Pseudodifferential operator and Lévy processes

Hausenblas Erika
(joint work with Razafimandimby and Fernando)

Montanuniversität Leoben, Austria

July 20, 2017

Outline

(1) Motivation
(2) Pseudo Differential Operators

- Lévy's symbol
- Hoh's-Jacob's symbol
(3) Pseudodifferential operators
(4) Application
(5) Future works

Definition

An \mathbb{R}-valued stochastic process $L=\{L(t): 0 \leq t<\infty\}$ is a Lévy process over $(\Omega ; \mathcal{F} ; \mathbb{P})$ iff

- $L(0)=0$;
- L has independent and stationary increments;
- L is stochastically continuous, i.e. for any $f \in C_{b}\left(\mathbb{R}^{d}\right)$ the function $t \mapsto \mathbb{E} f(L(t))$ is continuous on \mathbb{R}_{0}^{+};
- L has a.s. paths;

Lévy Hincin Formula:

$$
\mathbb{E} e^{i L(t) \xi}=e^{\psi(\xi) t}
$$

where

$$
\psi(\xi)=i b \xi-\xi^{T} \xi+\int_{\mathbb{R}^{d}}\left(e^{i y^{\top} \xi}-1\right) \nu(d y)
$$

Nonlinear Filtering - the Lévy case

Given:

- Two independent Brownian motions V and W and two independent Lévy processes L_{1} and L_{2};
- A signal process $X=\{X(t): 0 \leq t<\infty\}$;

$$
d X(t)=b(X(t)) d t+\sigma(X(t)) d W(t)+d L_{1}(t) .
$$

- An observable process $Y=\{Y(t): 0 \leq t<\infty\}$

$$
d Y(t)=h(X(t)) d t+d V(t)+d L_{2}(t) .
$$

Task:
Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a nice function. Given the path of Y up to time t, give an estimate of $\phi(X(t))$.

Nonlinear Filtering - the Lévy case

Definition

Let A_{0} be the infinitesimal generator of the Markovian semigroup of X, i.e.

$$
\begin{aligned}
& A_{0} f(x)=\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2}}{\partial x^{2}} f(x) \\
& \quad+b(x) \frac{\partial}{\partial x} f(x)+\int_{\mathbb{R}}\left(f(x+y)-f(y)-f^{\prime}(x) y\right) \nu(d y), \quad f \in C^{(2)}(\mathbb{R}) .
\end{aligned}
$$

Theorem

Now, under appropriate assumptions one can show that ρ is a solution to the so called Zakai-equation, i.e. we have \mathbb{Q}-a.s. for all $t \geq 0$

$$
\rho_{t}(f)=\pi_{0}(f)+\int_{0}^{t} \rho_{s}\left(A_{0} f\right) d s+\int_{0}^{t} \rho_{s}(\phi h) d Y_{s}
$$

Motivation

- Weak error estimates;

Motivation

- Weak error estimates;
- Support Theorems, Feller property;

Motivation

- Weak error estimates;
- Support Theorems, Feller property;
- Nonlocal operators in engineering: Polymers, synthetic materials, etc..

Motivation

- Weak error estimates;
- Support Theorems, Feller property;
- Nonlocal operators in engineering: Polymers, synthetic materials, etc..

The talk is also related to Bally's and Litter's talk; It is also related to work of Krylov/Kim who applied pde techniques, and related to a work of Dong, Peszat and Xu .

Outline

(1) Motivation
(2) Pseudo Differential Operators

- Lévy's symbol
- Hoh's-Jacob's symbol
(3) Pseudodifferential operators
(4) Application
(5) Future works

Lévy's symbol

Let $B=\{B(t): t \geq 0\}$ be a Brownian motion. Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}\left[f\left(B_{t}+x\right)\right]
$$

has as infinitesimal generator

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f=\frac{\partial^{2}}{\partial x^{2}} f, \quad f \in C_{2}^{(2)}(\mathbb{R})
$$

Lévy's symbol

Let $B=\{B(t): t \geq 0\}$ be a Brownian motion. Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}\left[f\left(B_{t}+x\right)\right]
$$

has as infinitesimal generator

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f=\frac{\partial^{2}}{\partial x^{2}} f, \quad f \in C_{2}^{(2)}(\mathbb{R}) .
$$

Note, one can write also

$$
\left(A_{0} f\right)(x)=\int_{\mathbb{R}^{d}} e^{i x^{T} \xi} \xi^{T} \xi \hat{f}(\xi) d \xi
$$

Lévy's symbol

Let $L=\left\{L_{t}: t \geq 0\right\}$ be a Lévy process with Lévy measure. Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}\left[f\left(L_{t}+x\right)\right]
$$

has as infinitesimal generator

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f
$$

given by

$$
\left(A_{0} u\right)(x)=\int_{\mathbb{R}} e^{i x^{\top} \xi} \psi(\xi) \hat{u}(\xi) d \xi \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where the symbol ψ is defined by

$$
\psi(\xi):=-\lim _{t \downarrow 0} \frac{1}{t} \ln \left(\mathbb{E}\left[e^{i L(t)^{T} \xi}\right]\right), \quad \xi \in \mathbb{R}^{d}
$$

Lévy's symbol

Let $L=\left\{L_{t}: t \geq 0\right\}$ be a Lévy process with Lévy measure. Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}\left[f\left(L_{t}+x\right)\right]
$$

has as infinitesimal generator

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f
$$

given by

$$
\left(A_{0} u\right)(x)=\int_{\mathbb{R}} e^{i x^{\top} \xi} \psi(\xi) \hat{u}(\xi) d \xi \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where the symbol ψ is defined by

$$
\psi(\xi):=-\lim _{t \downarrow 0} \frac{1}{t} \ln \left(\mathbb{E}\left[e^{i L(t)^{\top} \xi}\right]\right), \quad \xi \in \mathbb{R}^{d}
$$

