London Mathematical Society EPSRC Durham Symposium Stochastic Analysis July 10-20, 2017

On numerical solutions of parabolic stochastic PDEs given on the whole space

by István Gyöngy

Maxwell Institute and School of Mathematics
University of Edinburgh
13 July, 2017

- Motivation, Nonlinear filtering
- Localisation error for SPDEs
- Finite difference schemes for the Zakai equation
- Truncated schemes
- Accelerated schemes

The talk is based on M. Gerencsér and I. G. (2017)

1. Motivation, Nonlinear filtering

Consider a partially observed system $Z_{t}=\left(X_{t}, Y_{t}\right)$ governed by

$$
\begin{align*}
& d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi \\
& d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=\eta \tag{1}
\end{align*}
$$

1. Motivation, Nonlinear filtering

Consider a partially observed system $Z_{t}=\left(X_{t}, Y_{t}\right)$ governed by

$$
\begin{align*}
& d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi \\
& d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=\eta \tag{1}
\end{align*}
$$

$b=b(x, y), B=B(x, y)$ are Lipschitz continuous vector fields, $\theta=\theta(x, y), \rho=\rho(x, y)$ are Lipschitz continuous matrix fields on $\mathbb{R}^{d+d_{1}}$,

1. Motivation, Nonlinear filtering

Consider a partially observed system $Z_{t}=\left(X_{t}, Y_{t}\right)$ governed by

$$
\begin{align*}
& d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi \\
& d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=\eta \tag{1}
\end{align*}
$$

$b=b(x, y), B=B(x, y)$ are Lipschitz continuous vector fields, $\theta=\theta(x, y), \rho=\rho(x, y)$ are Lipschitz continuous matrix fields on $\mathbb{R}^{d+d_{1}}$,
(W, V) multidimensional Wiener process,

1. Motivation, Nonlinear filtering

Consider a partially observed system $Z_{t}=\left(X_{t}, Y_{t}\right)$ governed by

$$
\begin{align*}
& d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi \\
& d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=\eta \tag{1}
\end{align*}
$$

$b=b(x, y), B=B(x, y)$ are Lipschitz continuous vector fields, $\theta=\theta(x, y), \rho=\rho(x, y)$ are Lipschitz continuous matrix fields on $\mathbb{R}^{d+d_{1}}$,
(W, V) multidimensional Wiener process, (ξ, η) is a random vector, independent of (W, V).

1. Motivation, Nonlinear filtering

Consider a partially observed system $Z_{t}=\left(X_{t}, Y_{t}\right)$ governed by

$$
\begin{align*}
& d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi \\
& d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=\eta \tag{1}
\end{align*}
$$

$b=b(x, y), B=B(x, y)$ are Lipschitz continuous vector fields, $\theta=\theta(x, y), \rho=\rho(x, y)$ are Lipschitz continuous matrix fields on $\mathbb{R}^{d+d_{1}}$,
(W, V) multidimensional Wiener process, (ξ, η) is a random vector, independent of (W, V).
Task: Calculate the mean square estimate $\hat{\phi}$ of $\varphi\left(X_{t}\right)$ from observations $\left(Y_{s}\right)_{s \in[0, t]}=: \mathcal{Y}_{t}$, i.e.,

$$
E\left|\hat{\varphi}-\varphi\left(X_{t}\right)\right|^{2}=\min _{f} E\left|f\left(Y_{[0, t]}\right)-\varphi\left(X_{t}\right)\right|^{2}
$$

Clearly,

$$
\hat{\varphi}=E\left(\varphi\left(X_{t}\right) \mid \mathcal{Y}_{t}\right)=\int_{\mathbb{R}^{d}} \varphi(x) P_{t}(d x)=\int_{\mathbb{R}^{d}} \varphi(x) \pi_{t}(x) d x
$$

where

$$
P_{t}(d x):=P\left(X_{t} \in d x \mid \mathcal{Y}_{t}\right)=\pi_{t}(x) d x
$$

One knows that under suitable conditions

$$
\pi_{t}=\frac{u_{t}}{\int_{\mathbb{R}^{d}} u_{t}(x) d x}
$$

where u is the solution of the Zakai equation:

$$
d u_{t}(x)=\mathcal{L}_{t} u_{t}(x) d t+\mathcal{M}_{t}^{k} u_{t}(x) d Y_{t}^{k}, \quad t \in[0, T], x \in \mathbb{R}^{d}
$$

Aim: Find numerical solutions to the Zakai equation by finite difference methods

Aim: Find numerical solutions to the Zakai equation by finite difference methods

Challenges:

- Zakai equation is in the whole \mathbb{R}^{d}
- It may degenerate (may not be uniformly parabolic)
- Methods of artificial boundary conditions do not work!

