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Plan of the talk

Review of results on deterministic 2D Euler equations

Albeverio-Cruzeiro in the framework of more classical results

White noise initial conditions

Weak vorticity formulation

Point vortex approximation

Main results and perspectives

Franco Flandoli, University of Pisa () Regularization by noise Durham 2017 2 / 32



The 2D Euler equations

To simplify the exposition, let us consider the equations on the torus
T2 = R2/Z2.
Euler equations for the pair (u, p) = (velocity,pressure) read

∂tu + u · ∇u +∇p = 0
div u = 0.

The vorticity ω = ∂2u1 − ∂1u2 satisfies

∂tω+ u · ∇ω = 0.

We shall always consider the vorticity formulation.
Main formal invariants (among others):

kinetic energy =
1
2

∫
T2
|u (x)|2 dx

enstrophy =
∫

T2
ω (x)2 dx .

Franco Flandoli, University of Pisa () Regularization by noise Durham 2017 3 / 32



Review of results on 2D Euler equations

existence and uniqueness, when ω0 ∈ L∞ (Wolibner, Yudovich)

existence for ω0 ∈ Lp , p ≥ 2 (uniqueness is open) (velocity
u ∈ W 1,p)

existence for ∼positive measures ω0 (dx) of class H−1 (Delort)
(velocity u ∈ L2)
when

ω0 (dx) = ∑ ωi δX i0

(which belongs to H−1− :=
⋂
ε>0

H−1−ε; velocity u /∈ L2) local

existence and uniqueness, global solutions for a.e. initial configuration
(Marchioro-Pulvirenti)

Albeverio-Cruzeiro (CMP ’90) result of existence for µ-a.e. ω0 ∈ H−1− (µ
described below) may be seen as a natural continuation of this
investigation.
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Albeverio-Cruzeiro solutions as limit of more classical ones

Recall:

existence and uniqueness, when ω0 ∈ L∞,

existence for ω0 ∈ Lp , p ≥ 2
existence for ∼positive measures ω0 (dx) of class H−1

existence and uniqueness for a.e. ω0 (dx) = ∑ ωi δX i0
.

Nikolai Tzvetkov posed me the following question: are Albeverio-Cruzeiro
solution the limit of more classical solutions?
By "classical solutions" he meant solutions with ω0 ∈ L∞. This question
seems to be extremely diffi cult.
I will show they are limit of point vortices.
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PDE formulation of Albeverio-Cruzeiro theory

Originally Albeverio-Cruzeiro theory has been formulated using Fourier
analysis. For dispersive equations this is a very natural approach but in the
framework of fluid dynamics it is not common.
We have made an effort to use classical fluid dynamic tools, to formulate
and prove Albeverio-Cruzeiro result.
The main tool is taken from Delort (also Shochet, Poupaud, Di Perna and
Majda, and others).
Delort studied the case when ω is a measure. He used a trick, called weak
vorticity formulation, to deal with measure-valued vorticity. We shall show
that the same trick allows one to treat Albeverio-Cruzeiro theory.
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White noise initial conditions

We consider random initial conditions and precisely we assume that ω0 is
a white noise on T2.
White noise on T2 is by definition a distributional-valued stochastic process
ω0 : Ξ→ C∞ (T2

)′ (here (Ξ,F ,P) is a probability space) such that
E [〈ω0, φ〉 〈ω0,ψ〉] = 〈φ,ψ〉

for all φ,ψ ∈ C∞ (T2
)
. In more heuristic terms,

E [ω0 (x)ω0 (y)] = δ (x − y) .

It will turn out that the solutions constructed below is a white noise at
every time (similarly to the stochastic Burgers equation of KPZ theory).
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The enstrophy measure

Let us call enstrophy measure the Gaussian Gibbs measure heuristically
defined on vorticity fields "ω ∈ L2

(
T2
)
" as

µ (dω) =
1
Z
exp

(
−1
2

∫
T2

ω2dx
)
dω.

