A stochastic McKean–Vlasov equation arising in finance

Ben Hambly Mathematical Institute, University of Oxford joint work with Sean Ledger, Andreas Søjmark

11 July 2017

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

The financial motivation

- Credit risk is the risk of default on a payment by an obligor.
- Portfolio credit derivatives, such as CDOs, were constructed to repackage default risk of many obligors for sale to those with different risk appetites.
- A portfolio consists of $N \ge 1$ defaultable assets with random default times $\{\tau^i\}_{1 \le i \le N}$,
- Options on the proportional loss process are

$$L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \leq t}, \qquad \text{payoff} = \Psi\Big((L^N)_{t \in [0,T]}\Big)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

For CDO tranches the payoff Ψ is piecewise linear.

• Correlations matter: defaults tend to cluster.

Model framework

- Want a model for generating τ^i
- Structural model: assign *distance-to-default* process, Xⁱ
- When Xⁱ hits zero, default is triggered:

$$\tau^i := \inf\{t > 0 : X_t^i \le 0\}.$$

A Simple model

$$dX_t^i = \mu dt +
ho dW_t + \sqrt{1 -
ho^2} dW_t^i$$

 $X_0^i \sim
u_0$

- Take a limit as $N o \infty$,
- Study the empirical processes

$$\nu_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{t < \tau^i} \delta_{X_t^i} \in \mathcal{M}$$

• $L_t^N = 1 - \nu_t^N((0, \infty)).$

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

・ロン ・回 と ・ ヨン ・ ヨン

æ

Limit $N \to \infty$

•
$$\nu_t^N(S) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{X_t^i \in S; t < \tau^i} \to \mathbb{P}(X_t^1 \in S; t < \tau^1 | W),$$

• If we write
$$u_t(\phi) = \int \phi d
u_t$$

The SPDE in weak form

$$d\nu_t(\phi) = \mu\nu_t(\partial_x\phi)dt + \frac{1}{2}\nu_t(\partial_{xx}\phi)dt + \rho\nu_t(\partial_x\phi)dW_t$$

$$\phi(0) = 0.$$

• If ν has a density V it will satisfy

The SPDE

$$dV_t = -\mu \partial_x V_t dt + \frac{1}{2} \partial_{xx} V_t dt - \rho \partial_x V_t dW_t$$

$$V_t(0) = 0.$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

The heat map for the evolution started from a dirac mass when $\rho = 0$ and $\rho > 0$.

・ロン ・回と ・ヨン・

æ

The loss function in the two cases

If ν_0 has an L^2 density, then ν_t has an H^1 density V but $xV_{xx} \in L^2$ (first observed by Krylov).

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis

- Need asymptotics for 2d Brownian motion near the apex of a cone.

• Ledger (2014) - the regularity of the SPDE at 0 is a function of ρ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean–Vlasov equation arising in finance

Regularity

Let $w_c(x) = x^c \exp(-x)$ for x > 0 be a weight function. Let $\alpha = \pi/2 + \arcsin \rho$.

Theorem (Ledger)

If V_0 is bounded there exists a unique solution to the SPDE in the class of finite measure valued processes. For almost all $(\omega, t) \in \Omega \times [0, T]$, ν_t has a density V_t on $(0, \infty)$. Furthermore, suppose V_0 is n times weakly differentiable in $(0, \infty)$ and that for k = 0, 1, ..., n we have

$$\|\mathbf{w}_{k-\beta/2}\mathbf{V}_0\|_2 < \infty, \ \forall \beta \in (-\infty, \pi/\alpha - 1).$$

Then, for almost all $(\omega, t) \in \Omega \times [0, T]$ we have V_t is n + 1 times weakly differentiable and for k = 0, 1, ..., n + 1

$$\mathsf{E}\int_0^T \|w_{k-\beta/2}V_t\|_2^2 dt < \infty, \ \forall \beta \in (-\infty, \pi/\alpha - 1).$$

• Model very simple, lots of extensions:

