Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Gonçalo dos Reis
University of Edinburgh (UK) \& CMA/FCT/UNL (PT)
jointly with: W. Salkeld, U. of Edinburgh (UK)
J. Tugaut, U. Jean Monnet (FR)

LMS/EPSRC Durham Symposium in Stochastic Analysis Durham, 17 July 2017

Fundação para a Ciência e a Tecnologia ministírio da educaçio eciência

Partial funding by UID/MAT/00297/2013

Overview

(1) McKean Vlasov Equations
(2) Large Deviations Principles

- Skeleton ODE's of SDE's
- LDPs
- Results
(3) Applications
- Functional Strassen's law

4 Outlook and Further Extensions

Outline

(1) McKean Vlasov Equations
(2) Large Deviations Principles

- Skeleton ODE's of SDE's
- LDPs
- Results
(3) Applications
- Functional Strassen's law

4 Outlook and Further Extensions

McKean-Vlasov Stochastic Differential Equations

Definition

A McKean-Vlasov SDEs (MV-SDE) is an SDE where the coefficients are dependent on the law $\mathcal{L}(X(\cdot))$ of the solution process $(X(\cdot))$. We write

$$
\begin{array}{r}
d X(t)=b(t, X(t), \mathcal{L}(X(t))) d t+\sigma(t, X(t), \mathcal{L}(X(t))) d W(t) \\
X(0)=x
\end{array}
$$

Example (Mean Field Scalar Interaction)

Let us consider a simple example:

$$
X(t)=x+\int_{0}^{t}[\mathbb{E}[X(s)]-X(s)] d s+W(t)
$$

McKean-Vlasov Stochastic Differential Equations

Definition

A McKean-Vlasov SDEs (MV-SDE) is an SDE where the coefficients are dependent on the law $\mathcal{L}(X(\cdot))$ of the solution process $(X(\cdot))$. We write

$$
\begin{array}{r}
d X(t)=b(t, X(t), \mathcal{L}(X(t))) d t+\sigma(t, X(t), \mathcal{L}(X(t))) d W(t) \\
X(0)=x
\end{array}
$$

Example (Mean Field Scalar Interaction)

Let us consider a simple example:

$$
X(t)=x+\int_{0}^{t}[\mathbb{E}[X(s)]-X(s)] d s+W(t)
$$

\triangleright Question: Is this an standard SDE after decoupling?

Distributions and the Wasserstein Metric

Definition

Let (E, d) be a Polish space and σ-algebra \mathcal{E}. Let $\mathcal{P}_{2}(E)$ be the space of probability distributions on (E, \mathcal{E}) with finite second moments. Let $\mu, \nu \in \mathcal{P}_{2}(E)$. We define the Wasserstein distance to be

$$
W^{(2)}(\mu, \nu)=\inf \left\{\left(\int_{E^{2}} d(x, y)^{2} \pi(d x, d y)\right)^{1 / 2} ; \pi \in \mathcal{P}(E \times E)\right\}
$$

where $\mu(A)=\int_{E^{2}} \chi_{A}(x) \pi(d x, d y)$ and $\nu(B)=\int_{E^{2}} \chi_{B}(y) \pi(d x, d y)$.
See [Carmona, 2016] form more details.

Example

The Wasserstein distance between the law of a $\mathrm{RV} X$ and a constant y is

$$
W^{(2)}\left(\mathcal{L}(X), \delta_{y}\right)=\mathbb{E}\left[|X-y|^{2}\right]^{1 / 2}
$$

Existence and Uniqueness

Theorem (Existence and uniqueness)

Let $(X(t))_{t \geq 0}$ satisfy the MV-SDE

$$
\begin{array}{r}
d X(t)=b(t, X(t), \mathcal{L}(X(t))) d t+\sigma(t, X(t), \mathcal{L}(X(t))) d W(t), \\
X(0) \sim \mu_{0} \in\left(\mathcal{P}_{2} \cap \mathcal{P}_{4}\right)\left(\mathbb{R}^{d}\right)
\end{array}
$$

with: $\exists L>0, \exists K \in \mathbb{R} \forall t \in[0, T], \forall x, x^{\prime} \in \mathbb{R}^{d}, \forall \mu, \mu^{\prime} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ s.th.