It is rigorously defined as the unique Gaussian measure µ on H−1−
(
T2
)

such that ∫
H−1−
〈ω, φ〉 〈ω,ψ〉 µ (dω) = 〈φ,ψ〉

for all φ,ψ ∈ C∞ (T2
)
; 〈ω, φ〉 denotes the dual pairing w.r.t. L2

(
T2
)
. It

is the law of white noise.
This measure is supported on H−1−

(
T2
)
but

µ
(
H−1

(
T2)) = 0

µ
(
M
(
T2)) = 0.
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Weak vorticity formulation

We need to give a meaning to the nonlinear term of the equation

∂tω+ u · ∇ω = 0

when ω is a white noise. Trivial integration by parts on test functions
φ ∈ C∞ (T2

)
∫

T2
ω (x) u (x) · ∇φ (x) dx (formal notation)

is not suffi cient, since u is not regular enough (u is not even L2).
Remark. It may seem there is an analogy with KPZ theory, but in fact
here it is much easier.
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Weak vorticity formulation

First, using Biot-Savart formula u (x) =
∫

T2
K (x − y)ω (y) dy (where

|K (x)| ∼ 1
|x | near x = 0) we rewrite∫

T2
ω (x) u (x) ·∇φ (x) dx =

∫
T2

∫
T2
K (x − y) ·∇φ (x)ω (x)ω (y) dxdy .

The function K (x − y) · ∇φ (x) is still not regular enough. Then we
symmetrize:

=
1
2

∫
T2

∫
T2
K (x − y) (∇φ (x)−∇φ (y))ω (x)ω (y) dxdy

= :
1
2

∫
T2

∫
T2
Hφ (x , y)ω (x)ω (y) dxdy .

The function Hφ (x , y) is bounded, smooth outside the diagonal,
discontinuous along the diagonal. Can we integrate Hφ (x , y) against
ω (x)ω (y) dxdy?
Delort, in his study of measure-valued solutions of class H−1, proved that
this is possible and allows one to prove global existence of solutions.
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Weak formulation of the Euler equations for white noise

We pose the following preliminary question. Assume ω : Ξ→ C∞ (T2
)′ is

a white noise. Can we give a meaning to∫
T2

∫
T2
Hφ (x , y)ω (x)ω (y) dxdy?

Being ω ∈ H−1−
(
T2
)
, we have at least

ω⊗ω ∈ H−2−
(
T2 ×T2) with probability one

The question is: can we define 〈
ω⊗ω,Hφ

〉
in spite of the fact that Hφ is not of class H2+

(
T2 ×T2

)
?
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Main lemma

Lemma

If ω : Ξ→ C∞ (T2
)′ is a white noise and f ∈ H2+ (T2 ×T2

)
is

symmetric, then
∫
f (x , x) dx = E [〈ω⊗ω, f 〉] and

E

[∣∣∣∣〈ω⊗ω, f 〉 −
∫
f (x , x) dx

∣∣∣∣2
]
= 2

∫ ∫
f 2 (x , y) dxdy .

Let us see the formal proof (becomes rigorous by smoothing the WN)

E

[∣∣∣∣∫ ∫
f (x , y)ω (x)ω (y) dxdy

∣∣∣∣2
]

=
∫ ∫ ∫ ∫

f (x , y) f
(
x ′, y ′

)
E
[
ω (x)ω (y)ω

(
x ′
)

ω
(
y ′
)]
dxdydx ′dy ′
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Proof of the main lemma

E
[
ω (x)ω (y)ω

(
x ′
)

ω
(
y ′
)]

= δ (x − y) δ
(
x ′ − y ′

)
+ δ

(
x − x ′

)
δ
(
y − y ′

)
+ δ

(
x − y ′

)
δ
(
x ′ − y

)
by Gaussian rules for moments (Isserlis-Wick theorem). Hence∫ ∫ ∫ ∫

f (x , y) f
(
x ′, y ′

)
E
[
ω (x)ω (y)ω

(
x ′
)

ω
(
y ′
)]
dxdydx ′dy ′

=
∫ ∫ ∫ ∫

f (x , y) f
(
x ′, y ′

)
δ (x − y) δ

(
x ′ − y ′

)
dxdydx ′dy ′ + ...

=
∫ ∫

f (x , x) f
(
x ′, x ′

)
dxdx ′ + ...

and the proof becomes a simple computation.
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Consequence of the main lemma

Theorem

Let ω : Ξ→ C∞ (T2
)′ be a white noise and φ ∈ C∞ (T2

)
be given.

Assume that Hnφ ∈ H2+
(
T2 ×T2

)
are symmetric and approximate Hφ in

the following sense:

lim
n→∞

∫ ∫ (
Hnφ −Hφ

)2
(x , y) dxdy = 0

lim
n→∞

∫
Hnφ (x , x) dx = 0.