2. Localisation error for SPDEs

Consider

$$
\begin{align*}
d u_{t}(x) & =\mathcal{L}_{t} u_{t}(x) d t+\mathcal{M}_{t}^{k} u_{t}(x) d W_{t}^{k}, \quad t \in(0, T], x \in \mathbb{R}^{d} \tag{2}\\
u_{0}(x) & =\psi(x), \quad x \in \mathbb{R}^{d} \tag{3}
\end{align*}
$$

where

$$
\mathcal{L}_{t}=a_{t}^{i j}(x) D_{i} D_{j}+b_{t}^{i}(x) D_{i}+c_{t}(x), \quad \mathcal{M}_{t}^{k}=\sigma_{t}^{k i}(x) D_{i}+\mu_{t}^{k}(x)
$$

with random initial value and coefficients

$$
\mathcal{D}:=(\psi, a, b, c, \sigma, \mu)
$$

Assumption I.(stochastic parabolicity)

$$
\left(\alpha^{i j}\right):=\left(2 a^{i j}-\sigma^{i k} \sigma^{j k}\right) \geq 0
$$

Assumption II. There is an integer $m \geq 0$ and a constant K such that the derivatives in x of (a, b, c) up to order m and of (σ, μ) up to order $m+1$ are continuous in (t, x), are predictable in (ω, t) and are bounded by a constant K.
For some $p \geq 2$ the initial value ψ is W_{p}^{m}-valued \mathcal{F}_{0}-measurable.

Assumption I.(stochastic parabolicity)

$$
\left(\alpha^{i j}\right):=\left(2 a^{i j}-\sigma^{i k} \sigma^{j k}\right) \geq 0
$$

Assumption II. There is an integer $m \geq 0$ and a constant K such that the derivatives in x of (a, b, c) up to order m and of (σ, μ) up to order $m+1$ are continuous in (t, x), are predictable in (ω, t) and are bounded by a constant K.
For some $p \geq 2$ the initial value ψ is W_{p}^{m}-valued \mathcal{F}_{0}-measurable.
Theorem 1. Let Assumptions I-II hold with $m>2+d / p$. Then (2)-(3) has a unique classical solution u, i.e., u is predictable in (ω, t), almost surely $u \in C_{b}^{0,2}\left([0, T] \times \mathbb{R}^{d}\right)$, and (2)-(3) hold almost surely for all $x \in \mathbb{R}^{d}$ and $t \in[0, T]$.

Consider also

$$
\begin{align*}
d \bar{u}_{t}(x) & =\overline{\mathcal{L}}_{t} \bar{u}_{t}(x) d t+\overline{\mathcal{M}}_{t}^{k} \bar{u}_{t}(x) d W_{t}^{k}, \quad t \in(0, T], x \in \mathbb{R}^{d} \tag{4}\\
\bar{u}_{0}(x) & =\bar{\psi}(x), \quad x \in \mathbb{R}^{d}, \tag{5}
\end{align*}
$$

with

$$
\overline{\mathcal{L}}=\bar{a}_{t}^{i j}(x) D_{i} D_{j}+\bar{b}_{t}^{i}(x) D_{i}+\bar{c}_{t}(x), \quad \overline{\mathcal{M}}^{k}=\bar{\sigma}_{t}^{k i}(x) D_{i}+\bar{\mu}_{t}^{k}(x)
$$

such that almost surely

$$
\begin{equation*}
(\bar{\psi}, \bar{a}, \bar{b}, \bar{c}, \bar{\sigma}, \bar{\mu})=(\psi, a, b, c, \sigma, \mu) \quad \text { for }(t, x):=[0, T] \times B_{R}, \tag{6}
\end{equation*}
$$

where $B_{R}:=\left\{x \in \mathbb{R}^{d}:|x| \leq R\right\}$.