イロン 不同と 不同と 不同と

æ

- Model very simple, lots of extensions:
- More general coefficients,
- Jump processes, Bujok and Reisinger (2012)
- Stochastic volatility, H. and Kolliopoulos (2017)
- *Numerical problems* (MLMC): Giles and Reisinger (2012); Reisinger and Wang (2016)
- *Mortgage-backed securities model*, Ahmad, H and Ledger (2016)
- CLT/Fluctuations, Giesecke, Spiliopoulos, Sirignano (2014)
- Our interest will be incorporating loss-dependent correlation and contagion effects in such structural models.

Skew

• The model is too simple as we cannot choose one *ρ* to match all traded tranche spreads, there is *correlation skew* or *smile*,

 A practioner approach is to make ρ a function of the loss in the system.

Loss-dependent model $dX_t^{i,N} = \rho(L_t^N) dW_t + \sqrt{1 - \rho^2(L_t^N)} dW_t^i$

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean–Vlasov equation arising in finance

Loss dependent example

Here we have an exaggerated loss dependent correlation

$$\rho\left(\ell\right) = \begin{cases} 0 & \text{if } \ell \in \left[0, \frac{1}{5}\right) \cup \left[\frac{2}{5}, \frac{3}{5}\right) \cup \left[\frac{4}{5}, 1\right] \\ \frac{9}{10} & \text{if } \ell \in \left[\frac{1}{5}, \frac{2}{5}\right) \cup \left[\frac{3}{5}, \frac{4}{5}\right). \end{cases}$$

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean–Vlasov equation arising in finance

Conditions

• We can consider general case

$$X_{t}^{i,N} = X_{0}^{i} + \int_{0}^{t} \mu(s, X_{s}^{i,N}, L_{s}^{N}) ds + \int_{0}^{t} \sigma(s, X_{s}^{i,N}) \rho(s, L_{s}^{N}) dW_{s} + \int_{0}^{t} \sigma(s, X_{s}^{i,N}) (1 - \rho(s, L_{s}^{N})^{2})^{\frac{1}{2}} dW_{s}^{i}.$$
 (1)

- Piecewise constant ρ across tranches desirable.
- Allow finitely many discontinuities: piecewise Lipschitz ρ
- Need $0 \leq
 ho(\ell) \leq
 ho_{\mathsf{max}} < 1$, to prevent degeneracy
- Challenges: need to deal with boundary effects but correlation too complicated to do explicit calculations.
- For convergence, discontinuous ρ is bad. The key is to show limit points must have strictly increasing loss process.

伺 と く き と く き と

Coefficient assumptions

Let $\mu : [0, T] \times \mathbb{R} \times [0, 1] \to \mathbb{R}$, $\sigma : [0, T] \times \mathbb{R} \to [0, \infty)$ and $\rho : [0, T] \times [0, 1] \to [0, 1)$ be the coefficients in (1) and ν_0 be the common law of the initial values of the distance-to-default processes. We assume that we have a sufficiently large constant, $C \in (1, \infty)$, such that all the following hold:

(i) (Initial condition) The probability measure ν_0 is supported on $(0,\infty)$, has a density $V_0 \in L^2(0,\infty)$ and satisfies for every $\alpha > 0$,

$$u_0(\lambda,\infty) = o(\exp\{-\alpha\lambda\}), \quad \text{as } \lambda \to +\infty.$$