Observe that

$$
\psi(\xi)=\int_{\mathbb{R}^{d} \backslash\{0\}}\left(e^{i \xi^{T} y}-1\right) \nu(d y), \quad \xi \in \mathbb{R}^{d}
$$

Lévy's symbol

Definition

we call a symbol ψ is of type $(\omega, \theta), \omega \in \mathbb{R}, \theta \in\left(0, \frac{\pi}{2}\right)$, iff

$$
-\mathfrak{R g}(\psi) \subset \mathbb{C} \backslash \omega+\Sigma_{\theta+\frac{\pi}{2}}
$$

Lévy's symbol and pseudo differential operators

Take an α-stable Lévy process with drift b. Then

$$
\psi(\xi)=|\xi|^{\alpha}+i b \xi, \quad \xi \in \mathbb{R},
$$

and we have to following picture:

Lévy's symbol

Definition

Let L be a Lévy process with symbol ψ. Then the upper index β^{+}and lower index β^{-}of order k are defined by

$$
\beta^{+}(\psi):=\inf _{\substack{\lambda>0 \\ j \leq k}}\left\{\limsup _{|\xi| \rightarrow \infty}\left(1+|\xi|^{2}\right)^{\frac{j}{2}} \frac{\left|\partial_{\xi}^{j} \psi(\xi)\right|}{|\xi|^{\lambda}}=0\right\}
$$

and

$$
\beta^{-}(\psi):=\inf _{\substack{\lambda>0 \\ j \leq k}}\left\{\liminf _{|\xi| \rightarrow \infty}\left(1+|\xi|^{2}\right)^{\frac{j}{2}} \frac{\left|\partial_{\xi}^{j} \psi(\xi)\right|}{|\xi|^{\lambda}}=0\right\} .
$$

Lévy's symbol

Relation to the Blumenthal Getoor index:
Let L be a Lévy process with symbol ψ. Then the generalized Blumenthal Getoor index is related to

$$
\alpha:=\inf _{\alpha>0}\left\{\lim _{z \rightarrow 0} \frac{\nu((z, \infty))}{z^{\alpha}}<\infty\right\}
$$

(plus negative part)

Lévy's symbol

- Fix $\alpha \in(0,2)$. L be a symmetric α-stable process without drift. Then

$$
\psi(\xi)=|\xi|^{\alpha},
$$

- L be a tempered α-stable process, $\alpha<1$, then

$$
\begin{aligned}
& \nu(A)=\int_{A \cap \mathbb{R}^{+} \backslash 0}|z|^{-\alpha-1} e^{-\rho|z|} d z . \text { and } \\
& \qquad \psi(\xi) \sim \Gamma(-\alpha) \cdot(\rho-i \xi)^{\alpha}-\rho^{\alpha} .
\end{aligned}
$$

- L be a tempered α-stable process, then $\nu(A)=\int_{A \backslash 0}|z|^{-\alpha-1} e^{-\rho|z|} d z$. and

$$
\psi(\xi) \sim \Gamma(-\alpha) C(\rho)|\xi|^{\alpha}
$$

- L be the Meixner process, then for $m \in \mathbb{R}, \delta, a>0, b \in(-\pi, \pi)$.

$$
\psi_{m, \delta, a, b}(\xi)=-i m \xi+2 \delta\left(\log \cosh \left(\frac{a \xi-i b}{2}\right)-\log \cos \left(\frac{b}{2}\right)\right), \quad \xi \in \mathbb{R}
$$

Here the upper and lower index is 1 .

- L be the normal inverse Gaussian process; Then

$$
\psi_{N I G}(\xi)=-i m \xi+\delta\left(\sqrt{a^{2}-(b+i \xi)}-\sqrt{a^{2}-b^{2}}\right), \quad \xi \in \mathbb{R},
$$

where $m \in \mathbb{R}, \delta>0,0<|b|<a$. The upper and lower index is 1 .

Hoh's-Jacob's symbols

Let $B=\{B(t): t \geq 0\}$ be a Brownian motion and $X=\left\{X(t, x): t \geq 0, x \in \mathbb{R}^{d}\right\}$ be a solution to a SDE given by

$$
d X(t, x)=b(X(t, x)) d t+\sigma(X(t, x)) d B(t), \quad X(0, x)=x
$$

Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}[f(X(t, x))]
$$

has as infinitesimal generator for $f \in C_{2}^{(2)}(\mathbb{R})$

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f=b(x) \nabla f(x)+\sigma(x) \sigma^{T}(x) \frac{\partial^{2}}{\partial x^{2}} f
$$

Hoh's-Jacob's symbols

Let $B=\{B(t): t \geq 0\}$ be a Brownian motion and $X=\left\{X(t, x): t \geq 0, x \in \mathbb{R}^{d}\right\}$ be a solution to a SDE given by

$$
d X(t, x)=b(X(t, x)) d t+\sigma(X(t, x)) d B(t), \quad X(0, x)=x
$$

Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}[f(X(t, x))]
$$

has as infinitesimal generator for $f \in C_{2}^{(2)}(\mathbb{R})$

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f=b(x) \nabla f(x)+\sigma(x) \sigma^{T}(x) \frac{\partial^{2}}{\partial x^{2}} f
$$

Note, one can write also

$$
\left(A_{0} f\right)(x)=\int_{\mathbb{R}^{d}} e^{i x^{T} \xi}\left(i b(x) \xi+\xi^{T} a(x) \xi\right) \hat{f}(\xi) d \xi
$$

with $a(x)=\sigma^{T}(x) \sigma(x)$.