Then the sequence of r.v.’s
〈

ω⊗ω,Hnφ
〉
is a Cauchy sequence in mean

square. We denote its limit by〈
ω⊗ω,Hφ

〉
.

The limit is the same when limn→∞
∫ ∫ (

Hnφ − H̃nφ
)2
(x , y) dxdy = 0.
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Definition of solution

Definition

We say that a measurable map ω· : Ξ× [0,T ]→ C∞ (T2
)′ is a white

noise solution of Euler equations if ωt is a white noise at every time
t ∈ [0,T ] and, for every φ ∈ C∞ (T2

)
, t 7→ 〈ωt , φ〉 is continuous and we

have the identity a.s.

〈ωt , φ〉 = 〈ω0, φ〉+
∫ t

0

〈
ωs ⊗ωs ,Hφ

〉
ds.
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Generalization

Assume ω : Ξ→ C∞ (T2
)′ has the property that

E [Φ (ω)] = E [ρ (ωWN )Φ (ωWN )]

where ωWN : Ξ→ C∞ (T2
)′ is a white noise and ρ : H−1−

(
T2
)
→ [0,∞)

satisfies
E
[
ρ2 (ωWN )

]
< ∞.

This is equivalent to say that the law of ω is <<µ with density ρ and∫
ρ2dµ < ∞.

Then one can prove

E

[∣∣∣∣〈ω⊗ω, φ〉 −
∫

φ (x , x) dx

∣∣∣∣]2 ≤ E
[
ρ2 (ωWN )

]
·
∫ ∫

φ2 (x , y) dxdy .

This allows one to define
〈
Hφ,ωs ⊗ωs

〉
as above (limit in L1 (Ξ), not

mean square).
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Generalization

Definition

Let ρ : [0,T ]×H−1−
(
T2
)
→ [0,∞) satisfy

∫
ρ2t dµ ≤ C . Let

ω· : Ξ× [0,T ]→ C∞ (T2
)′ be a measurable map such that ωt has law

ρtµ for every t ∈ [0,T ]. We say that ω is a ρ−white noise solution of
Euler equations if for every φ ∈ C∞ (T2

)
, t 7→ 〈ωt , φ〉 is continuous and

we have the identity a.s.

〈ωt , φ〉 = 〈ω0, φ〉+
∫ t

0

〈
ωs ⊗ωs ,Hφ

〉
ds.

Everything extends to
∫

ρpt dµ ≤ C for some p ≥ 1.
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Random point vortex dynamics

Consider, for every N ∈N, the finite dimensional dynamics in
(
T2
)N

dX i ,Nt
dt

=
N

∑
j=1

1√
N

ξ jK
(
X i ,Nt − X j ,Nt

)
i = 1, ...,N

with initial condition
(
X 1,N0 , ...,XN ,N0

)
∈
(
T2
)N , where K is Biot-Savard

kernel on T2, with K (0) := 0 to neglect self-interaction.

Theorem (Marchioro-Pulvirenti)

Given ξ1, ... , ξN , for ⊗NLebT2 - almost every
(
X 1,N0 , ...,XN ,N0

)
∈ ∆cN ,

there is a unique solution
(
X 1,Nt , ...,XN ,Nt

)
with the property that(

X 1,Nt , ...,XN ,Nt

)
∈ ∆cN for all t ≥ 0.

Here

∆N =
{(
x1, ..., xN

)
∈
(
T2)N : x i = x j for some i 6= j , i , j = 1, ..., n

}
.
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Random point vortex dynamics

Assume ξ1, ... , ξN are random intensities, distributed as N (0, 1),
X 1,N0 , ...,XN ,N0 are random and uniformly distributed, all independent of
each other. Consider the measure-valued vorticity field

ωN
0 =

1√
N

N

∑
n=1

ξnδX n0 .