Aim: estimate the error $\bar{u}_{t}(x)-u_{t}(x)$.

Aim: estimate the error $\bar{u}_{t}(x)-u_{t}(x)$.
Set $\left(\bar{\alpha}^{i j}\right):=\left(2 \bar{a}^{i j}-\bar{\sigma}^{k i} \bar{\sigma}^{k j}\right)$.

Aim: estimate the error $\bar{u}_{t}(x)-u_{t}(x)$.
Set $\left(\bar{\alpha}^{i j}\right):=\left(2 \bar{a}^{i j}-\bar{\sigma}^{k i} \bar{\sigma}^{k j}\right)$.
Assumption III. The derivatives in x of $\theta:=\sqrt{\alpha}$ and $\bar{\theta}:=\sqrt{\bar{\alpha}}$ up to order $m+1$ are continuous in x and are bounded by K.

Aim: estimate the error $\bar{u}_{t}(x)-u_{t}(x)$.
Set $\left(\bar{\alpha}^{i j}\right):=\left(2 \bar{a}^{i j}-\bar{\sigma}^{k i} \bar{\sigma}^{k j}\right)$.
Assumption III. The derivatives in x of $\theta:=\sqrt{\alpha}$ and $\bar{\theta}:=\sqrt{\bar{\alpha}}$ up to order $m+1$ are continuous in x and are bounded by K.

Theorem 2.(L. Gerencsér-I.G. 2017) Let problems (2)-(3) and (4)-(5) satisfy Assumptions I, II and III with $m>d+p / 2$. Assume $\overline{\mathcal{D}}=\mathcal{D}$ a.s. on $[0, T] \times B_{R}$ for some $R>0$. Then for $r>1$ and $\nu \in(0,1)$

$$
E \sup _{t \in[0, T]} \sup _{x \in B_{\nu R}}\left|u_{t}(x)-\bar{u}_{t}(x)\right|^{q} \leq N e^{-\delta R^{2}} E^{1 / r}\left(|\psi|_{W_{p}^{m}}^{q r}+|\bar{\psi}|_{W_{p}^{m}}^{q r}\right),
$$

where N and δ are positive constants, depending on K, d, T, q, r, p and ν.

Idea of the proof. Consider first the simpler case:

$$
\begin{gathered}
d u_{t}(x)+\mathcal{L} u_{t}(x) d t=0, \quad t \in[0, T), x \in \mathbb{R}^{d} \\
u_{T}(x)=\psi(x), \quad x \in \mathbb{R}^{d}
\end{gathered}
$$

with nonrandom terminal value ψ and nonrandom operator

$$
\mathcal{L}=a_{t}^{i j}(x) D_{i} D_{j}+b_{t}^{i}(x) D_{i}
$$

Then by Feynman-Kac

$$
u_{t}(x)=E \psi\left(X_{T}^{t, x}\right)
$$

where $\left(X^{t, x}\right)_{s \in[t, T]}$ is given by

$$
d X_{s}=\theta_{s}\left(X_{s}\right) d W_{s}+b_{s}\left(X_{s}\right) d s, \quad s \in[t, T], \quad X_{t}=x
$$

By standard estimates for $\hat{X}_{s}^{t, x}:=X_{s}^{t, x}-x$ we have

$$
\begin{equation*}
P\left(\sup _{0 \leq t \leq s \leq T} \sup _{|x| \leq R}\left|\hat{X}_{s}^{t, x}\right|>r\right) \leq N e^{-\delta r^{2}}\left(1+R^{d+1 / 2}\right) \tag{7}
\end{equation*}
$$

for any $r, R>0$, with $N=N(d, K, M, T)$ and $\delta=\delta(d, K, M, T)>0$, where K is the bound and M is the Lipschitz constant for a and b.

