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Ramer’s Thesis

“Integration on infinite-dimensional manifolds”, University of
Amsterdam (1974).
Supervisor: N. Kuiper

Our aim is to construct an integration theory “à la de Rham” on
infinite dimensional manifolds. The two main ingredients...are
exterior differential forms and the local integration.... The two
are related by the fact that the transition functions for differential
forms of top dimension are exactly Radon Nikodym derivatives
of transformation of the measure (at least in the oriented case).



Main Content

I Definition of stochastic integrals with anticipating
integrands, relating them to divergences of H-vector fields.

I Transformation of integral formula for Gaussian measures
under H-differentiable mappings of the underlying Abstract
Wiener Spaces, extending earlier work by H.H.Kuo, Len
Gross, Cameron-Martin,...

I Theory of finite co-dimensional forms on abstract Wiener
manifolds, with exterior derivatives given using his
stochastic integrals. Trivial de Rham cohomology, in
general; non-trivial L2-deRham cohomology.



Impact

Main output: On nonlinear transformations of Gaussian
measures. J. Functional Analysis 15 (1974), 166187.

Extended by Shigeo Kusuoka and Ustunel & Zakai, in
particular.



Equations with random right hand side

F : P → E

Suppose E has a probability measure µ, as in a nice SPDE. If F
has a Borel measurable inverse a.s. get F ∗(µ) := F−1

∗ (µ) on P,
“law of the solution” to F (x) = y .



Equations with random right hand side

F : P → E

Suppose E has a probability measure µ, as in a nice SPDE. If F
has a Borel measurable inverse a.s. get F ∗(µ) := F−1

∗ (µ) on P,
“law of the solution” to F (x) = y .

What if F is not injective?



Locally-injective case

Suppose there exists Z ⊂ E with µ(Z ) = 0 such that every
x ∈ P with F (x) 6∈ Z has an open neighbourhood mapped
homeomorphically onto an open set in E .



Locally-injective case

Suppose there exists Z ⊂ E with µ(Z ) = 0 such that every
x ∈ P with F (x) 6∈ Z has an open neighbourhood mapped
homeomorphically onto an open set in E .

Then there exists F ∗(µ) on P which somehow represents the
law of the solution to the random problem, but will not be a
probability measure or even finite in general.

F ∗(µ)(P) = expected number of solutions of F(x)=z.

Sometimes can give a sign to solutions and get a signed
measure...



Deterministic degree theory for proper Fredholm maps

Smooth F : P → E between (open sets of) Banach spaces or
Banach manifolds, separable metrisable. Proper.

F is Fredholm index k if

k = dim KerDF (x)− dim CokerDf (x) ∈ Z.



Deterministic degree theory for proper Fredholm maps

Smooth F : P → E between (open sets of) Banach spaces or
Banach manifolds, separable metrisable. Proper.

F is Fredholm index k if

k = dim KerDF (x)− dim CokerDf (x) ∈ Z.

Smale-Sard Theorem: Set of critical values Z is the
complement of an open dense set.
Same proof yields µ(Z ) = 0 if µ non-degenerate Gaussian.
“Sard Property”



k=0

If “orientable” get degree: Deg(F ) ∈ Z as algebraic number of
solutions of F (x) = y for generic y . {Elworthy-Tromba following
Smale}

Reduces to Leray-Schauder theory when F (x) = x + α(x) for α
a compact mapping.



k > 0

Generically F−1(y) is a k-dimensional submanifold of P. The
degree is unoriented cobordism class {Smale}, framed
cobordism class {Elworthy-Tromba}. The latter may relate to
homotopy groups of maps Sn+k → Sn for n-large.

Applied by Nirenberg, 1971, to some semi-linear boundary
value problems.



Measure theoretic versions for k = 0

F : P → E

as above with k = 0. If µ has Sard property then for
measurable f : P → R∫

P
f (x) dF ∗(u)(x) =

∫
E

∑
F (x)=y

f (x) dµ(y).



Measure theoretic versions for k = 0

F : P → E

as above with k = 0. If µ has Sard property then for
measurable f : P → R∫

P
f (x) dF ∗(u)(x) =

∫
E

∑
F (x)=y

f (x) dµ(y).

Corollary: If orientable then for g : E → R∫
P

g(F (x))sgn DF(x) dF∗(µ)(x) = Deg(F)

∫
E

g(y) dµ(y).



k > 0

?



k > 0

?

Transverse measures?
(∞− k)-forms?



(∞− k)-forms: basic idea in finite dimensions

If dim M = n and M is orientable there is duality between
k -forms and n − k -forms; essentially via

(dx1 ∧ ... ∧ dxk )× (dxk+1 ∧ .... ∧ dxn) 7→ dx1 ∧ ... ∧ dxn.

More precisely a choice of never zero top form on M gives an
isomorphism

n−k∧
T ∗M ∼=

k∧
TM.