(ii) (Spatial regularity) For all fixed $t \in [0, T]$ and $\ell \in [0, 1]$, $\mu(t, \cdot, \ell), \sigma(t, \cdot) \in C^2(\mathbb{R})$ with

$$|\partial_x^n \mu(t,x,\ell)|, |\partial_x^n \sigma(t,x)| \leq C$$

- ◆ 臣 → ----

for all $t \in [0, T]$, $x \in \mathbb{R}$, $\ell \in [0, 1]$ and n = 0, 1, 2,

(iii) (Non-degenerate) For all $t \in [0, T]$, $x \in \mathbb{R}$, $\ell \in [0, 1]$

$$\sigma(t,x)\geq C^{-1}>0,\qquad 0\leq \rho(t,\ell)\leq 1-C^{-1}<1,$$

(iv) (Piecewise Lipschitz in loss) There exists $0 = \theta_0 < \theta_1 < \cdots < \theta_k = 1$ such that

$$|\mu(t,x,\ell)-\mu(t,x,ar{\ell})|, |
ho(t,\ell)-
ho(t,ar{\ell})|\leq C|\ell-ar{\ell}|,$$

whenever $t \in [0, T]$, $x \in \mathbb{R}$ and both $\ell, \overline{\ell} \in [\theta_{i-1}, \theta_i)$ for some $i \in \{1, 2, ..., k\}$,

(v) (Integral constraint) $\sup_{s \in [0,T]} \int_0^\infty |\partial_t \sigma(s,y)| dy < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regularity conditions

Let ν be a càdlàg process taking values in the space of sub-probability measures on \mathbb{R} . The regularity condition on ν are

- (i) (Loss function) The loss $L_t := 1 \nu_t(0, \infty)$ is non-decreasing at all times and is strictly increasing when $L_t < 1$,
- (ii) (Support) For every $t \in [0, T]$, ν_t is supported on $[0, \infty)$,
- (iii) (Exponential tails) For every $\alpha > 0$

$$\mathsf{E}\int_0^T
u_t(\lambda,+\infty) dt = o(e^{-lpha\lambda}), \qquad ext{as } \lambda o \infty,$$

(iv) (Boundary decay) There exists $\beta > 0$ such that

$$\mathsf{E}\int_0^T
u_t(0,arepsilon) dt = O(arepsilon^{1+eta}), \qquad ext{as } arepsilon o 0,$$

(v) (Spatial concentration) There exists C>0 and $\delta>0$ such that

$$\mathsf{E}\int_0^T |
u_t(a,b)|^2 dt \leq C|b-a|^{\delta}, \qquad ext{for all } a < b.$$

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean–Vlasov equation arising in finance

We state these for the simple case of $\mu = 0, \sigma = 1$.

Theorem (Tightness/Weak existence)

The sequence of triples $(\nu^N, L^N, W)_{N\geq 1}$ are tight (with suitable topology). If (ν^*, L^*, W) realises a limiting law, then

$$d\nu_t^*(\phi) = \frac{1}{2}\nu_t^*(\partial_{xx}\phi)dt + \rho(L_t)\nu_t^*(\partial_x\phi)dW_t$$
$$L_t^* = 1 - \nu_t^*(0,\infty),$$

[+ regularity conditions.] where $\phi \in C^{test} = \{f \in C^2 : f(0) = 0\}.$

Theorem (Pathwise uniqueness/LLN)

Under the assumptions on regularity, for a given W, the SPDE has at most one solution ν in $(D_{S'}, M1)$. The limit for the associated loss process L is unique in $(D_{\mathbb{R}}, M1)$. Hence there is a unique law of a solution (ν, L, W) and we have the sequence (ν^N, L^N, W) converges to (ν, L, W) as $N \to \infty$.

Corollary

With probability 1, for every
$$t \in [0, T]$$
, there exists $V_t \in L^2([0, \infty))$ such that

$$u_t(\phi) = \int_0^\infty \phi(x) V_t(x) dx, \qquad \phi \in L^2(0,\infty).$$

イロト イポト イラト イラト 一日

The result can be expressed as a stochastic M-V problem.

M–V problem

For any independent B.M. W^{\perp} there exists a process X satisfying

$$\begin{split} dX_t &= \rho(L_t) dW_t + \sqrt{1 - \rho(L_t)^2} \, dW_t^{\perp} \\ \tau &:= \inf\{t > 0 : X_t \le 0\} \\ \nu_t(\phi) &= \mathbb{E}[\phi(X_t) \mathbf{1}_{t < \tau} | W], \qquad L_t = \mathbb{P}(\tau \le t | W). \end{split}$$

The law of (X, W) is unique.