By standard estimates for $\hat{X}_{s}^{t, x}:=X_{s}^{t, x}-x$ we have

$$
\begin{equation*}
P\left(\sup _{0 \leq t \leq s \leq T} \sup _{|x| \leq R}\left|\hat{X}_{s}^{t, x}\right|>r\right) \leq N e^{-\delta r^{2}}\left(1+R^{d+1 / 2}\right) \tag{7}
\end{equation*}
$$

for any $r, R>0$, with $N=N(d, K, M, T)$ and $\delta=\delta(d, K, M, T)>0$, where K is the bound and M is the Lipschitz constant for a and b.
Thus when $|x| \leq \nu R, \nu \in(0,1)$, for

$$
\tau_{t, x}=\inf \left\{s \geq t:\left|X_{s}^{t, x}\right| \geq R\right\}
$$

we have

$$
P\left(\tau_{t, x} \leq T\right) \leq N e^{-\delta R^{2}}
$$

with $N=N(d, K, M, T, \nu)$ and $\delta=\delta(d, K, M, T, \nu)>0$.

Hence using the stopping times

$$
\tau_{t, x}=\inf \left\{s \geq t:\left|X_{s}^{t, x}\right| \geq R\right\}, \quad \bar{\tau}_{t, x}=\inf \left\{s \geq t:\left|\bar{X}_{s}^{t, x}\right| \geq R\right\}
$$

we have

$$
\begin{gathered}
\left|u_{t}(x)-\bar{u}_{t}(x)\right|=\left|E\left(\psi\left(X_{T}^{t, x}\right)-\bar{\psi}\left(\bar{X}_{T}^{t, x}\right)\right)\right|= \\
E\left\{\mathbf{1}_{\tau_{t, x} \wedge \bar{\tau}_{t, x} \leq T}\left(\psi\left(X_{T}^{t, x}\right)-\bar{\psi}\left(\bar{X}_{T}^{t, x}\right)\right)\right\}, \\
\leq\left\{P\left(\tau_{t, x} \leq T\right)+P\left(\bar{\tau}_{t, x} \leq T\right)\right\}\left(\sup _{x}|\psi(x)|+\sup _{x}|\bar{\psi}(x)|\right) \\
\leq N e^{-\delta R^{2}} \sup _{x}(|\psi(x)|+\bar{\psi}(x) \mid) .
\end{gathered}
$$

The case of SPDEs.
Instead of (2)-(3) consider

$$
\begin{gathered}
d v_{t}(x)=\mathcal{L} v_{t}(x) d t+\mathcal{M}^{k} v_{t}(x) d W_{t}^{k}+\theta^{r i}(x) D_{i} v_{t}(x) d \hat{W}_{t}^{r} \\
v_{0}(x)=\psi(x)
\end{gathered}
$$

where $\theta=\left(2 a-\sigma \sigma^{*}\right)^{1 / 2}, \hat{W}$ is a d-dimensional Wiener, independent of $\mathcal{F}_{\infty}=\vee_{t \geq 0} \mathcal{F}_{t}$. By Theorem 1 there is a classical solution $v=\left(v_{t}(x)\right)$, and one can show that

$$
u_{t}(x)=E\left(v_{t}(x) \mid \mathcal{F}_{t}\right)
$$

Together with the above SPDE consider

$$
\begin{align*}
d Y_{t} & =\beta_{t}\left(Y_{t}\right) d t-\sigma_{t}^{k}\left(Y_{t}\right) d W_{t}^{k}-\theta_{t}^{r}\left(Y_{t}\right) d \hat{W}_{t}^{r}, \quad 0 \leq t \leq T \tag{8}\\
Y_{0} & =y \tag{9}
\end{align*}
$$

with

$$
\beta_{t}(y):=-b_{t}(y)+\sigma_{t}^{i k}(y) D_{i} \sigma_{t}^{k}(y)+\theta_{t}^{r i}(y) D_{i} \theta_{t}^{r}(y)+\sigma_{t}^{k}(y) \mu_{t}^{k}(y)
$$

for $t \in[0, T]$ and $y \in \mathbb{R}^{d}$.
By the Itô-Wentzell formula for $U_{t}(y):=v_{t}\left(Y_{t}(y)\right)$ we get
$d U_{t}(y)=\gamma_{t}\left(Y_{t}(y)\right) U_{t}(y) d t+\mu^{k}\left(Y_{t}(y)\right) U_{t}(y) d W_{t}^{k}, \quad U_{0}(y)=\psi(y)$
with

