weakly to $\mathcal{N}(0, \sigma^2 \mathcal{I})$.
- 2. Decompose variance of second summand to deduce $\operatorname{Var}\left[\sum_{i=1}^{d} \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u - \phi'(x_i)\right) du\right] \to 0.$
- 3. Use Hoeffding's inequality then absolute expectations: $\mathbb{E}\left[\sum_{i=1}^{d} \frac{\sigma W_i}{\sqrt{d}} \int_0^1 \left(\phi'(x_i + \frac{\sigma W_i}{\sqrt{d}}u - \phi'(x_i)\right) du\right] \rightarrow -\frac{1}{2}\sigma^2 \mathcal{I}.$

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00●00		

For every $h \in L^2(\pi^{\otimes \infty})$, find $h_n \to h$ (strongly) in $L^2(\pi^{\otimes \infty})$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.

1. Sufficient to consider case $\mathcal{F}_{\infty}(h) < \infty$.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00●00		

For every $h \in L^2(\pi^{\otimes \infty})$, find $h_n \to h$ (strongly) in $L^2(\pi^{\otimes \infty})$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.

- 1. Sufficient to consider case $\mathcal{F}_{\infty}(h) < \infty$.
- 2. Find sequence of smooth cylinder functions h_n with "compact cylindrical support", such that $|\mathcal{F}_{\infty}(h) \mathcal{F}_{\infty}(h_n)| \leq 1/n$.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00●00		

For every $h \in L^2(\pi^{\otimes \infty})$, find $h_n \to h$ (strongly) in $L^2(\pi^{\otimes \infty})$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.

- 1. Sufficient to consider case $\mathcal{F}_{\infty}(h) < \infty$.
- 2. Find sequence of smooth cylinder functions h_n with "compact cylindrical support", such that $|\mathcal{F}_{\infty}(h) \mathcal{F}_{\infty}(h_n)| \leq 1/n$.
- 3. Using smoothness *etc*, $\mathcal{E}_m(h_n) \to \mathcal{E}_\infty(h_n)$ as $m \to \infty$.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00●00		

For every $h \in L^2(\pi^{\otimes \infty})$, find $h_n \to h$ (strongly) in $L^2(\pi^{\otimes \infty})$ such that $\mathcal{E}_{\infty}(h) \ge \limsup_n \mathcal{E}_n(h_n)$.

- 1. Sufficient to consider case $\mathcal{E}_{\infty}(h) < \infty$.
- 2. Find sequence of smooth cylinder functions h_n with "compact cylindrical support", such that $|\mathcal{F}_{\infty}(h) \mathcal{F}_{\infty}(h_n)| \leq 1/n$.
- 3. Using smoothness *etc*, $\mathcal{F}_m(h_n) \rightarrow \mathcal{F}_{\infty}(h_n)$ as $m \rightarrow \infty$.
- 4. Subsequences

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	o 000●0		

Methods of proof 3: establishing condition (M1)

If $h_n \to h$ weakly in $L^2(\pi^{\otimes \infty})$, show $\mathcal{F}_{\infty}(h) \leq \liminf_n \mathcal{F}_n(h_n)$. Detailed stochastic analysis involves:

1. Set $\Psi_n(h) = \sqrt{\frac{n}{2}} (h(\underline{X}_0^{(n)}) - h(\underline{X}_1^{(n)})).$

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 000●0		

Methods of proof 3: establishing condition (M1)

If $h_n \to h$ weakly in $L^2(\pi^{\otimes \infty})$, show $\mathcal{F}_{\infty}(h) \leq \liminf_n \mathcal{F}_n(h_n)$. Detailed stochastic analysis involves:

- 1. Set $\Psi_n(h) = \sqrt{\frac{n}{2}}(h(\underline{X}_0^{(n)}) h(\underline{X}_1^{(n)})).$
- 2. Integrate against test function $\xi(\underline{X}_{1:N}, \underline{W}_{1:N}) \mathbb{I}(U < a(\underline{X}_{1:N}, \underline{W}_{1:N}))$ for ξ smooth, compact support, U a Uniform(0, 1) random variable. Apply Cauchy-Schwarz.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	_ 000●0		

Methods of proof 3: establishing condition (M1)

If $h_n \to h$ weakly in $L^2(\pi^{\otimes \infty})$, show $\mathcal{F}_{\infty}(h) \leq \liminf_n \mathcal{F}_n(h_n)$. Detailed stochastic analysis involves:

- 1. Set $\Psi_n(h) = \sqrt{\frac{n}{2}}(h(\underline{X}_0^{(n)}) h(\underline{X}_1^{(n)})).$
- 2. Integrate against test function $\xi(\underline{X}_{1:N}, \underline{W}_{1:N}) \mathbb{I}(U < a(\underline{X}_{1:N}, \underline{W}_{1:N}))$ for ξ smooth, compact support, U a Uniform(0, 1) random variable. Apply Cauchy-Schwarz.
- 3. Use integration by parts, careful analysis and conditions on $\phi'.$

tro	MO
	00

Dirichlet	Results
00	_ 0000●

Conc

Refs

Doing even better

Durmus et al. (2016) introduce L^p mean differentiability:

Durmus et al. (2016) introduce L^p mean differentiability: there is $\dot{\phi}$ such that, for some p > 2, some $\alpha > 0$,

$$\begin{split} \phi(X+u) - \phi(X) &= (\dot{\phi}(X) + R(X,u)) \, u \,, \\ \mathbb{E} \left[|R(X,u)|^p \right]^{1/p} &= o(|u|^{\alpha}) \,. \end{split}$$

Durmus et al. (2016) introduce L^p mean differentiability: there is $\dot{\phi}$ such that, for some p > 2, some $\alpha > 0$,

$$\begin{split} \phi(X+u) - \phi(X) &= (\dot{\phi}(X) + R(X,u)) \, u \,, \\ \mathbb{E} \left[|R(X,u)|^p \right]^{1/p} &= o(|u|^{\alpha}) \,. \end{split}$$

Also $\mathcal{I} = \mathbb{E}\left[|\dot{\phi}|^2\right] < \infty$.

Durmus et al. (2016) introduce L^p mean differentiability: there is $\dot{\phi}$ such that, for some p > 2, some $\alpha > 0$,

$$\begin{split} \phi(X+u) - \phi(X) &= (\dot{\phi}(X) + R(X,u)) \, u \,, \\ \mathbb{E} \left[|R(X,u)|^p \right]^{1/p} &= o(|u|^{\alpha}) \,. \end{split}$$

Also $\mathcal{I} = \mathbb{E}\left[|\dot{\phi}|^2\right] < \infty$.

Durmus et al. (2016) obtain optimal scaling results when p > 4, and $\mathbb{E}\left[|\dot{\phi}|^6\right] < \infty$,

Durmus et al. (2016) introduce L^p mean differentiability: there is $\dot{\phi}$ such that, for some p > 2, some $\alpha > 0$,

$$\begin{split} \phi(X+u) - \phi(X) &= (\dot{\phi}(X) + R(X,u)) \, u \,, \\ \mathbb{E} \left[|R(X,u)|^p \right]^{1/p} &= o(|u|^{\alpha}) \,. \end{split}$$

Also
$$\mathcal{I} = \mathbb{E}\left[|\dot{\phi}|^2\right] < \infty$$
.

Durmus et al. (2016) obtain optimal scaling results when p > 4, and $\mathbb{E}\left[|\dot{\phi}|^6\right] < \infty$,

L^p mean differentiability applies straightforwardly to the Zanella, Bédard and WSK (2016) argument *mutatis mutandis*: the regularity conditions can be weakened even more at least for vague convergence.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

Introduction

MCMC and optimal scaling

Dirichlet forms and optimal scaling

Results and methods of proofs

• The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;
- Soft argument for $\frac{1}{2}$ variance + mean ≈ 0 implied by $\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I})$;

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;
- Soft argument for $\frac{1}{2}$ variance + mean ≈ 0 implied by $\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I})$;
- MALA generalization (exercise in progress);

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;
- Soft argument for $\frac{1}{2}$ variance + mean ≈ 0 implied by $\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I})$;
- MALA generalization (exercise in progress);
- Need to explore development beyond *i.i.d.* targets; *e.g.* can regularity be similarly relaxed in more general random field settings?