Let us denote by QN its covariance operator, defined as
〈QN ϕ,ψ〉 = E

[〈
ωN
0 , ϕ

〉 〈
ωN
0 ,ψ

〉]
for all ϕ,ψ ∈ C∞ (T2

)
. We have

E
[
ωN
0

]
= 0 and

〈QN ϕ,ψ〉 =
∫

T2
ϕ (x)ψ (x) dx

(the same as white noise). One can prove that

ωN
0
Law
⇀ ωWN

in H−1−δ for every δ > 0.
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Random point vortex dynamics

Theorem
Consider the vortex dynamics with random intensities (ξ1, ..., ξN ) and
random initial positions

(
X 10 , ...,X

N
0

)
as above. For a.e. value of(

ξ1, ..., ξN ,X
1
0 , ...,X

N
0

)
the dynamics

(
X 1,Nt , ...,XN ,Nt

)
is well defined in

∆cN for all t ≥ 0, and the associated measure-valued vorticity ωN
t satisfies

the weak vorticity formulation. The stochastic process ωN
t is stationary in

time and space-homogeneous.

Lemma
for all f : T2 ×T2 → R symmetric, bounded and measurable

E

[〈
ωN
t ⊗ωN

t , f
〉2]

=
3
N

∫
f 2 (x , x) dx +

(∫
f (x , x) dx

)2
+2

∫ ∫
f 2 (x , y) dxdy .
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Albeverio-Cruzeiro revisited

Theorem
i) There exists a probability space (Ξ,F ,P) and a measurable map
ω· : Ξ× [0,T ]→ C∞ (T2

)′ such that ω· is a time-stationary white noise
solution of Euler equations.
ii) The random point vortex system converges in law to this solution.

Theorem

Given ρ0 ∈ Cb
(
H−1−δ

(
T2
))
for some δ > 0, ρ0 ≥ 0,

∫
ρ0dµ = 1, there

exist a probability space (Ξ,F ,P), a bounded measurable function
ρ : [0,T ]×H−1−

(
T2
)
→
[
0, ‖ρ0‖∞

]
and a measurable map

ω· : Ξ× [0,T ]→ C∞ (T2
)′ such that ω· is a ρ−white noise solution of

Euler equations. It is also the limit in law of a suitable sequence of random
point vortices.
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Main steps in the proof (only WN case)

Let QN be the law of ωN on

X := L2
(
0,T ;H−1−δ

(
T2)) ∩ C ([0,T ] ;H−γ

)
(1)

where γ > 3. We prove that the family
{
QN
}
N∈N

is tight in X .
By Aubin-Lions and Ascoli-Arzelà, Y ⊂ X is compact, where

Y := L2
(
0,T ;H−1−δ/2 (T2)) ∩W 1,2

(
0,T ;H−γ′ (T2))

for γ′ < γ.
Therefore, in order to prove that

{
QN
}
N∈N

is tight in X it is suffi cient to
prove that it is bounded in probability in Y .
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Compactness in space

From stationarity of ωN
t

E

[∫ T

0

∥∥∥ωN
t

∥∥∥2
H−1−δ/2

dt
]
=
∫ T

0
E

[∥∥∥ωN
t

∥∥∥2
H−1−δ/2

]
dt = TE

[∥∥∥ωN
0

∥∥∥2
H−1−δ/2

]

= TE

∥∥∥∥∥ 1√
N

N

∑
n=1

ξnδX n0

∥∥∥∥∥
2

H−1−δ/2

 = T
N

N

∑
n=1

E
[
ξ2n
∥∥δX n0

∥∥2
H−1−δ/2

]
= CT .

Hence the family
{
QN
}
N∈N

is bounded in probability in
L2
(
0,T ;H−1−δ/2 (T2

))
.
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Compactness in time

We use the equation in its weak vorticity formulation.
For all φ ∈ C∞ (T2

)
, ∂t

〈
ωN
t , φ

〉
=
〈
ωN
t ⊗ωN

t ,Hφ

〉
, hence

E

[∣∣∣∂t 〈ωN
t , φ

〉∣∣∣2] = E

[∣∣∣〈ωN
t ⊗ωN

t ,Hφ

〉∣∣∣2]
≤ C

∥∥Hφ

∥∥2
∞ ≤ C

∥∥D2φ∥∥2∞ .
With φ = ek we get

E

[∣∣∣∂t 〈ωN
t , ek

〉∣∣∣2] ≤ C |k |4

E

[∫ T

0

∥∥∥∂tω
N
t

∥∥∥2
H−γ′

dt
]
≤ CE

[∫ T

0
∑
k

(
1+ |k |2

)−γ′

|k |4 dt
]
< ∞

for γ′ > 3. The family
{
QN
}
N∈N

is bounded in probability in

W 1,2
(
0,T ;H−γ′

(
T2
))
.