Hoh's-Jacob's symbols

Let $B=\{L(t): t \geq 0\}$ be a Lévy process and $X=\{X(t, x): t \geq 0\}$ be a solution to a SDE given by

$$
d X(t, x)=b(X(t, x)) d t+\sigma(X(t, x)) d L(t), \quad X(0, x)=x
$$

Then the Markovian semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ defined by

$$
\mathcal{P}_{t} f(x):=\mathbb{E}[f(X(t, x))]
$$

has as infinitesimal generator for $f \in C_{2}^{(2)}(\mathbb{R})$

$$
A_{0} f:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathcal{P}_{h}-\mathcal{P}_{0}\right) f
$$

given by

$$
\left(A_{0}\right)(x) f=\int_{\mathbb{R}^{d}} e^{-i x^{\top} \xi}(i b(x) \xi+a(x, \xi)) \hat{f}(\xi) d \xi
$$

with $a(x, \xi)=\phi\left(\sigma(x)^{T} \xi\right)$.

Outline

(1) Motivation
(2) Pseudo Differential Operators

- Lévy's symbol
- Hoh's-Jacob's symbol
(3) Pseudodifferential operators
(4) Application
(5) Future works

Pseudo differential operators

Definition

Let $m \in \mathbb{R}$, and ρ, δ two real numbers such that $0 \leq \rho \leq 1$ and $0 \leq \delta \leq 1$. Let $S_{\rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be the set of all functions $a: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$, where

- $a(x, \xi)$ is infinitely often differentiable, i.,e. $a \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$;
- for any two multi-indices α and β there exists $C_{\alpha, \beta}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle | \xi| \rangle^{m-\rho|\beta|}\langle | x| \rangle^{\delta \alpha}, \quad x \in \mathbb{R}^{d}, \xi \in \mathbb{R}^{d}
$$

Definition

Let $a(x, \xi)$ be a symbol. Then, the to $a(x, \xi)$ corresponding operator $a(x, D)$ defined by

$$
\left(a\left(x, D_{x}\right) u\right)(x):=\int_{\mathbb{R}^{d}} e^{i x^{\top} \xi} a(x, \xi) \hat{u}(\xi) d \xi \quad u \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

is called a pseudodifferential operator.

Pseudo differential operators

Literatur:

- Niel Jacob's three Volumes
- Hoh's habilitation
- Applebaum's book on Lévy processes
- Schilling and Böttcher: Lévy matters III
- Elias Stein: Lectures on pseudodifferential operators
- Treves: pseudodifferential operators and Fourier integrals operators (1980)
- Shubin: pseudodifferential operators and spectral theory (1985/2001)
- Rodinio: Global pseudodifferential operators (2010)
- Abels: Pseudodifferential operators and singular integral operators (2012)

Pseudo differential operators

It is straightforward to show that

$$
a\left(x, D_{x}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Pseudo differential operators

It is straightforward to show that

$$
a\left(x, D_{x}\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Fix $1 \leq p \leq \infty$. When does it holds that

$$
a\left(x, D_{x}\right): L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)
$$

is bounded?

Kernel Representation

The operator can also be represented by a kernel of the form

$$
a\left(x, D_{x}\right) f(x)=\int_{\mathbb{R}^{d}} k(x, x-y) f(y) d y, \quad x \in \mathbb{R}^{d},
$$

where the kernel is given by the inverse Fourier transform

$$
k(x, z)=\mathcal{F}_{\xi \rightarrow z}[a(x, \xi)](z)
$$

One important estimate is given by

$$
|k(x, z)| \leq\left|\partial_{\xi}^{\alpha} p(x, \xi)\right||z|^{-\alpha} .
$$

The Young inequality for convolution gives

$$
\left|\int_{\mathbb{R}^{d}} k(x, x-y) f(y) d y\right|_{L q} \leq \sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|k(x, z)| d z|f|_{L q} .
$$

By this estimate one can calculate bounds of the operator between Lebesgue spaces, like

$$
\left|a\left(x, D_{x}\right) f\right|_{L^{G}} \leq|a|_{\mathcal{A}_{\gamma, 0,1,0}^{0}}^{0}|f|_{L^{q}},
$$

for $\gamma \geq d+1$.

Pseudo differential operators

Definition

Let $m \in \mathbb{R}$. Let $\mathcal{A}_{k_{1}, k_{2} ; \rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be the set of all functions $a: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$, where

- $a(x, \xi)$ is k_{1}-times differentiable in ξ and k_{2} times differentiable in x;
- and for any two multi-indices α and β with $|\alpha| \leq k_{1}$ and $|\beta| \leq k_{2}$, there exists a positive constant $C_{\alpha, \beta}>0$ depending only on α and β such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle | \xi| \rangle^{m-\rho|\beta|}\langle | x| \rangle^{\delta|\alpha|}, \quad x \in \mathbb{R}^{d}, \xi \in \mathbb{R}^{d} .
$$

Pseudo differential operators

Semi-norm in $\mathcal{A}_{k_{1}, k_{2} ; \rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \|a\|_{\mathcal{A}_{k_{1}, k_{2} ; \delta, \rho^{m}}} \\
& :=\sup _{|\alpha| \leq k_{1},|\beta| \leq k_{2}} \sup _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right|\langle | \xi| \rangle^{\rho|\beta|-m}\langle | x| \rangle^{-\delta|\alpha|} .
\end{aligned}
$$