$$
\begin{aligned}
\left|\sigma(t, x, \mu)-\sigma\left(t, x^{\prime}, \mu^{\prime}\right)\right| & \leq L\left(\left|x-x^{\prime}\right|+W^{(2)}\left(\mu, \mu^{\prime}\right)\right) \\
\langle x-y, b(t, x, \mu)-b(t, y, \mu)\rangle_{\mathbb{R}^{d}} & \leq K|x-y|^{2} \\
\left|b(t, x, \mu)-b\left(t, x, \mu^{\prime}\right)\right| & \leq L W^{(2)}\left(\mu, \mu^{\prime}\right)
\end{aligned}
$$

Then there exists a unique solution X and $\exists C>0$ such that

$$
\mathbb{E}\left[\sup _{t \in[0, T]}|X(t)|^{2}\right] \leq\left(\mathbb{E}\left[|X(0)|^{2}\right]+C\right) e^{C T}
$$

Properties

Theorem (Properties)

- Integrability
(1) $\forall p>1$ we have $\mathbb{E}\left[\sup _{t}|X(t)|^{p}\right]<\infty$ (with agreeing integrability of $X(0), b\left(\cdot, 0, \delta_{0}\right), \sigma\left(\cdot, 0, \delta_{0}\right)$)
- Continuity
(1) paths of $t \mapsto X(t)(\omega)$ are a.s. continuous in $C^{\alpha}, \alpha<1 / 2$.
(2) $t \mapsto \mathcal{L}(X(t))$ is $C^{1 / 2}$ in the $W^{(p)}$-metric
- Differentiability
(1) for any $p \geq 1$ the map $t \mapsto \mathbb{E}\left[\left|X^{p}(t)\right|^{p}\right] \in C^{1}$
(2) Malliavin differentiability: $X \in \mathbb{D}^{1,2}$
(with deterministic coefficients)

Outline

(1) McKean Vlasov Equations

(2) Large Deviations Principles

- Skeleton ODE's of SDE's
- LDPs
- Results
(3) Applications
- Functional Strassen's law

4 Outlook and Further Extensions

Deterministic Approximation of SDE

Definition

Let H be the Cameron Martin space, the space of all absolutely continuous paths $h(t)=\int_{0}^{t} \dot{h}(s) d s$ such that $\dot{h} \in L^{2}([0,1])$.

Definition

We approximate the McKean Vlasov SDE

$$
\begin{array}{r}
d X(t)=b_{\varepsilon}(t, X(t), \mathcal{L}(X(t))) d t+\varepsilon \sigma(t, X(t), \mathcal{L}(X(t))) d W(t) \\
X(0)=x
\end{array}
$$

by the ODE

$$
\begin{array}{r}
d \Phi(h)(t)=b\left(t, \Phi(h)(t), \delta_{\Phi(t)}\right) d t+\sigma\left(t, \Phi(h)(t), \delta_{\Phi(t)}\right) \dot{h}(t) d t \\
\Phi(0)=x
\end{array}
$$

and we call this the Skeleton.

Deterministic Appoximation of SDE

Example

The SDE

$$
X(t)=x+\int_{0}^{t}\left[X(s)-\mathbb{E}\left[|X(s)|^{3}\right]\right] d s+\varepsilon W(t)
$$

has a Skeleton $\forall h \in H$

$$
\Phi(h)(t)=x+\int_{0}^{t}\left[\Phi(h)(s)-|\Phi(h)(s)|^{3}\right] d s+h(t)
$$

since $\int_{\Omega}|x|^{3} d \delta_{x}(y)=|y|^{3}$.