Franco Flandoli, University of Pisa () Regularization by noise Durham 2017 24 / 32



Passage to the limit

From Prohorov theorem, there exists
{
QNk

}
k∈N

which converges weakly,
in X , to a probability measure Q.
A process ω· with law Q is time-stationary and ωt is white noise for every
t ∈ [0,T ].
The passage to the limit is performed using Skorohod representation
theorem.
The main work is to prove that

E
[(∣∣∣∣∫ t

0

〈
Hφ,ω

Nk
s ⊗ωNk

s

〉
ds −

∫ t

0

〈
Hφ,ωs ⊗ωs

〉
ds

∣∣∣∣) ∧ 1]→ 0.

Here all the detailed informations proved above are used.
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Regularization by noise?

Two directions:

1 regularization by random initial conditions
2 regularization by noise (additive or multiplicative)

For PDEs of dispersive type, after Bourgain, Burq, Tzvetkov, Ho and
others, we know that random initial conditions is already a powerful tool
to improve the deterministic theory.
For PDEs of fluid dynamics it is less clear that random initial conditions
alone may have a strong effect.
Albeverio-Cruzeiro is an example of new existence result, due to random
initial conditions. But uniqueness looks improbable.
Could noise, maybe jontly with random initial conditions, improve the
theory?
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2D Euler equations with stochastic transport term

Consider

dω+ u · ∇ωdt +∇ω ◦ dW = 0

div u = 0, ∇⊥u = ω

which originates by the substitution

u → u +
∂W
∂t
.

Here
W (t, x) := ∑

k∈Z2\{0}
σk (x)W

k
t

σk (x) ∼ |k |−α ek (x) ek (x) ∼
k⊥

|k | e
ik ·x .

The exponent α corresponds to space-regularity of the noise.
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No collapse of point vortices

When ω0 = ∑N
i=1 ξ i δX i0

, the solution ω0 = ∑N
i=1 ξ i δX it of the SPDE above

corresponds to the dynamics

dX it =
N

∑
j=1

ξ jK
(
X it − X jt

)
dt +∑

k

σk
(
X it
)
dW k

t .

Theorem (F.-Gubinelli-Priola SPA 2014)
There exist σk such that for every initial condition(
X 1,N0 , ...,XN ,N0

)
∈ ∆cN , there is a unique solution

(
X 1,Nt , ...,XN ,Nt

)
with

the property that
(
X 1,Nt , ...,XN ,Nt

)
∈ ∆cN for all t ≥ 0.
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Random perturbations of white noise initial condition

Maybe, due to some analogy between vortex points and white noise
solutions, we could expect some improvement due to noise also in the case
of random i.c. with law µ. The first striking fact is:

Lemma
The enstrophy measure µ is infinitesimally invariant also for the stochastic
Euler equations.

LF (ω) =
1
2 ∑ 〈σk · ∇ω,∇L2 〈σk · ∇ω,∇L2F (ω)〉L2〉L2

+

〈(
∇⊥
)−1

ω · ∇ω,∇L2F (ω)
〉
L2∫

LF (ω) µ (dω) = 0.
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Gradient estimates

The second remarkable fact is the gradient estimate

∫ t

0

∫ (
∑
k
〈σk · ∇ω,∇L2ρs (ω)〉

2
L2

)
µ (dω) ds ≤ C

expected to hold by the density ρt or for solutions of the backward
Kolmogorov equation.
In other problems, gradient estimates have been a key tool to improve the
deterministic theory. However, the problem here is very diffi cult because of:

the degeneracy of L
the diffi culty to control the drift by these degenerate diffusion terms.
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Summary of results and questions

1 We have proved Albeverio-Cruzeiro (CMP ’90) result using a classical
PDE approach called weak vorticity formulation, plus some white
noise analysis

2 We have proved that Albeverio-Cruzeiro is the limit of random point
vortices

3 Tzvetkov question about the limit of L∞ solutions is open
4 We have extended Albeverio-Cruzeiro result to some class of
absolutely continuous initial conditions

5 Similarly to regularization by noise for point vortices, the effect of
transport noise on Albeverio-Cruzeiro theory is under investigation.
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Thank you for your attention
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