Pseudo differential operators

Semi-norm in $\mathcal{A}_{k_{1}, k_{2} ; \rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \|a\|_{\mathcal{A}_{k_{1}, k_{2} ; \delta, \rho^{m}}} \\
& :=\sup _{|\alpha| \leq k_{1},|\beta| \leq k_{2}} \sup _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right|\langle | \xi| \rangle^{\rho|\beta|-m}\langle | x| \rangle^{-\delta|\alpha|} .
\end{aligned}
$$

\Rightarrow
From the calculations before it follows

$$
\left|a\left(x, D_{x}\right) g\right|_{L^{p}} \leq C|a|_{\mathcal{A}_{d+1,0 ; 1,0}^{0}}|f|_{L^{p}} .
$$

Hoh's-Jacob's symbol

Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ a Lévy symbol with Blumenthal Getoor index m of order $d+1$. Then

$$
\partial_{\xi}^{\alpha} \psi\left(\sigma(x)^{T} \xi\right)=\sigma(x)^{\alpha} \psi^{(\alpha)}(\xi)=<|\xi|>^{m-\alpha}
$$

Pseudo differential operators

Fix $m \in \mathbb{R}, 1 \leq p, r \leq \infty$. When does it holds

$$
a\left(x, D_{x}\right): B_{p, r}^{m+\kappa}\left(\mathbb{R}^{d}\right) \rightarrow B_{p, r}^{m}\left(\mathbb{R}^{d}\right) .
$$

for some $\kappa \in \mathbb{R}$?

Besov spaces

Choose a function $\psi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ such that $0 \leq \psi(x) \leq 1, x \in \mathbb{R}^{d}$ and

$$
\psi(x)=\left\{\begin{array}{rll}
1, & \text { if } & |x| \leq 1 \\
0 & \text { if } & |x| \geq \frac{3}{2} .
\end{array}\right.
$$

Then put

$$
\left\{\begin{aligned}
\phi_{0}(x) & =\psi(x), x \in \mathbb{R}^{d}, \\
\phi_{1}(x) & =\psi\left(\frac{x}{2}\right)-\psi(x), x \in \mathbb{R}^{d}, \\
\phi_{j}(x) & =\phi_{1}\left(2^{-j+1} x\right), x \in \mathbb{R}^{d}, \quad j=2,3, \ldots .
\end{aligned}\right.
$$

Definition

Let $s \in \mathbb{R}, 0<p \leq \infty$ and $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. If $0<q<\infty$ we put

$$
|f|_{B_{p, q}^{s}}=\left(\sum_{j=0}^{\infty} 2^{s j q}\left|\mathcal{F}^{-1}\left[\phi_{j} \mathcal{F} f\right]\right|_{L^{p}}^{q}\right)^{\frac{1}{q}}=\left\|\left(2^{s j}\left|\mathcal{F}^{-1}\left[\phi_{j} \mathcal{F} f\right]\right|_{L^{p}}\right)_{j \in \mathbb{N}}\right\| / q .
$$

with the usual modifications for $p=\infty$.

Pseudo differential operators

Theorem

(see Abels) Fix $m \in \mathbb{R}, 1 \leq p, r \leq \infty$ and $a \in S_{1,0}^{\kappa}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then

$$
a\left(x, D_{x}\right): B_{p, r}^{m+\kappa}\left(\mathbb{R}^{d}\right) \rightarrow B_{p, r}^{m}\left(\mathbb{R}^{d}\right)
$$

is a bounded operator.

Pseudo differential operators

Theorem

(see Abets) Fix $m \in \mathbb{R}, 1 \leq p, r \leq \infty$ and $a \in S_{1,0}^{\kappa}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then

$$
a\left(x, D_{x}\right): B_{p, r}^{m+\kappa}\left(\mathbb{R}^{d}\right) \rightarrow B_{p, r}^{m}\left(\mathbb{R}^{d}\right)
$$

is a bounded operator.

Remark

Tracing step by step of the proof of Theorem 49 one can see that the following inequality holds for any $k \geq d+1$

$$
\left|a\left(x, D_{\chi}\right) f\right|_{B_{p, r}^{m+\kappa}}^{m} \leq|a|_{\mathcal{A}_{k, 0 ; \delta, 0}^{k}}|f|_{B_{p, r}^{m}}
$$

Pseudo differential operators

Theorem

(see Abels) Fix $m \in \mathbb{R}, 1 \leq p, r \leq \infty$ and $a \in S_{1,0}^{\kappa}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then

$$
a\left(x, D_{x}\right): B_{p, r}^{m+\kappa}\left(\mathbb{R}^{d}\right) \rightarrow B_{p, r}^{m}\left(\mathbb{R}^{d}\right)
$$

is a bounded operator.

Remark

Tracing step by step of the proof of Theorem Gefore one can see that the following inequality holds for any $k \geq d+1$

$$
\left|a\left(x, D_{\times}\right) f\right|_{B_{p, r}^{m+\kappa}} \leq|a|_{\mathcal{A}_{k, 0 ; \delta, 0}^{\kappa}}|f|_{B_{p, r}^{m}}
$$

Remark

If no dependence in x, paraproducts (see Bahouri, Chemin and Danchin). If a dependence in x is given, it is more sophisticated but the same idea.