$$
\gamma_{t}(x)=c_{t}(x)-\sigma_{t}^{k i}(x) D_{i} \mu_{t}^{k}(x)
$$

Hence

$$
v_{t}(x)=U_{t}\left(Y_{t}^{-1}(x)\right) \quad \text { and } \bar{v}_{t}(x)=\bar{U}_{t}\left(\bar{Y}_{t}^{-1}(x)\right)
$$

where \bar{v}, \bar{Y} and \bar{U} obtained by replacing \mathcal{D} with $\overline{\mathcal{D}}$.
Lemma. Let $\nu^{\prime}=(1+\nu) / 2$ and set
$H:=\left[\sup _{t \in[0, T]|x| \leq \nu R} \sup _{t}\left|Y_{t}^{-1}(x)\right| \leq \nu^{\prime} R\right] \cap\left[\sup _{t \in[0, T]|x| \leq \nu^{\prime} R} \sup \left|Y_{t}(x)\right| \leq \nu R\right]$
then $P\left(H^{c}\right) \leq N e^{-\delta R^{2}}$ and on H we have

$$
v_{t}(x)=\bar{v}_{t}(x) \quad \text { for } t \in[0, T] \text { and }|x| \leq \nu R
$$

Hence by Doob's, Hölder's and Jensen's inequalities

$$
\begin{gather*}
E \sup _{t \in[0, T]|\times| \leq \nu R} \sup _{\mid \leq \nu}\left|u_{t}(x)-\bar{u}_{t}(x)\right|^{q} \\
\leq E \sup _{t \in[0, T] \cap \mathbb{Q}}\left|E\left(1_{H^{c}} \sup _{s \in[0, T]|x| \leq \nu R} \sup \left|v_{s}(x)-\bar{v}_{s}(x)\right| \mid \mathcal{F}_{t}\right)\right|^{q} \\
\leq \frac{q}{q-1}\left(P\left(H^{c}\right)\right)^{1 / r} E^{1 / r^{\prime}}\left(\sup _{t \in[0, T]} \sup _{x}\left|v_{t}(x)-\bar{v}_{t}(x)\right|^{q r^{\prime}}\right) \tag{10}\\
\leq \frac{2^{q-1} q}{q-1}(P(H))^{1 / r} V_{T} \tag{11}
\end{gather*}
$$

with

$$
V_{T}:=E^{1 / r^{\prime}} \sup _{t \in[0, T]} \sup _{x}\left|v_{t}(x)\right|^{q r^{\prime}}+E^{1 / r^{\prime}} \sup _{t \in[0, T]} \sup _{x}\left|\bar{v}_{t}(x)\right|^{q r^{\prime}}
$$

for $r>1, r^{\prime}=r /(r-1)$.
3. Spatial Finite Difference Schemes for the Zakai equation Lattice: $\mathbb{G}_{h}=h \mathbb{Z}^{d}, h>0$

$$
\begin{equation*}
d u_{t}^{h}(x)=L_{t}^{h} u^{h}(x) d t+M_{t}^{r, h} u_{t}^{h}(x) d Y_{t}^{r}, \quad u_{0}^{h}(x)=\pi_{0}(x) \tag{12}
\end{equation*}
$$

for $t \in[0, T], x \in \mathbb{G}_{h}$, where

$$
\begin{gathered}
L_{t}^{h} \sim L_{t}^{*}, \quad M_{t}^{h, r} \sim M_{t}^{r *}, \quad D_{i} \sim \delta_{i}^{h} \\
\delta_{i} u(x)=\left(u\left(x+h e_{i}\right)-u\left(x-h e_{i}\right)\right) /(2 h)
\end{gathered}
$$