・ 同 ト ・ ヨ ト ・ ヨ ト

Methods

- Can't prove sharp second-order boundary estimates, because we cannot estimate the correlation between particles.
- This is an obstruction to both existence and uniqueness.

・ 回 と ・ ヨ と ・ ヨ と

3

Methods

- Can't prove sharp second-order boundary estimates, because we cannot estimate the correlation between particles.
- This is an obstruction to both existence and uniqueness.
- Need weaker methods
- *Existence*: Skorokhod M1 topology gives tightness because loss function is monotone
- Adapt the topology to space of distributions (Ledger 2016)
- Gives limit points solving the limiting equations

(4月) (4日) (4日)

Methods

- Can't prove sharp second-order boundary estimates, because we cannot estimate the correlation between particles.
- This is an obstruction to both existence and uniqueness.
- Need weaker methods
- *Existence*: Skorokhod M1 topology gives tightness because loss function is monotone
- Adapt the topology to space of distributions (Ledger 2016)
- Gives limit points solving the limiting equations
- Uniqueness: Work in a weaker Sobolev space, H^{-1} , so that only first moment estimates are needed. There is no need for correlations.
- Additional stopping and regularity arguments are needed for discontinuous coefficients.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N,$$

$$L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

▲帰▶ ★ 国▶ ★ 国▶

• Ambiguity for jump size, smallest allows system to be càdlàg

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N,$$

$$L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

イロト (部) (日) (日) (日) (日)

• Ambiguity for jump size, smallest allows system to be càdlàg \hat{f}

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N,$$

$$L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• Ambiguity for jump size, smallest allows system to be càdlàg

t

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N,$$

$$L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

• Ambiguity for jump size, smallest allows system to be càdlàg

t

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

• Ambiguity for jump size, smallest allows system to be càdlàg

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

• Ambiguity for jump size, smallest allows system to be càdlàg

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

• Ambiguity for jump size, smallest allows system to be càdlàg

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

Ambiguity for jump size, smallest allows system to be càdlàg
 Ambiguity for jump size, smallest allows system to be càdlàg

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N$$

Ambiguity for jump size, smallest allows system to be càdlàg
 Ambiguity for jump size, smallest allows system to be càdlàg

 $\mathbf{1}_{\tau^i < t}$

- If a default occurs, each particle receives a kick of $\frac{\alpha}{N}$ towards the boundary, $\alpha > 0$ interesting case positive feedback
- We drop the common noise term for simplicity

Discrete model

$$X_t^i = X_0^i + B_t^i - \alpha L_t^N, \qquad \qquad L_t^N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\tau^i \le t}$$

• Ambiguity for jump size, smallest allows system to be càdlàg

t

伺下 イヨト イヨト

Limiting equations

McKean–Vlasov problem (MV)

$$X_t = X_0 + B_t - \alpha L_t$$

$$\tau = \inf\{t > 0 : X_t \le 0\}$$

$$L_t = \mathbb{P}(\tau \le t)$$

回 と く ヨ と く ヨ と

Limiting equations

McKean–Vlasov problem (MV)

$$\begin{aligned} X_t &= X_0 + B_t - \alpha L_t \\ \tau &= \inf\{t > 0 : X_t \le 0\} \\ L_t &= \mathbb{P}(\tau \le t) \end{aligned}$$

PDE problem

$$d\nu_t(\phi) = \frac{1}{2}\nu_t(\partial_{xx}\phi)dt - \alpha\nu_t(\partial_x\phi)dL_t$$
$$L_t = 1 - \int \nu_t(dx), \qquad \nu_t(\phi) = \mathbb{E}[\phi(X_t)\mathbf{1}_{t<\tau}]$$

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

(4回) (4回) (4回)