Large Deviations Principles

Definition (Large Deviations Principle)

Let (E, d) be a Polish space and let $\left\{\mathbb{P}_{N}\right\}_{N \in \mathbb{N}}$ be a sequence of Borel probability measures on E. Let $I: E \rightarrow[0, \infty]$ be a lower semicontinuous functional on E. The sequence $\left\{\mathbb{P}_{N}\right\}_{N \in \mathbb{N}}$ is said to satisfy a Large Deviations Principle with rate function $/ \Longleftrightarrow$

$$
-\inf _{x \in \AA} I(x) \leq \liminf _{N \rightarrow \infty} \frac{\log \left(\mathbb{P}_{N}[A]\right)}{N^{2}} \leq \limsup _{N \rightarrow \infty} \frac{\log \left(\mathbb{P}_{N}[A]\right)}{N^{2}} \leq-\inf _{x \in \bar{A}} I(x)
$$

for any Borel measurable set $A \subset E$.

LDP for Brownian Motion

Consider the following simple example for Brownian motion with a supremum norm.

Example (LDP in uniform Norm for BM)

Consider the simple example of $\left(\varepsilon B_{t}\right)_{t}$.
We know for $R \gg 1$ fixed that $\mathbb{P}\left[\|\varepsilon B .\|_{\infty}>R\right] \lesssim e^{-R^{2} /\left(2 \varepsilon^{2}\right)}$.
Therefore (apply log + scalling \& limits)

$$
\limsup _{\varepsilon \rightarrow 0} \varepsilon^{2} \log \left(\mathbb{P}\left[\|\varepsilon B \cdot\|_{\infty}>R\right]\right) \leq \lim _{\varepsilon \rightarrow 0} \varepsilon^{2} c-\frac{R^{2}}{2}=-\frac{R^{2}}{2}
$$

\triangleright The rate function for Brownian motion would output $\frac{R^{2}}{2}$ for the set $\left\{x(t) \in C([0,1]):\|x\|_{\infty}>R\right\}$ the set of continuous paths starting at 0 such that the supremum of the path is greater than R.

LDP for MV-SDEs

Our goals:
(1) an $\|\cdot\|_{\infty}$-topology LDP for X
(see [Gärtner, 1988], [Budhiraja et al, 2012])
(2) a conditional $\|\cdot\|_{\alpha}$-topology type LDP for X,

LDP for MV-SDEs

Our goals:
(1) an $\|\cdot\|_{\infty}$-topology LDP for X
(see [Gärtner, 1988], [Budhiraja et al, 2012])
(2) a conditional $\|\cdot\|_{\alpha}$-topology type LDP for X,

Theorem

$\forall R, \rho>0, \exists \delta, \nu>0$ such that $\forall 0<\varepsilon<\nu$,

$$
\mathbb{P}\left[\left\|X_{\varepsilon}^{\times}-\Phi^{\times}(0)\right\|_{\alpha} \geq \rho,\|\varepsilon W\|_{\infty} \leq \delta\right] \lesssim \exp \left(-R / \varepsilon^{2}\right)
$$

Hölder Norms using Ciesielski Isomorphism

Definition

Let $H_{00}(t)=1$ and

$$
H_{p m}(t)= \begin{cases}\sqrt{2^{p}}, & \text { if } t \in\left[\frac{m-1}{2^{p}}, \frac{2 m-1}{2^{p+1}}\right) \\ -\sqrt{2^{p}}, & \text { if } t \in\left[\frac{2 m-1}{2^{p+1}}, \frac{m}{2^{p}}\right) \\ 0, & \text { otherwise. }\end{cases}
$$

where $m \in\left\{1, \ldots, 2^{p}\right\}$ and $p \in \mathbb{N} \cup\{0\}$. These are called the Haar functions.

Figure: Haar Function $H_{p m}(t)$

Hölder Norms using Ciesielski Isomorphism

Ciesielski's Isomorphism

Define the Fourier coefficients $\psi_{p m}=\int_{0}^{1} H_{p m}(s) \psi(s) d s$,

$$
\psi_{p m}:=\left\langle H_{p m}, d \psi\right\rangle:=\sqrt{2^{p}}\left[2 \psi\left(\frac{2 m-1}{2^{p+1}}\right)-\psi\left(\frac{m-1}{2^{p}}\right)-\psi\left(\frac{m}{2^{p}}\right)\right],
$$

additionally $\psi_{00}:=\left\langle H_{00}, d \psi\right\rangle=\psi(1)-\psi(0)$.
Let $G_{p m}(t)=\int_{0}^{t} H_{p m}(s) d s$. Then

$$
\psi(t)=\psi_{00} G_{00}(t)+\sum_{p=0}^{\infty} \sum_{m=1}^{2^{p}} \psi_{p m} G_{p m}(t)
$$