3. Spatial Finite Difference Schemes for the Zakai equation Lattice: $\mathbb{G}_{h}=h \mathbb{Z}^{d}, h>0$

$$
\begin{equation*}
d u_{t}^{h}(x)=L_{t}^{h} u^{h}(x) d t+M_{t}^{r, h} u_{t}^{h}(x) d Y_{t}^{r}, \quad u_{0}^{h}(x)=\pi_{0}(x) \tag{12}
\end{equation*}
$$

for $t \in[0, T], x \in \mathbb{G}_{h}$, where

$$
\begin{gathered}
L_{t}^{h} \sim L_{t}^{*}, \quad M_{t}^{h, r} \sim M_{t}^{r *}, \quad D_{i} \sim \delta_{i}^{h} \\
\delta_{i} u(x)=\left(u\left(x+h e_{i}\right)-u\left(x-h e_{i}\right)\right) /(2 h)
\end{gathered}
$$

Theorem 3. If b, B, θ, ρ have bounded derivatives in x up to sufficiently high order, and $E\left|\pi_{0}\right|_{W_{2}^{m}}^{p}<\infty$ for some $p>0$ and sufficiently large m, then

$$
E \sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h}}\left|u_{t}^{h}(x)-u_{t}(x)\right|^{p} \leq N h^{2 p} E\left|\pi_{0}\right|_{W_{2}^{m}}^{p}
$$

3. Spatial Finite Difference Schemes for the Zakai equation Lattice: $\mathbb{G}_{h}=h \mathbb{Z}^{d}, h>0$

$$
\begin{equation*}
d u_{t}^{h}(x)=L_{t}^{h} u^{h}(x) d t+M_{t}^{r, h} u_{t}^{h}(x) d Y_{t}^{r}, \quad u_{0}^{h}(x)=\pi_{0}(x) \tag{12}
\end{equation*}
$$

for $t \in[0, T], x \in \mathbb{G}_{h}$, where

$$
\begin{gathered}
L_{t}^{h} \sim L_{t}^{*}, \quad M_{t}^{h, r} \sim M_{t}^{r *}, \quad D_{i} \sim \delta_{i}^{h}, \\
\delta_{i} u(x)=\left(u\left(x+h e_{i}\right)-u\left(x-h e_{i}\right)\right) /(2 h)
\end{gathered}
$$

Theorem 3. If b, B, θ, ρ have bounded derivatives in x up to sufficiently high order, and $E\left|\pi_{0}\right|_{W_{2}^{m}}^{p}<\infty$ for some $p>0$ and sufficiently large m, then

$$
E \sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h}}\left|u_{t}^{h}(x)-u_{t}(x)\right|^{p} \leq N h^{2 p} E\left|\pi_{0}\right|_{W_{2}^{m}}^{p} .
$$

Remark 1. (2) is an infinite system of SDEs

Discretise further in time: $\tau:=T / n$,

Discretise further in time: $\tau:=T / n$,
$T_{n}=\left\{t_{i}=i \tau: i=1,2, \ldots, n\right\}, v_{0}(x):=\pi_{0}(x)$

$$
\begin{equation*}
v_{i}(x)=v_{i-1}(x)+L_{t_{i}}^{h} v_{i}(x) \tau+M_{t_{i-1}}^{h, k} v_{i-1}(x) \xi_{i}^{k}, \quad i=1,2, \ldots, n \tag{13}
\end{equation*}
$$

$x \in \mathbb{G}_{h}$, where $\xi_{i}:=Y_{t_{i}}-Y_{t_{i-1}}$.
This is an infinite system of equations.
For sufficiently $h>0$ it has a unique solution $\left(v_{i}^{h, \tau}\right)_{i=0}^{n}$.

Discretise further in time: $\tau:=T / n$, $T_{n}=\left\{t_{i}=i \tau: i=1,2, \ldots, n\right\}, v_{0}(x):=\pi_{0}(x)$

$$
\begin{equation*}
v_{i}(x)=v_{i-1}(x)+L_{t_{i}}^{h} v_{i}(x) \tau+M_{t_{i-1}}^{h, k} v_{i-1}(x) \xi_{i}^{k}, \quad i=1,2, \ldots, n, \tag{13}
\end{equation*}
$$