æ

Limiting equations

McKean–Vlasov problem (MV)

$$\begin{aligned} X_t &= X_0 + B_t - \alpha L_t \\ \tau &= \inf\{t > 0 : X_t \le 0\} \\ L_t &= \mathbb{P}(\tau \le t) \end{aligned}$$

PDE problem

$$d\nu_t(\phi) = \frac{1}{2}\nu_t(\partial_{xx}\phi)dt - \alpha\nu_t(\partial_x\phi)dL_t$$
$$L_t = 1 - \int \nu_t(dx), \qquad \nu_t(\phi) = \mathbb{E}[\phi(X_t)\mathbf{1}_{t<\tau}]$$

Fixed-point problem

Let $\Gamma: L \to P(\tau^{L} < .)$ be the map taking the input loss function to its output. The fixed point satisfies $\int_{0}^{\infty} \Phi\left(-\frac{x - \alpha \ell_{t}}{t^{1/2}}\right) \nu_{0}(dx) = \int_{0}^{t} \Phi\left(\alpha \frac{\ell_{t} - \ell_{s}}{(t - s)^{1/2}}\right) d\Gamma[\ell]_{t}.$

ヘロン 人間 とくほと くほとう

- Model in neuroscience: Delarue, Inglis, Rubenthaler, Tanré, 2015
- Essential difficulties are the same
- Show unique C^1 solution for small enough α , $\nu_0 = \delta_x x > 0$
- In another paper, Delarue, Inglis, Rubenthaler, Tanré, 2015, also give existence for all α , as limit points of particle system, with *physical jump condition*
- Initial ν_0 zero near zero
- Related financial model: Nadtochiy, Shkolnikov, 2017. Uniqueness up to a blow-up where L^2 norm of derivative blows-up, ν_0 has H^1 density V_0 with $V_0(0) = 0$, so $V_0(x) = O(x^{1/2})$

Blow-ups

- If α is large enough, no solution can be continuous for all times, Cáceres, Carrillo, Perthame (2011)
- Jump in loss must occur

• Claim: If $\alpha > 2m_0$ where $\nu_0 = \delta_{m_0}$, then L cannot be continuous for all time.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

- Claim: If $\alpha > 2m_0$ where $\nu_0 = \delta_{m_0}$, then L cannot be continuous for all time.
- Proof:

$$0 \leq X_{t \wedge \tau} = X_0 + B_{t \wedge \tau} - \alpha L_{t \wedge \tau}$$

Take expectation

$$m_0 \geq \alpha \mathbb{E}[L_{t \wedge \tau}].$$

• By comparison with B.M. $\tau < \infty$ a.s. $L_\infty = 1$

$$m_0 \geq \alpha \mathbb{E}[L_{\tau}] = \alpha \int_0^\infty L_s dL_s = \frac{\alpha}{2} (L_{\infty}^2 - L_0^2) = \frac{\alpha}{2}$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

3

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

What is happening at jumps?

- Before jump ν_{t-}
- If jump in loss is ΔL_t , then push-down by $-\alpha \Delta L_t$

イロト イポト イヨト イヨト 二日

• Mass lost must equal ΔL_t , so

$$\nu_{t-}(0,\alpha\Delta L_t)=\Delta L_t.$$

- Choose smallest jump allowing càdlàg solution
- $\Delta L_t = \inf\{x > 0 : \nu_{t-}(0, \alpha x) < x\}$

What is happening at jumps?

- Before jump ν_{t-}
- If jump in loss is ΔL_t , then push-down by $-\alpha \Delta L_t$

• Mass lost must equal ΔL_t , so

$$\nu_{t-}(0,\alpha\Delta L_t)=\Delta L_t.$$

- Choose smallest jump allowing càdlàg solution
- $\Delta L_t = \inf\{x > 0 : \nu_{t-}(0, \alpha x) < x\}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙

What is happening at jumps?