Hölder Norms using Ciesielski Isomorphism

The Hölder Norm

The Hölder Norm is defined to be

$$
\|f\|_{\alpha}=|f(0)|+\sup _{t, s \in[0,1]} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}
$$

We have that $\|\cdot\|_{\alpha}$ is equivalent to (see [Ciesielsky, 1960])

$$
\|\psi\|_{\alpha}^{\prime}=\sup _{p, m} 2^{(\alpha-1 / 2) p}\left|\psi_{p m}\right| .
$$

Throughout this talk, we will assume that $\alpha<0.5$.

Auxilliary Lemmas

Lemma 1

$\exists C>0$ such that $\forall u>0$ and for all processes K on $[0,1]$ we have

$$
\mathbb{P}\left[\left\|\int_{0} K(s) d W(s)\right\|_{\alpha} \geq u,\|K\|_{\infty} \leq 1\right] \leq C \exp \left(-u^{2} / C\right)
$$

Lemma 2

$\exists C^{\prime}>0$ such that $\forall u, v>0$ we have

$$
\mathbb{P}\left[\|W\|_{\alpha} \geq u,\|W\|_{\infty} \leq v\right] \leq C^{\prime} \max \left(1,\left(\frac{u}{v}\right)^{1 / \alpha}\right) \exp \left(\frac{-1}{C^{\prime}} \cdot \frac{u^{1 / \alpha}}{v^{1 / \alpha-2}}\right)
$$

\triangleright These are proved via the equivalence of norms from Ciesielski's isomorphism

+ Chernoff's inequality.

Main Results

Definition

Let $h \in H$ be an element of the Cameron Martin Space, σ bdd. We consider the SDE

$$
\begin{aligned}
X_{\varepsilon}^{x}=x & +\int_{0}^{t} b_{\varepsilon}\left(s, X_{\varepsilon}^{x}(s), \mathcal{L}\left(X_{\varepsilon}^{x}(s)\right)\right) d s \\
& +\varepsilon \int_{0}^{t} \sigma_{\varepsilon}\left(s, X_{\varepsilon}^{x}(s), \mathcal{L}\left(X_{\varepsilon}^{x}(s)\right)\right) d W(s)
\end{aligned}
$$

with Skeleton $\left(b_{\varepsilon} \rightarrow b, \sigma_{\varepsilon} \rightarrow \sigma\right.$ uniformly as $\left.\varepsilon \searrow 0\right)$

$$
\begin{aligned}
\Phi^{x}(h)(t)=x & +\int_{0}^{t} b\left(s, \Phi^{x}(h)(s), \delta_{\Phi^{x}(h)(s)}\right) d s \\
& +\int_{0}^{t} \sigma\left(s, \Phi^{x}(h)(s), \delta_{\Phi^{x}(h)(s)}\right) \dot{h}(s) d s
\end{aligned}
$$

Main Results

Theorem

$\forall R, \rho>0, \exists \delta, \nu>0$ such that $\forall 0<\varepsilon<\nu$,

$$
\mathbb{P}\left[\left\|X_{\varepsilon}^{\times}-\Phi^{\times}(h)\right\|_{\alpha} \geq \rho,\|\varepsilon W-h\|_{\infty} \leq \delta\right] \lesssim \exp \left(-R / \varepsilon^{2}\right)
$$

Main Results

Theorem

$\forall R, \rho>0, \exists \delta, \nu>0$ such that $\forall 0<\varepsilon<\nu$,

$$
\mathbb{P}\left[\left\|X_{\varepsilon}^{\times}-\Phi^{\times}(h)\right\|_{\alpha} \geq \rho,\|\varepsilon W-h\|_{\infty} \leq \delta\right] \lesssim \exp \left(-R / \varepsilon^{2}\right)
$$