$x \in \mathbb{G}_{h}$, where $\xi_{i}:=Y_{t_{i}}-Y_{t_{i-1}}$.
This is an infinite system of equations.
For sufficiently $h>0$ it has a unique solution $\left(v_{i}^{h, \tau}\right)_{i=0}^{n}$.
Theorem 4. (Gerencsér-I.G. 2017) If b, θ, ρ, B have bounded derivatives in x up to sufficiently high order, and $E\left|\pi_{0}\right|_{W_{2}^{m}}^{2}<\infty$ for sufficiently large m, then

$$
E \max _{0 \leq i \leq n} \sup _{x \in \mathbb{G}_{h}}\left|u_{t_{i}}(x)-v_{i}^{h, \tau}(x)\right|^{2} \leq N\left(\tau+h^{4}\right) E\left(\left|\pi_{0}\right|_{W_{2}^{m}}^{2}+1\right) .
$$

Clearly if $B(x, y)=0, b(x, y)=0, \theta(x, y)=0, \rho(x, y)=0$ and $\pi_{0}(x)=0$ for $|x| \geq r$ for some $r>0$, then (3) is a finite system.

Clearly if $B(x, y)=0, b(x, y)=0, \theta(x, y)=0, \rho(x, y)=0$ and $\pi_{0}(x)=0$ for $|x| \geq r$ for some $r>0$, then (3) is a finite system.

This suggests truncating: For $R>0$ set

$$
\left(B^{R}, b^{R}, \theta^{R}, \rho^{R}, \pi_{0}^{R}\right):=\zeta_{R}\left(B, b, \theta, \rho, \pi_{0}\right)
$$

where $\zeta_{R}=\zeta_{R}(x), x \in \mathbb{R}^{d}$, is a sufficiently smooth function with compact support such that $\zeta_{R}=1$ for $|x| \leq R$.

Truncated schemes

$$
\begin{align*}
& v_{0}:=\pi^{R} \\
& \tag{14}\\
& v_{i}(x)=v_{i-1}(x)+L_{t_{i}}^{h, R} v_{i}(x) \tau+M_{t_{i-1}}^{h, k, R} v_{i-1}(x) \xi_{i}^{r}, \quad i=1,2, \ldots, n,
\end{align*}
$$

For sufficiently small $\tau>0$ for all h and R it has a unique solution $v_{i}=v_{i}^{h, R}, i=0,1, \ldots, n$. Set $\mathbb{G}_{h}^{R}:=\mathbb{G}_{h} \cap \operatorname{supp} \zeta$.

Truncated schemes

$$
\begin{align*}
& v_{0}:=\pi^{R}, \\
& v_{i}(x)=v_{i-1}(x)+L_{t_{i}}^{h, R} v_{i}(x) \tau+M_{t_{i-1}}^{h, k, R} v_{i-1}(x) \xi_{i}^{r}, \quad i=1,2, \ldots, n, \tag{14}
\end{align*}
$$

For sufficiently small $\tau>0$ for all h and R it has a unique solution $v_{i}=v_{i}^{h, R}, i=0,1, \ldots, n$.
Set $\mathbb{G}_{h}^{R}:=\mathbb{G}_{h} \cap \operatorname{supp} \zeta$.
Theorem 5. (Gerencsér-I.G. 2017) Under the conditions of Thm 4, for every $R>0$ and $\nu \in(0,1)$ there are constants $\delta>0$ and N such that
$E \max _{0 \leq i \leq n} \max _{x \in \mathbb{G}_{h}^{\nu R}}\left|u_{t_{i}}(x)-v_{i}^{h, \tau, R}(x)\right|^{2} \leq N\left(e^{-\delta R^{2}}+\tau+h^{4}\right)\left(E\left|\pi_{0}\right|_{W_{2}^{m}}^{2}+1\right)$.

Accelerated schemes

For an integer $k \geq 1$ set $\tilde{k}:=\lfloor k / 2\rfloor$

$$
\tilde{v}^{h, \tau, R}:=\sum_{j=0}^{\lfloor k / 2\rfloor} c_{j} v^{h / 2^{j}, \tau, R}
$$

$\left(c_{0}, \ldots, c_{\tilde{k}}\right)=(1,0, \ldots ., 0) V^{-1}, \quad \tilde{V}^{i j}=4^{-(i-1)(j-1)}, \quad i, j=1, \ldots, \tilde{k}+1$.