- Before jump ν_{t-}
- If jump in loss is ΔL_t , then push-down by $-\alpha \Delta L_t$

• Mass lost must equal ΔL_t , so

$$\nu_{t-}(0,\alpha\Delta L_t)=\Delta L_t.$$

- 4 同 2 4 日 2 4 日 2

- Choose smallest jump allowing càdlàg solution
- $\Delta L_t = \inf\{x > 0 : \nu_{t-}(0, \alpha x) < x\}$

Global uniqueness?

Conjecture

There exists a unique solution to (MV) satisfying the natural-jump/minimal-jump condition. Jumps according to rule, between jumps C^1 with \sqrt{t} singularities.

高 とう モン・ く ヨ と

Global uniqueness?

Conjecture

There exists a unique solution to (MV) satisfying the natural-jump/minimal-jump condition. Jumps according to rule, between jumps C^1 with \sqrt{t} singularities.

- \bullet Obstruction: after a jump the solution is $\asymp 1$ near the boundary
- \Rightarrow L_t grows at least as fast as \sqrt{t} near t=0
- $L_t' \asymp t^{-1/2}$, Girsanov tricks just fail in this case

Main problem

Show small time uniqueness for (MV) started from initial law ν_0 satisfying only inf{ $\nu_0(0, \alpha x) < x$ } = 0.

• Cannot yet attack problem started from density V_0 with $V_0(x) \ge \delta > 0$ near zero, for δ as small as you like.

Currrent work

With S. Ledger, A. Søjmark, we can start with density O(x^β), for β > 0, and we can add in the coefficients

•
$$O(x^{\beta})$$
 implies $L'_t = O(t^{-\frac{1-\beta}{2}})$

- Uniqueness in small time for $\beta>$ 0, uniqueness in small α for $\beta=$ 0, but don't know solution lives there
- Would like to add a common noise term

$$X_t = X_0 + B_t + \beta(t) - \alpha L_t$$

with β a Brownian sample path, for example.

- For any fixed α , β can be bad enough to cause a blow-up.
- Methods relying on differentiability of the loss function are really broken!
- H, Søjmark: In the case where we mollify *L*, we can add loss-dependent coefficients and common noise

(本部) (本語) (本語) (語)

- N. Bush, B.M. Hambly, H. Haworth, L. Jin, and C. Reisinger. Stochastic Evolution Equations in Portfolio Credit Modelling. SIAM Journal of Financial Mathematics, 2(1):627–664, 2011.
- M.J. Cáceres, J.A. Carrillo, and B. Perthame. Analysis of non-linear noisy integrate & fire neuron models: blow-up and steady states. *The Journal of Mathematical Neuroscience*, 1(7), 2011.
- F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. Global solvability of a networked integrate-and-fire model of McKean–Vlasov type, *Annals of Applied Probability* 25(4):2096–2133, 2015.
- F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. Particle systems with singular mean-field self-excitation. Application to neuronal networks, *Stochastic Processes and their Applications* 125(6): 2451–2492, 2015.
- K. Giesecke, J. Sirignano, K. Spiliopoulos. Fluctuation Analysis for the Loss From Default. *Stochastic Processes and their Applications*, 124(7):2322-2362, 2014.

Ben Hambly Mathematical Institute, University of Oxford join A stochastic McKean-Vlasov equation arising in finance

- B.M. Hambly and N. Kolliopoulos. Stochastic evolution equations for large portfolios of stochastic volatility models arXiv:1701.05640, 2017.
- B.M. Hambly and S. Ledger. A stochastic McKean–Vlasov equation for absorbing diffusions on the half-line. To appear *Annals of Applied Probability*. arXiv:1605.00669, 2016.
- S. Ledger. Sharp regularity near an absorbing boundary for solutions to second order SPDEs in a half-line with constant coefficients. *Stochastic Partial Differential Equations: Analysis and Computations*, 2(1):1–26, 2014
- C. Reisinger and Z. Wang. Analysis of Multi-Index Monte Carlo Estimators for a Zakai SPDE. arxiv:1612.02811, 2016.

- 本部 ト イヨ ト - - ヨ