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;
- Soft argument for $\frac{1}{2}$ variance + mean ≈ 0 implied by $\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I})$;
- MALA generalization (exercise in progress);
- Need to explore development beyond *i.i.d.* targets; *e.g.* can regularity be similarly relaxed in more general random field settings?
- Apply to discrete Markov chain cases? (*c.f.* Roberts, 1998);

- The Dirichlet form approach allows significant relaxation of conditions required for optimal scaling results;
- Combine with *L^p* mean differentiability to obtain further relaxation of regularity conditions;
- Soft argument for $\frac{1}{2}$ variance + mean ≈ 0 implied by $\mathcal{N}(-\frac{1}{2}\sigma^2\mathcal{I},\sigma^2\mathcal{I})$;
- MALA generalization (exercise in progress);
- Need to explore development beyond *i.i.d.* targets; *e.g.* can regularity be similarly relaxed in more general random field settings?
- Apply to discrete Markov chain cases? (*c.f.* Roberts, 1998);
- Investigate applications to Adaptive MCMC.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

References:

- Andrieu, Christophe and Johannes Thoms (2008). "A tutorial on adaptive MCMC". In: *Statistics and Computing* 18.4, pp. 343-373.
- Bédard, Mylène (2007). "Weak convergence of Metropolis algorithms for non-I.I.D. target distributions". In: Annals of Applied Probability 17.4, pp. 1222-1244.
- Breyer, L A and Gareth O Roberts (2000). "From Metropolis to diffusions : Gibbs states and optimal scaling". In: *Stochastic Processes and their Applications* 90.2, pp. 181-206.
 - Brooks, Stephen P, Andrew Gelman, Galin L Jones and Xiao-Li Meng (2011). Handbook of Markov Chain Monte Carlo. Boca Raton: Chapman & Hall/CRC, pp. 592+xxv.

Intro

Dir 00 Results 0 00000 Conc

Refs

 Durmus, Alain, Sylvain Le Corff, Eric Moulines and Gareth O Roberts (2016). "Optimal scaling of the Random Walk Metropolis algorithm under \$L^p\$ mean differentiability". In: *arXiv* 1604.06664.
 Geyer, Charlie (1999). "Likelihood inference for spatial point processes". In: *Stochastic Geometry: likelihood*

and computation. Ed. by Ole E Barndorff-Nielsen, WSK and M N M van Lieshout. Boca Raton: Chapman & Hall/CRC. Chap. 4, pp. 79–140.

Hastings, W K (1970). "Monte Carlo sampling methods using Markov chains and their applications". In: *Biometrika* 57, pp. 97-109.

Mattingly, Jonathan C., Natesh S. Pillai and Andrew M. Stuart (2012). "Diffusion limits of the random walk metropolis algorithm in high dimensions". In: Annals of Applied Probability 22.3, pp. 881-890.

Intro

Diricl

Results 0 00000 (

Refs

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller (1953). "Equation of state calculations by fast computing machines". en. In: Journal Chemical *Physics* 21.6, pp. 1087–1092. Mosco, Umberto (1994). "Composite media and asymptotic Dirichlet forms". In: Journal of Functional Analysis 123.2, pp. 368-421. Roberts, Gareth O (1998). "Optimal Metropolis algorithms for product measures on the vertices of a hypercube". In: Stochastics and Stochastic Reports June 2013, pp. 37-41. Roberts, Gareth O, A Gelman and W Gilks (1997). "Weak Convergence and Optimal Scaling of Random Walk Algorithms". In: The Annals of Applied Probability 7.1, pp. 110-120.

ro	MCMC 0000 000	Dirichlet 00 0	Results 0 00000	Conc	Refs
		reth O and Jeff aling of discret			win
	diffusions."	In: J. R. Statis	st. Soc. B 60.1	, pp. 255-26	
	Distributior	effrey S (2011) s and Adaptive	MCMC". In:	Handbook of	
	Sun, Wei (19	ain Monte Carlo 998). "Weak co	nvergence of	Dirichlet	
	41.1, pp. 8-				
		Elizabeth A (20 a on pedigree".			s of
		<i>ations and Ap</i> and Jian-She			
	Scientific. C	hap. 5, pp. 183	3-216.		
		como (2015). " MCMC, and An	•	• •	۱D
	Thesis. Univ	versity of Warw	ick.		Warwic

Warwick Statistics

0	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	00000		

Zanella, Giacomo (2016). "Random Partition Models and Complementary Clustering of Anglo-Saxon Placenames". In: Annals of Applied Statistics 9.4, pp. 1792–1822. Zanella, Giacomo, Mylène Bédard and WSK (2016). "A Dirichlet Form approach to MCMC Optimal Scaling". In: arXiv 1606.01528, 22pp.

Intro	MCMC	Dirichlet	Results	Conc	Refs
	0000	00	0 00000		

Made it explicit that Lp mean differentiability still doesn't cover weak without extra regularity: need to beat this!