Accelerated schemes
For an integer $k \geq 1$ set $\tilde{k}:=\lfloor k / 2\rfloor$

$$
\tilde{v}^{h, \tau, R}:=\sum_{j=0}^{\lfloor k / 2\rfloor} c_{j} v^{h / 2^{j}, \tau, R}
$$

$\left(c_{0}, \ldots, c_{\tilde{k}}\right)=(1,0, \ldots, 0) V^{-1}, \quad \tilde{V}^{i j}=4^{-(i-1)(j-1)}, \quad i, j=1, \ldots, \tilde{k}+1$.
Theorem 6. (L. Gerencsér-I.G.) Let $k \geq 0$ be an integer. If b, θ, ρ, B have bounded derivatives in x up to sufficiently high order, and $E\left|\pi_{0}\right|_{W_{2}^{m}}^{2}<\infty$ for sufficiently large m, then for $\nu \in(0,1), R>0$ we have constants $\delta>0, N$ such that
$E \max _{0 \leq i \leq n} \max _{x \in \mathbb{G}_{h}^{\nu R}}\left|u_{t_{i}}(x)-v_{i}^{h, \tau, R}(x)\right|^{2} \leq N\left(e^{-\delta R^{2}}+\tau+h^{2 k+2}\right)\left(E\left|\pi_{0}\right|_{W_{2}^{m}}^{2}+1\right)$.

Sketch of proof: We write

$$
\begin{aligned}
\left|u_{\tau i}(x)-\bar{v}_{i}^{h, R, \tau}(x)\right| & \leq\left|u_{\tau i}(x)-u_{\tau i}^{0, R}(x)\right|+\left|u_{\tau i}^{0, R}(x)-\bar{u}_{\tau i}^{h, R}(x)\right| \\
& +\sum_{j=0}^{r} c_{j}\left|u_{\tau i}^{h / 2^{j}, R}(x)-v_{i}^{h / 2^{j}, R, \tau}(x)\right|
\end{aligned}
$$

where $u^{0, R}$ denotes the solution of the truncated Zakai equation and $\bar{u}^{h, R}=\sum_{j=0}^{r} c_{j} u^{h / 2^{j}, R}$.
The first term is estimated by Theorem 2 on localisation error, the second by a theorem from (I.G. 2015) on accelerated finite difference schemes, and for each term in the sum we prove

$$
E \max _{0 \leq i \leq n} \max _{x \in \mathbb{G}_{h}}\left|u_{\tau i}^{h^{\prime}, R}-v_{i}^{h^{\prime}, R, \tau}\right|^{2} \leq N \tau\left(1+E\left|\psi_{m}\right|_{W_{2}^{m}}^{2}\right)
$$

with $h^{\prime}=h / 2^{j}$.

Conclusion

- The truncation error for parabolic (possibly degenerate) PDEs and SPDEs is exponentially small.
- The finite different schemes for the truncated systems are fully implementable. We estimated their error independently of the truncation.
- We have shown that the error coming form the space discretisation can be made as small as we wish by Richardson's extrapolation, provided the data are sufficiently smooth.

References

目 M．Gerencsér and I．Gyöngy，Localization errors in solving SPDEs in the whole space，Math．Comp． 86 （2017），no．307， 2373－2397．
R．Gerencsér，I．Gyöngy，A Feynman－Kac formula for stochastic Dirichlet problems，2016，arXiv：1611．04177．
國 M．Gerencsér and I．Gyöngy and N．V．Krylov，On the solvability of degenerate stochastic partial differential equations in Sobolev spaces．Stoch．Partial Differ．Equ．Anal．Comput． 3 （2015），no．1，52－83．
围 I．Gyöngy，On stochastic finite difference schemes，Stoch． Partial Differ．Equ．Anal．Comput． 2 （2014），no．4，pp 539－583．

R．Gyöngy and N．V．Krylov，Accelerated Finite Difference Schemes for Linear Stochastic Partial Differential Equations in the Whole Space，SIAM J．Math．Anal．， 42 （2010），no．5， 2275－2296．