Pseudo differential operators

- Decomposition into a sum of operators

$$
a\left(x, D_{x}\right)=a_{0}\left(x, D_{x}\right)+\sum_{j=1}^{\infty} a_{j}\left(x, D_{x}\right)
$$

where $a_{j}(x, \xi)=a(x, \xi) \phi_{j}(\xi)$.

Pseudo differential operators

- Decomposition into a sum of operators

$$
a\left(x, D_{x}\right)=a_{0}\left(x, D_{x}\right)+\sum_{j=1}^{\infty} a_{j}\left(x, D_{x}\right)
$$

where $a_{j}(x, \xi)=a(x, \xi) \phi_{j}(\xi)$.

- Evaluating

$$
\phi_{k}(\xi) a_{j}(x, \xi)=\phi_{k}(\xi) a(x, \xi) \phi_{j}(\xi)
$$

If a is independent of x, then $\phi_{k}(\xi) a_{j}(x, \xi)=\phi_{k}(\xi) a(x, \xi) \phi_{j}(\xi)=0$ for $k \neq j-1, j, j+1$.

Pseudo differential operators

- Decomposition into a sum of operators

$$
a\left(x, D_{x}\right)=a_{0}\left(x, D_{x}\right)+\sum_{j=1}^{\infty} a_{j}\left(x, D_{x}\right)
$$

where $a_{j}(x, \xi)=a(x, \xi) \phi_{j}(\xi)$.

- Evaluating

$$
\phi_{k}(\xi) a_{j}(x, \xi)=\phi_{k}(\xi) a(x, \xi) \phi_{j}(\xi)
$$

If a is independent of x, then $\phi_{k}(\xi) a_{j}(x, \xi)=\phi_{k}(\xi) a(x, \xi) \phi_{j}(\xi)=0$
for $k \neq j-1, j, j+1$.

- \Rightarrow the to $a\left(x, D_{x}\right)$ adjoint operator comes in.

Oscillatory Integral

Let $\chi \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ with $\chi(0,0)=1$. Then, let us define

$$
\text { Os }-\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta
$$

Oscillatory Integral

Let $\chi \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ with $\chi(0,0)=1$. Then, let us define

$$
\text { Os }-\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta
$$

Theorem
Let $a \in \mathcal{A}_{d+1+m, d+1 ; 1,0}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, and let $\chi \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ with $\chi(0,0)=1$. Then

$$
\mathrm{Os}-\iint e^{-i y \eta} a(y, \eta) d y d \eta
$$

exists and

$$
\mid \text { Os }-\left.\iint e^{-i y \eta} a(y, \eta) d y d \eta\left|\leq C_{m, \alpha}\right| a\right|_{\mathcal{A}_{d+1+m, d+1 ; 1,0}^{m}} .
$$

Composition of pseudo differential operators

Theorem
Let $a \in S_{1,0}^{m}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and $\chi \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ with $\chi(0,0)=1$. Then

$$
\text { Os }-\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta
$$

exists and

$$
\left|\mathrm{Os}-\iint e^{-i y \eta} a(y, \eta) d y d \eta\right| \leq C_{m, \alpha}|a|_{\mathcal{A}_{d+1+m, d+1}^{m}}
$$

Theorem

- The Fubini Theorem holds for oscillatory integral;
- The Leibniz rule for composition operators works;

Composition of pseudo differential operators

Attention

$$
p(x, \xi) q(x, \xi) \neq p(x, \xi) q(x, \xi)
$$

Composition of pseudo differential operators

Attention

$$
p(x, \xi) q(x, \xi) \neq p(x, \xi) q(x, \xi)
$$

Some calculations

$$
\begin{aligned}
& {\left[p\left(x, D_{x}\right) q\left(x, D_{x}\right)\right] f(x)=p\left(x, D_{x}\right) \int_{\mathbb{R}^{d}} e^{-i x^{\top} \xi} q(x, \xi) \hat{f}(\xi) d \xi} \\
& \quad=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{-i x^{\top} \xi} p(x, \eta) e^{i y^{\top} \eta} e^{-i y^{\top} \xi} q(y, \xi) \hat{f}(\xi) d \xi d y d \eta \\
& \quad=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{i(x-z) \xi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{-i y^{\top} \eta} p(x, \xi+\eta) q(x+y, \xi) d y d \eta f(z) d z d \xi .
\end{aligned}
$$

This gives

$$
(p \sharp q)(x, \xi)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{-i y} y^{\top} \eta p(x, \xi+\eta) q(x+y, \xi) d y d \eta .
$$

Composition of pseudo differential operators

The symbol of the composition:

$$
\left(a_{1} \sharp a_{2}\right)(x, \xi)=\sum_{\alpha} \frac{1}{\alpha!}\left(\partial_{\xi}^{\alpha} a_{1}(x, \xi)\right)\left(\partial_{x}^{\alpha} a_{2}(x, \xi)\right) .
$$

Composition of pseudo differential operators

The symbol of the composition:

$$
\left(a_{1} \sharp a_{2}\right)(x, \xi)=\sum_{\alpha} \frac{1}{\alpha!}\left(\partial_{\xi}^{\alpha} a_{1}(x, \xi)\right)\left(\partial_{x}^{\alpha} a_{2}(x, \xi)\right) .
$$