Under this, exterior differentiation on sections of
∧n−k T ∗M

corresponds to the “divergence” on sections of
∧k TM

and sections of
∧n T ∗M correspond to functions.



(∞− k)-forms: basic idea

Assume P is an “abstract Wiener manifold” , i.e. locally
modelled on an AWS Ẽ∗ → H̃ → Ẽ , interchange of charts of the
form x 7→ x + α(x) with α having finite dim’l range in Ẽ∗.

Oriented if each det(IH̃ + DHα(z)) > 0.



(∞− k)-forms: basic idea

Assume P is an “abstract Wiener manifold” , i.e. locally
modelled on an AWS Ẽ∗ → H̃ → Ẽ , interchange of charts of the
form x 7→ x + α(x) with α having finite dim’l range in Ẽ∗.

Oriented if each det(IH̃ + DHα(z)) > 0.

Such is determined by F : P → E index k if E has AWS
structure, taking Ẽ = E × Rk



Change of variable formula: Gross, Kuo, Ramer,...

For our AWS if U,V are open in E and Id + α : U→ V diffeo
then

(Id + α)∗(γ)x = | det(Id + DHα(x))|exp{〈x, α(x)〉 − 1
2
|α(x)|2}γ

= det2(Id + DHα(x))

×exp{−(“〈α(x), x〉 − trace DHα(x)”)− 1
2
|α(x)|2}γ

∴ need more than just forms. The “(∞− k)-volumes” V∞−k

are sections of P
⊗
∧∞−kH∗. They can be integrated over

k -codimensional submanifolds or wedged with an H k -form to
give a volume form i.e. in V∞.



Pull backs

For F : P → E with index k ≥ 0 and E with Gaussian γ.

Assume orientable.

Let ω ∈ V∞ correspond to the Gaussian measure γ. Obtain
F ∗(ω) ∈ V∞−k (P).

Then for any H k -form φ there is the co-area formula:∫
P

F ∗(ω) ∧ φ =

∫
E

(∫
F−1(y)

φ

)
dγ(y).



Example: periodic orbits, Kokarev & Kuksin 2006

E is a space of non-autonomous periodic vector fields
g : S1 ×M → TM on compact M.

Seek
u : S1 → M with

du
dt

= g(t, u(t)).

For this take

P = {(u,g) with
du
dt

= g(t, u(t)), g ∈ E}

Define F : P → E as the projection. Then k = 0.



example: harmonic maps with force, Kokarev & Kuksin
2006

M and N finite dimensional, Riemannian,
F = F(M,N) a space of maps from M to N;
E a suitable Banach space of ”non-autonomous” vector fields
v : M → TN on N.

P := {(f , v) ∈ F × E : 4f = v(x , f (x))}

Take the projection F : P → E . In certain cases it is a proper
Φ0-map, giving an orientable structure.



Integration along fibres

Consider π : P → M a submersion, so fibres Pz := π−1(z) have
codimension n.

Given Ψ ∈ V∞−k with k ≤ n = dim M, get an (n − k)-form
π∗(Ψ) on M by

π∗(Ψ)(v1∧...∧vn−k ) =

∫
Pz

ιṽ1∧...∧ṽn−k (Ψ) v j ∈ TzM, ṽ j lift to P.

Then ∫
P

Ψ ∧ π∗(φ) =

∫
M
π∗(Ψ) ∧ φ.



Gauss-Bonnet-Chern-Poincaré-Hopf etc
I Euler characteristic of M is

χ(M) =
n∑
0

(−1)j dim H j(M; R).

I Poincaré-Hopf: V a generic vector field, ZV = zero set,
discrete, then

algebraic number of zeros = χ(M).

I Euler class: If p : E → M is vector bundle rank 2q ≤ n
oriented. We have e(E) ∈ H2q(M : R).
If U : M → E is a generic section then∫

ZU

φ =

∫
M

e(E) ∧ φ for any closed (n − 2q)− form φ.

I
∫

M e(E) = χ(M)

I Generalized GBC: e(E) = ’geometric Euler class’ eg(E).



Example for “Gauss-Bonnet-Chern” Nicolaescu &
Savale 2014, Nicolaescu PTRF 2016

p : E → M vector bundle fibre dimension n − k with k ≤ n.
γ non-degenerate Gaussian on ample Banach space of smooth
sections E of E .
Define:

P = {(U, z) ∈ E ×M : U(z) = 0} with F : P→ E .

Proper Fredholm, index k .
Get F ∗(ω) ∈ V∞−k (P). Then for a k-form φ on M:∫

E

(∫
F−1(U)

π∗φ

)
dγ(U) =

∫
P

F ∗(ω) ∧ π∗φ

=

∫
M
π∗(F ∗(ω)) ∧ φ.

π : P → M the projection.



G-B-C ctd

∫
E

(∫
F−1(U)

π∗φ

)
dγ(U) =

∫
P

F ∗(ω) ∧ π∗φ

=

∫
M
π∗(F ∗(ω)) ∧ φ.