From the above inequality follows

Theorem

Let A be a Borel set of the space of \mathbb{R}-valued continuous paths over $[0,1]$ in the Hölder topology. Let $\Delta(A):=\inf \left\{\|\dot{h}\|_{2}^{2} / 4 ; h \in H, \Phi^{\times}(h)(\cdot) \in A\right\}$. Then

$$
-\Delta(\AA) \leq \liminf _{\varepsilon \rightarrow 0} \frac{\varepsilon^{2}}{2} \log \mathbb{P}\left[X_{\varepsilon}^{x} \in A\right] \leq \limsup _{\varepsilon \rightarrow 0} \frac{\varepsilon^{2}}{2} \log \mathbb{P}\left[X_{\varepsilon}^{x} \in A\right] \leq-\Delta(\bar{A})
$$

where \AA and \bar{A} are the interior and closure of the set A with respect to the topology generated by the Hölder norm.

Our proof follows loosely the methods of [Arous, 1994].

Proof of Main Result

Proof.

We condition on the event that the process $X_{\varepsilon}^{\times}(t)$ remains in the ball of radius N and we see

$$
\begin{aligned}
\mathbb{P}\left[\| X_{\varepsilon}^{\times}\right. & \left.-\Phi^{\times}(h)\left\|_{\alpha} \geq \rho,\right\| \varepsilon W-h \|_{\infty} \leq \delta\right] \\
& \leq \mathbb{P}\left[\left\|X_{\varepsilon}^{\times}-\Phi^{\times}(h)\right\|_{\alpha} \geq \rho,\|\varepsilon W-h\|_{\infty} \leq \delta,\left\|X_{\varepsilon}^{\times}\right\|_{\infty}<N\right]+\mathbb{P}\left[\left\|X_{\varepsilon}^{\times}\right\|_{\infty} \geq N\right]
\end{aligned}
$$

We use that we have the LDP result for X_{ε}^{x} in a supremum norm and choose N large enough so that

$$
\mathbb{P}\left[\left\|X_{\varepsilon}^{X}\right\|_{\infty} \geq N\right]<\exp \left(-\frac{N}{\varepsilon^{2}}\right)
$$

\triangleright (We give \& prove LDP in $\|\cdot\|_{\infty}$-topology, we do not state it here.)

Proof of Main Result

Proof.

Let $X_{\varepsilon}^{\chi, I}$ be a step function approximation of X_{ε}^{χ}.

$$
\begin{aligned}
& \mathbb{P}\left[\left\|\varepsilon \int_{0} \sigma_{\varepsilon}\left(s, X_{\varepsilon}^{\times}(s), \mathcal{L}\left(X_{\varepsilon}^{\times}(s)\right)\right) d W(s)\right\|_{\alpha} \geq \rho,\|\varepsilon W\|_{\infty} \leq \delta,\left\|X_{\varepsilon}^{\times}\right\|_{\infty}<N\right] \\
& \leq \mathbb{P}\left[\left\|\varepsilon \int_{0}\left[\sigma_{\varepsilon}\left(s, X_{\varepsilon}^{\times}(s), \mathcal{L}\left(X_{\varepsilon}^{\times}(s)\right)\right)-\sigma_{\varepsilon}\left(\frac{\lfloor s l\rfloor}{I}, X_{\varepsilon}^{\times, l}, \mathcal{L}\left(X_{\varepsilon}^{\times}\left(\frac{|s|\rfloor}{I}\right)\right)\right)\right] d W(s)\right\|_{\alpha} \geq \frac{\rho}{2},\right. \\
& \left.\quad \frac{1}{\beta^{\beta}}+\left\|X_{\varepsilon}^{\times}-X_{\varepsilon}^{\times, l}\right\|_{\infty}+\mathbb{E}\left[\left\|X_{\varepsilon}^{\times}-X_{\varepsilon}^{\times, l}\right\|_{\infty}^{2}\right]^{1 / 2} \leq \gamma\right] \\
& \quad+\mathbb{P}\left[\frac{1}{I \beta}+\left\|X_{\varepsilon}^{\times}-X_{\varepsilon}^{\times, l}\right\|_{\infty}+\mathbb{E}\left[\left\|X_{\varepsilon}^{\times}-X_{\varepsilon}^{\times, l}\right\|_{\infty}^{2}\right]^{1 / 2}>\gamma,\left\|X_{\varepsilon}^{\times}\right\|_{\infty}<N\right] \\
& \quad+\mathbb{P}\left[\left\|\varepsilon \int_{0} \sigma_{\varepsilon}\left(\frac{\lfloor s l\rfloor}{I}, X_{\varepsilon}^{\times, l}(s), \mathcal{L}\left(X_{\varepsilon}^{\times}\left(\frac{\lfloor s \mid\rfloor}{I}\right)\right)\right) d W(s)\right\|_{\alpha} \geq \frac{\rho}{2},\|\varepsilon W\|_{\infty} \leq \delta\right] \\
& \quad \lesssim \exp \left(\frac{-R}{\varepsilon^{2}}\right)
\end{aligned}
$$