Approximation and its reminder term:

$$
\begin{aligned}
& \left(a_{1} \sharp a_{2}\right)(x, \xi)-\sum_{|\alpha| \leq N} \frac{1}{\alpha!}\left(\partial_{\xi}^{\alpha} a_{1}(x, \xi)\right)\left(\partial_{x}^{\alpha} a_{2}(x, \xi)\right) \\
= & (N+1) \sum_{|\alpha|=N+1} \frac{1}{\alpha!} \text { Os- } \iint e^{-i y \eta} r_{\alpha}(x, \xi, y, \eta) d y d \eta,
\end{aligned}
$$

with

$$
=\int_{0}^{1}\left[\left.\left.r_{\xi^{\prime}}^{\alpha} p_{1}\left(x^{\prime}, \xi^{\prime}\right)\right|_{\substack{\xi^{\prime}=\xi+\theta, \eta \\ x^{\prime}=x}} \partial_{x^{\prime}}^{\alpha} p_{2}\left(x^{\prime}, \xi^{\prime}\right)\right|_{\substack{\xi^{\prime}=\xi \\ x^{\prime}=x+y}}(1-\theta)^{N}\right] d \theta .
$$

Elliptic Pseudodifferential operators

Definition

A symbol $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is called globally elliptic in the class $\operatorname{Hyp}_{\rho, \delta}^{m, m_{0}}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, if for some $R>0$,

$$
\langle | \xi\left\rangle^{m_{0}} \lesssim\right| a(x, \xi)|, \quad| \xi \mid \geq R, x \in \mathbb{R}^{d}
$$

Elliptic Pseudodifferential operators

Definition

A symbol $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is called globally elliptic in the class $\operatorname{Hyp}_{\rho, \delta}^{m, m_{0}}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, if for some $R>0$,

$$
\langle | \xi\left\rangle^{m_{0}} \lesssim\right| a(x, \xi)|, \quad| \xi \mid \geq R, x \in \mathbb{R}^{d}
$$

Norm:

$$
|a|_{\mathrm{Hyp}_{\mathrm{k}_{1}, k_{2} ; \delta, \rho}^{m_{0}}}=\sup _{\substack{|\alpha| \leq k_{1} \\|\beta| \leq k_{2}}} \sup _{x} \sup _{|\xi| \geq R}\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta}\left[\frac{1}{a(x, \xi)}\right]\right|\langle | \xi| \rangle^{-m_{0}+|\alpha| \delta}\langle | x| \rangle^{-\rho|\beta|} .
$$

Elliptic Pseudodifferential operators

Problem

Given f, when the equation

$$
a\left(x, D_{x}\right) u=f
$$

has a solution.
Corollary
Let $a \in \operatorname{Hyp}_{\rho, \delta}^{m, m_{0}}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be an elliptic symbol. Then there exists some $q \in S_{1,0}^{-m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that

$$
q\left(x, D_{x}\right) a\left(x, D_{x}\right)=I+r\left(x, D_{x}\right), \quad a\left(x, D_{x}\right) q\left(x, D_{x}\right)=I+r^{\prime}\left(x, D_{x}\right)
$$

with $r, r^{\prime} \in S_{1,0}^{-1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

Elliptic Pseudodifferential operators

From the Commutator estimate it follows:

$$
r(x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \frac{1}{p(x, \xi)} \partial_{x}^{\alpha} p(x, \xi)
$$

Reminder term of the first Taylor approximation:

$$
r_{\alpha}(x, \xi, y, \eta)=\int_{0}^{1}\left[\partial_{\xi^{\prime}}^{\alpha} 1 /\left.\left.p_{1}\left(x^{\prime}, \xi^{\prime}\right)\right|_{\substack{\xi^{\prime}=\xi+\theta \eta \\ x^{\prime}=x}} \partial_{x^{\prime}}^{\alpha} p_{1}\left(x^{\prime}, \xi^{\prime}\right)\right|_{\substack{\xi^{\prime}=\xi \\ x^{\prime}=x+y}}\right] d \theta .
$$

Elliptic Pseudodifferential operators

Theorem
(E.H. and Pani, 2017) Let
$a \in \mathcal{A}_{2 d+3, d+2 ; 1,0}^{-1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \cap \operatorname{Hyp}_{d+1,0 ; 1,0}^{\kappa}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then, the operator $a\left(x, D_{x}\right)$ is invertible and we have

$$
|u|_{B_{p, r}^{m+\kappa}} \leq C|a|_{\text {Hyp }_{d+1,0 ; 1,0}^{\kappa}}\left(1+|a|_{\mathcal{A}_{2 d+3, d+2 ; i, 0}^{0}}\right)|f|_{B_{p, r}^{m},}, \quad f \in B_{p, r}^{m}\left(\mathbb{R}^{d}\right)
$$

Elliptic Pseudodifferential operators

Idea

- Decomposition in high and low mode, i.e.

$$
a(x, \xi)=\chi_{R}(\xi) a(x, \xi)+\left(1-\chi_{R}(\xi)\right) a(x, \xi)
$$

- Problem to solve $a_{1}\left(x, D_{x}\right) u=f$ with Ansatz $q(x, \xi):=1 / a_{1}(x, \xi)$;
- We know

$$
q\left(x, D_{x}\right) f=q\left(x, D_{x}\right) a_{1}\left(x, D_{x}\right) u=\left[I+r_{R}\left(x, D_{x}\right)\right] u
$$

- $\left|q\left(x, D_{x}\right) f\right|_{B_{p, q}^{m+\kappa}} \leq\left|q\left(x, D_{x}\right)\right|_{\mathcal{A}_{d+1,0,1,0}^{k}}|f|_{B_{p, q}^{m},}$;
- the norm of r_{R} tends to zero as $R \rightarrow \infty$ and it is smoothing.