Thus if ZU denotes the zero set of U:

E
∫

ZU

φ =

∫
M
π∗(F ∗(ω)) ∧ φ.

A calculation yields π∗(F ∗(ω)) represents the geometric Euler
class of E , when n − k = 2q:

[π∗(F ∗(ω))] = eg := [(−1/2π)qPf(Ω)] ∈ Hn−k (M).



Final Result of Nicolaescu PTRF 2016

E
∫

ZU

φ =

∫
M

(−1/2π)qPf(Ω) ∧ φ all k-forms φ

Consequently, for generic sections U of E :∫
ZU

φ =

∫
M

(−1/2π)qPf(Ω) ∧ φ all closed k-forms φ.



To Calculate π∗(F ∗(ω)). Step 1
The Gaussian γ on E determines a Riemannian metric on E
and metric connection ∇̆ so for U ∈ E

∇̆−U : TM → E .

Properties:
I

∇̆v U = 0 if v ∈ TzM & U ⊥ Pz.

I

E∇̆−U ∧ ∇̆−U = R̆ : ∧2TM → ∧2E

for R̆ the curvature operator of E .

El-LeJan-Li , Taniguchi Symposium Proc 1997 & LNM 1720
”redundant noise theory”; Nicolaescu & Savale 2014,



Step 2

Take v1, ..., vn−k ∈ TzM.

A lift of ṽ1 ∧ ... ∧ ṽn−k at U ∈ Pz is given by

(−ev∗z (∇̆v1U), v1) ∧ ... ∧ (−ev∗z (∇̆vn−kU), vn−k) ∈ ∧n−k(H× TzM),

for evz : E → Ez the evaluation at z ∈ M.



Step 3

F ∗(ω) is the restriction to P of the (∞− n)− volume p∗1(ω)
induced on E ×M by the projection p1 : E ×M → E .

Write E = Pz ⊕ P⊥z ' Pz ⊕ Ez and ω = ω0 ⊗ ω⊥. Then:

π∗(F ∗(ω))(v1 ∧ ... ∧ vn−k ) =

∫
Pz

ι(evz∗∇̆v1 U∧...)(ω
⊥).ω0

U

= (2π)−q
∫

Pz

ωEz (∇̆v1U ∧ ...).ω0
U

= (2π)−qEωEz (∇̆v1U ∧ ...).

for ωEz the top form of Ez , since writing U = U0 + U⊥ gives
∇̆v1U = ∇̆v1U0.



Step 4:Pfaffian of curvature
Liviu Nicolaescu ”A stochastic Gauss-Bonnet- Chern formula” PTRF 2016, Also Adler &
Jonathan Taylor.

E
{
∧n−k∇̆.U

}
= Pf(R̆)

where the Pfaffian of the curvature has local coordinate
expression

Pf(R̆)1,...,n−k = c
∑
σ

∑
ρ

sgn(σ)sgn(ρ)R̆ρ(1)ρ(2)σ(1)σ(2)...R̆
ρ(n−1)ρ(n)
σ(n−1)σ(n).

To believe this: Use Wick formula:
If A1, ....,A2p are a Gaussian family, real valued, mean-zero.
Then

E
{

A1A2....A2p
}

=
∑
π

E
{

Aπ(1)Aπ(2)
}
....E

{
Aπ(2p−1)Aπ(2p)

}
π such that π(2r − 1) < π(2r).



McKean-Singer formula

Let {P∗t }t≥0 be the heat semi-group on forms. Then

χM = STr(P∗t ) any t > 0.



Supertraces

STr(P∗t ) : =
n∑
0

(−1)qTr Pq
t

=
n∑
0

(−1)q
∫

M
trace kq

t (x , x)dx

=

∫
M

Str k∗t (x , x)dx

for fundamental solution kq
t (x , y) : ∧qT ∗x M → ∧qT ∗y M.



Kusuoka’s approach, sort of

CidDiff (M) = {ξ : [0,T ]→ Diff (M) with ξ0 = identity}.

As before F is the projection:

P := {(x , ξ) ∈ M × CidDiff (M) : ξT (x) = x} → CidDiff (M).

It is proper Φ0, and Deg(F ) = χ(M)
Give CidDiff (M) the measure which is the law of a suitable flow
of BM’s on M



Deg F =

∫
M

∫
{ξβt (x)=x}

det(I − Txξ
β
t ) dνx

t (ξ.) pβt (x , x) dx

=

∫
M

∫
{ξβt (x)=x}

n∑
q=1

(−1)qtr(∧q(Txξt )) dνx
t (ξ.)p

β
t (x , x)dx

= StrPβ,∗
t for all t > 0 and β > 0,

agreeing with McKean & Singer.



McKean -Singer for foliations

Consider only diffeos preserving a foliation, and stochastic flow
of BM along the leaves. Get an F with index n − k > 0. Get
GBC as before; should get McKean -Singer using Kusuoka
approach +Ramer.
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That’s it!

THANK YOU