Outline

(1) McKean Vlasov Equations

(2) Large Deviations Principles

- Skeleton ODE's of SDE's
- LDPs
- Results
(3) Applications
- Functional Strassen's law

4 Outlook and Further Extensions

Strassens Law for Brownian Motion

Theorem

Let $W(t)$ be a Brownian Motion. Then

$$
X_{n}(t)=\frac{W(n t)}{\sqrt{n}} \quad Y_{n}(t)=\frac{W(n t)}{n}
$$

X_{n} is a Brownian motion but Y_{n} converges almost surely to 0 as $n \rightarrow \infty$.
Strassens Law states that

$$
Z_{n}(t)=\frac{W(n t)}{\sqrt{n \log (\log (n))}}
$$

converges to 0 in probability but does not converge almost surely. Therefore we get the well known result

$$
\limsup _{n \rightarrow \infty} \frac{W(n)}{\sqrt{n \log (\log (n))}}=\sqrt{2}
$$

Contraction Operators

Definition

Let $\alpha \in \mathbb{R}^{+}$. A family of continuous bijections $\Gamma_{\alpha}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is said to be a System of Contractions centered at x if
(1) $\Gamma_{\alpha}(x)=x$ for every $\alpha \in \mathbb{R}^{+}$.
(2) If $\alpha \geq \beta$ then
$\left|\Gamma_{\alpha}\left(y_{1}\right)-\Gamma_{\alpha}\left(y_{2}\right)-\Gamma_{\alpha}\left(z_{1}\right)+\Gamma_{\alpha}\left(z_{2}\right)\right| \leq\left|\Gamma_{\beta}\left(y_{1}\right)-\Gamma_{\beta}\left(y_{2}\right)-\Gamma_{\beta}\left(z_{1}\right)+\Gamma_{\beta}\left(z_{2}\right)\right|$ for every $y_{1}, y_{2}, z_{1}, z_{2} \in \mathbb{R}^{d}$.
(3) Γ_{1} is the identity and $\left(\Gamma_{\alpha}\right)^{-1}=\Gamma_{\alpha^{-1}}$.
(9) For every compact set $\mathcal{K} \subset C^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right), \forall f \in \mathcal{K}$ and $\varepsilon>0$, $\exists \delta>0$ such that $|p q-1|<\delta$ implies

$$
\left\|\Gamma_{p} \circ \Gamma_{q}(f)-f\right\|_{\alpha}<\varepsilon, \quad p, q \in \mathbb{R}^{+}
$$

Law of Iterated Logarithms for McKean Vlasov SDEs

Definition

Let Y be the solution to the SDE

$$
d Y(t)=b(Y(t), \mathcal{L}(Y(t))) d t+\sigma(Y(t), \mathcal{L}(Y(t))) d W(t), \quad Y(0)=x \in \mathbb{R}^{d}
$$