Analytic semigroups

Definition

Let X be a Banach space and let A be the generator of a degenerate analytic C_{0}-semigroup on X. We say that A is of type (ω, θ, K), where $\omega \in \mathbb{R}, \theta \in\left(0, \frac{\pi}{2}\right)$ and $K>0$, if $\omega+\Sigma_{\frac{\pi}{2}+\theta} \subseteq \rho(A)$ and

$$
|\lambda-\omega|\left\|(\lambda+A)^{-1}\right\|_{\mathcal{L}(X)} \leq K \quad \text { for all } \lambda \in \omega+\Sigma_{\frac{\pi}{2}+\theta}
$$

The semigroup of pseudo differential operators

Theorem (see Pazy)
A linear unbounded operator A of a strongly continuous semigroup generates an analytic semigroup in E, if there exists a constant $C>0$ such that for every $\sigma>0, \tau \neq 0$, we have

$$
\|R(\sigma+i \tau ; A)\|_{L(E ; E)} \leq \frac{C}{|\tau|}
$$

Here $R(\lambda ; A)$ denotes the resolvent, i.e. the inverse of $\lambda+A$.

The semigroup of pseudo differential operators

Theorem
(E.H. and Pani) Let $a \in \mathcal{A}_{2 d+2, d+1 ; 1,0}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \cap \operatorname{Hyp}_{2 d+2, d+1 ; 1,0}^{m}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then $a\left(x, D_{x}\right)$ generates an analytic semigroup in $B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$.

Remark

$p, q=\infty$ does not work, since $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is not dense in $B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$.

The semigroup of pseudo differential operators

Aim
Let B be a pseudodifferential operator with symbol $b(x, \xi)$. Estimates of

$$
\left|B \mathcal{P}_{t} f\right|_{B_{p, q}^{m}} \lesssim t^{?}|f|_{B_{p, q}^{r}}
$$

The semigroup of pseudo differential operators

Aim
Let B be a pseudodifferential operator with symbol $b(x, \xi)$. Estimates of

$$
\left|B \mathcal{P}_{t} f\right|_{B_{p, q}^{m}} \lesssim t^{?}|f|_{B_{p, q}^{r}}
$$

Example
Transition density $p(t, x, y)=\mathcal{P}_{t} \delta_{x}$;

$$
\left|\mathcal{P}_{t} f\right|_{B_{\infty, \infty}^{n}} \lesssim t^{?}|f|_{B_{\infty, \infty}^{d}}
$$

The semigroup of pseudo differential operators

Aim
Let B be a pseudodifferential operator with symbol $b(x, \xi)$. Estimates of

$$
\left|B \mathcal{P}_{t} f\right|_{B_{p, q}^{m}} \lesssim t^{?}|f|_{B_{p, q}^{r}}
$$

Example

Transition density $p(t, x, y)=\mathcal{P}_{t} \delta_{x}$;

$$
\left|\mathcal{P}_{t} f\right|_{B_{\infty, \infty}^{n}} \lesssim t^{?}|f|_{B_{\infty, \infty}^{d}}
$$

Problem

The expression $e^{-t \phi(\xi)}$ is nice defined, but in case the symbol depends on x, we were not able to give any meaning to the symbol $e^{-t \phi(\xi)}$.

The semigroup of pseudo differential operators

Representation of the semigroup:
The symbol of the semigroup can be written as follows

$$
\mathcal{P}(t, x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} R(\lambda: a(x, \xi)) d \lambda
$$

where Γ is the path composed from the two rays $\rho e^{i \delta}$ and $\rho e^{-i \delta}$, $0<\rho<\infty$ and $\frac{\pi}{2}<\delta<\pi 2 \delta$. Γ is oriented so that $\Im \lambda$ increases along Γ.

Analytic semigroups

Proposition

(see Cox and E.H.) Let X be a Banach space. Let A_{0} be the generator of a degenerate analytic C_{0}-semigroup T on X and let B be a possibly unbounded operator acting on X. Suppose A_{0} is of type (ω, θ, K) for some $\omega \in \mathbb{R}, \theta \in\left(0, \frac{\pi}{2}\right)$ and $K>0$. Suppose there exist an $\epsilon \in[0,1)$ and a constant $C\left(A_{0}, B\right)$ such that for all $\lambda \in \omega+\Sigma_{\frac{\pi}{2}+\theta}$ one has:

$$
\left\|\left(\lambda-A_{0}\right)^{-1} B\right\|_{L(X, X)} \leq C\left(A_{0}, B\right)|\lambda-\omega|^{\varepsilon-1}
$$

Then for all $t>0$ we have:

$$
\left\|T_{0}(t) B\right\|_{L(X, X)} \leq 2 \Gamma(\varepsilon)[\sin \theta]^{-1} C\left(A_{0}, B\right) e^{\omega t} t^{-\varepsilon}
$$

Hoh's-Jacob's symbol and pseudo differential operators

Corollary
(P. Razafimandimby, E.H., Pani 2017)

- Given an infinitesimal operators of a Lévy process A_{0} with symbol ψ such that
- ψ is of type (ω, θ);
- has lower index α^{-}of order [d/2]
- An pseudodifferential operator B with symbol φ such that φ has upper index β^{+}of order [d/2].

Then

$$
\begin{equation*}
\left\|\mathcal{P}_{t} B x\right\|_{H^{s}(\mathbb{R})} \leq \frac{C}{\sin \theta} t^{-\frac{\beta^{+}}{\alpha^{-}}}\|x\|_{H^{s}(\mathbb{R})}, \quad x \in L^{2}(\mathbb{R}) . \tag{1}
\end{equation*}
$$

where $\mathcal{P}=(\mathcal{P}(t))_{t \geq 0}$ is the Markovian semigroup associated to the Lévy process with infinitesimal generator A_{0}.