Denote $\phi(u)=\sqrt{u \log (\log (u))}$. Consider the coefficients

$$
\begin{aligned}
& \hat{\sigma}_{u}(y, \mu)=\phi(u) \nabla\left[\Gamma_{\phi(u)}\right]\left(\Gamma_{\phi(u)^{-1}}(y)\right)^{T} \sigma\left(\Gamma_{\phi(u)^{-1}}(y), \mu \circ \Gamma_{\phi(u)}\right) \\
& \hat{b}_{u}(y, \mu)=u \mathbf{L}(y, \mu)\left[\Gamma_{\phi(u)}\right]\left(\Gamma_{\phi(u)^{-1}}(y)\right)
\end{aligned}
$$

where the operator (with $\tilde{a}=\sigma^{\top} \sigma$)

$$
\begin{aligned}
\mathbf{L}(y, \mu)[f](z)= & \sum_{i=1}^{d} \frac{\partial f}{\partial y_{i}}\left(\Gamma_{\phi(u)^{-1}}(z)\right) b_{i}\left(\Gamma_{\phi(u)^{-1}}(y), \mu \circ \Gamma_{\phi(u)}\right) \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \tilde{a}_{i, j}\left(\Gamma_{\phi(u)^{-1}}(y), \mu \circ \Gamma_{\phi(u)}\right) \frac{\partial^{2} f}{\partial y_{i} \partial y_{j}}\left(\Gamma_{\phi(u)^{-1}}(z)\right) .
\end{aligned}
$$

Law of Iterated Logarithms for McKean Vlasov SDEs

Assumption

Assume that $\left(\hat{\sigma}_{u}, \hat{b}_{u}\right) \rightarrow(\hat{\sigma}, \hat{b})$ uniformly on $\mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ as $u \rightarrow \infty$. Further, assume that $\hat{\sigma}(y, \mu)$ is bounded and Lipschitz and that $\hat{b}(y, \mu)$ has monotone growth in y and is Lipschitz in μ.

Definition

Let $Z_{u}(t)=\Gamma_{\phi(u)}[Y(u t)]$ and note that $\mathcal{W}_{u}(t)=\frac{W(u t)}{\sqrt{u}}$ is a Brownian motion

$$
d Z_{u}(t)=\frac{\hat{\sigma}_{u}\left(Z_{u}(t), \mathcal{L}\left(Z_{u}(t)\right)\right)}{\sqrt{\log \log (u)}} d \mathcal{W}_{u}(t)+\hat{b}_{u}\left(Z_{u}(t), \mathcal{L}\left(Z_{u}(t)\right)\right) d t
$$

with Skeleton

$$
d \Phi(h)(t)=\hat{\sigma}\left(\Phi(h)(t), \delta_{\Phi(h)(t)}\right) \dot{h}(t) d t+\hat{b}\left(\Phi(h)(t), \delta_{\Phi(h)(t)}\right) d t
$$

Law of Iterated Logarithms for McKean Vlasov SDEs

$$
\alpha<1 / 2
$$

Theorem

With probability 1 , the set of paths $\left\{Z_{u} ; u>3\right\}$ is relatively compact in the Hölder topology C^{α}
and
its set of limit points coincides with $K=\left\{\Phi(h): \frac{\|\dot{h}\|_{2}^{2}}{2} \leq 1\right\}$.

Proof of the Law of Iterated Logarithms

Proof

We prove 2 Propositions:
(1) Relatively compact. For every $\varepsilon>0$ there exists a.s. a positive real number $u_{0}(\omega)$ such that for every $u>u_{0}$

$$
d_{\alpha}\left(Z_{u}(\omega), K\right)<\varepsilon
$$

where for $x \in C^{\alpha}([0,1])$ and $M \subset C^{\alpha}([0,1])$

$$
d_{\alpha}(x, M)=\inf _{y \in M}\|x-y\|_{\alpha}
$$

(2) Limit point. Let $g \in K$. Then $\forall \varepsilon>0, \exists c_{\varepsilon}>1$ such that $\forall c>c_{\varepsilon}$

$$
\mathbb{P}\left[\left\|Z_{c^{j}}-g\right\|_{\alpha}<\varepsilon \text { for } j \text { i.o. }\right]=1
$$

Proof of the Law of Iterated Logarithms

Proof of Proposition (1) - Relative compactness

To prove the first Proposition, we argue ($c>1, j \in \mathbb{N}$ and $j \gg 1$)

$$
\begin{aligned}
d_{\alpha}\left(Z_{u}, K\right) \leq & d_{\alpha}\left(Z_{c^{j}}, K\right) \\
& +\left\|\Gamma_{\phi(u)} \circ \Gamma_{\phi\left(c^{j}\right)}^{-1}\left(Z_{c^{j}}\right)-Z_{c^{j}}\right\|_{\alpha} \\
& +\left\|Z_{u}-\Gamma_{\phi(u)} \circ \Gamma_{\phi\left(c^{j}\right)^{-1}}\left(Z_{c^{j}}\right)\right\|_{\alpha}
\end{aligned}
$$