Outline

(1) Motivation
(2) Pseudo Differential Operators

- Lévy's symbol
- Hoh's-Jacob's symbol
(3) Pseudodifferential operators
(4) Application
(5) Future works

Strong Feller Property

Theorem

If L is a Lévy process with Blumenthal-Getoor index $0<\delta<2$ of order $2 d+3$ and $\sigma \in C_{b}^{d+1}\left(\mathbb{R}^{d}\right)$ is bounded away from zero, then the process defined by

$$
d X(t, x)=\sigma(X(t, x)) d L(t) ; \quad X(0, x)=x
$$

is strong Feller. In particular, we have for any $\gamma<\delta$ and $\rho<2 \gamma / \delta$

$$
\begin{equation*}
\left|\mathcal{P}_{t} u\right|_{C_{0}^{\gamma}\left(\mathbb{R}^{d}\right)}=\left|\mathcal{P}_{t} u\right|_{B_{\infty, \infty}^{\gamma}\left(\mathbb{R}^{d}\right)} \leq \frac{K_{d}}{t^{\rho}}|u|_{L^{\infty}\left(\mathbb{R}^{d}\right)} . \tag{2}
\end{equation*}
$$

Weak error Estimate - one dimension

- Fix a truncation parameter $0<\epsilon<1$;
- $\nu_{\epsilon}[B):=\nu(B \cap(-\infty, \epsilon) \cap(\epsilon, \infty)), B \in \mathcal{B}(\mathbb{R})$;
- \tilde{L}_{ϵ} be the Lévy process with Lévy measure ν_{ϵ};
- W_{ϵ} be the Wiener process with variance Σ given by

$$
\Sigma(\epsilon)=\int_{[-\epsilon, \epsilon]^{d}}\langle y, y\rangle \nu(d y)
$$

Weak error Estimate - one dimension

- Fix a truncation parameter $0<\epsilon<1$;
- $\nu_{\epsilon}[B):=\nu(B \cap(-\infty, \epsilon) \cap(\epsilon, \infty)), B \in \mathcal{B}(\mathbb{R})$;
- \tilde{L}_{ϵ} be the Lévy process with Lévy measure ν_{ϵ};
- W_{ϵ} be the Wiener process with variance Σ given by

$$
\Sigma(\epsilon)=\int_{[-\epsilon, \epsilon]^{d}}\langle y, y\rangle \nu(d y)
$$

Then

$$
\hat{L}=\tilde{L}_{\epsilon}+W_{\epsilon}
$$

has the following symbol for the Markovian generator

$$
\psi_{\epsilon}(\xi)=\int_{\mathbb{R}}\left(e^{i \xi y}-1\right) \nu_{\epsilon}(d y)-\Sigma(\epsilon) \xi^{2}
$$

Weak error Estimate

Theorem

Let us assume $\sigma \in C_{b}^{d+1}\left(\mathbb{R}^{d}\right)$. If σ is bounded away from zero, then for $\alpha \in(1,2), r_{1}, r_{2} \in(0,1)$ such that $r_{1}+r_{2}>1$ and $2 r_{1}>r_{2}$ with $\delta_{1}=\frac{\alpha r_{2}}{2}$ and $\delta_{2}=\alpha\left(r_{1}-\frac{r_{2}}{2}\right)$,

$$
\left\|\mathcal{P}_{t}-\hat{\mathcal{P}}_{t}^{\epsilon}\right\|_{L\left(B_{\infty}^{-\delta_{2},}, B_{\infty, \infty}^{\delta_{1}}\right)} \leq C t^{\alpha\left(r_{1}+r_{2}\right)-1} \epsilon^{(2-\alpha)} .
$$

Weak error Estimate

Theorem

Let us assume $\sigma \in C_{b}^{d+1}\left(\mathbb{R}^{d}\right)$. If σ is bounded away from zero, then for $\alpha \in(1,2), r_{1}, r_{2} \in(0,1)$ such that $r_{1}+r_{2}>1$ and $2 r_{1}>r_{2}$ with $\delta_{1}=\frac{\alpha r_{2}}{2}$ and $\delta_{2}=\alpha\left(r_{1}-\frac{r_{2}}{2}\right)$,

$$
\left\|\mathcal{P}_{t}-\hat{\mathcal{P}}_{t}^{\epsilon}\right\|_{L\left(B_{\infty}^{-\delta_{2},}, B_{\infty, \infty}^{\delta_{1}}\right)} \leq C t^{\alpha\left(r_{1}+r_{2}\right)-1} \epsilon^{(2-\alpha)} .
$$

Idea:

$$
\begin{aligned}
& R(\lambda: \psi(\sigma(x) \xi))-R\left(\lambda: \psi_{\epsilon}(\sigma(x) \xi)\right) \\
& \quad=R(\lambda: \psi(\sigma(x) \xi)) \underbrace{\left[\psi \left(\sigma(x) \xi-\psi_{\epsilon}(\sigma(x) \xi]\right.\right.}_{\epsilon^{2-\alpha}} R\left(\lambda: \psi_{\epsilon}(\sigma(x) \xi)\right) .
\end{aligned}
$$

Outline

(1) Motivation
(2) Pseudo Differential Operators

- Lévy's symbol
- Hoh's-Jacob's symbol
(3) Pseudodifferential operators
(4) Application
(5) Future works

Remaining work for the future

- Regularity in x - can this regularity be relaxed?
- Relation to criteria coming from Malliavin calculus

Thank you for the attention