Then we use the following Lemma

Lemma

$\forall c>1, \forall \varepsilon>0$ then there exists a.s. $j_{0}(\omega) \in \mathbb{N}$ such that $\forall j>j_{0}$

$$
d_{\alpha}\left(Z_{c^{j}}, K\right)<\varepsilon
$$

Proof of Auxilliary Lemmas

Proof of Lemma

Let $K_{\varepsilon}^{\prime}=\left\{g ; d_{\alpha}(g, K)>\varepsilon\right\}$.
Then $\exists \delta>0$ such that $\Delta\left(K_{\varepsilon}^{\prime}\right)>1+2 \delta$.

$$
\mathbb{P}\left[Z_{c^{j}} \in K_{\varepsilon}^{\prime}\right] \leq \exp \left(-(1+\delta) \log \log \left(c^{j}\right)\right) \lesssim \frac{1}{j^{1+\delta}}
$$

Hence by Borel Cantelli $\mathbb{P}\left[Z_{c^{j}} \in K_{\varepsilon}^{\prime}\right.$ for j i.o. $]=0$.

Proof of Law of Iterated Logarithms

Proof of Proposition (2) - The limit Points

Let $h \in H$ s.th. $\frac{\|h\|_{2}^{2}}{2} \leq 1 \Rightarrow \Phi(h) \in K$. Define (recall $\left.\mathcal{W}_{u}(t)=W(u t) / \sqrt{u}\right)$

$$
E_{j}=\left\{\left\|\frac{\mathcal{W}_{c^{j}}(t)}{\sqrt{\log \log \left(c^{j}\right)}}-h\right\|_{\infty} \leq \beta\right\} \quad \text { and } \quad F_{j}=\left\{\left\|z_{c^{j}}-\Phi(h)\right\|_{\alpha} \leq \varepsilon\right\}
$$

By the Hölder topology LDP:

$$
\mathbb{P}\left[E_{j}\right]-\mathbb{P}\left[F_{j}\right]=\mathbb{P}\left[E_{j} \cap F_{j}^{c}\right] \leq \exp \left(-2 \log \log \left(c^{j}\right)\right) \lesssim \frac{1}{j^{2}}
$$

However, we also have

$$
\sum_{j} \mathbb{P}\left[E_{j}\right]=\infty, \quad \sum_{j}\left(\mathbb{P}\left[E_{j}\right]-\mathbb{P}\left[F_{j}\right]\right)<\infty \quad \Rightarrow \quad \sum_{j} \mathbb{P}\left[F_{j}\right]=\infty .
$$

Hence

$$
\mathbb{P}\left[\left\|Z_{c^{j}}-\Phi(h)\right\|_{\alpha}<\varepsilon \text { i.o. }\right]=1 .
$$

Outline

(1) McKean Vlasov Equations

(2) Large Deviations Principles

- Skeleton ODE's of SDE's
- LDPs
- Results
(3) Applications
- Functional Strassen's law

4 Outlook and Further Extensions

Outlook and Further Extensions

- Takeway...
- Existence \& uniqueness results, regularity, LDPs in path space, Iterated logarithm law
- Techniques able to directly deal with the MV-SDE law
- Outlook
- (Topological characterization) Support Theorem for MV-SDEs
- Existence and uniqueness for the fully coupled case

References

用 Baldi．P（1986）
Large Deviations and Functional Iterated Logarithm Law for Diffusion Processes Probability Theory and Related Fields（Springer）

Ben Arous，G．and Ledoux，Michel
Grandes déviations de Freidlin－Wentzell en norme Hölderienne

Springer

围 Carmona，René（2016）
Lectures of BSDEs，Stochastic Control，and Stochastic Differential Games with Financial Applications
SIAM
围 Ciesielski．Z（1960）
On the Isomorphisms of the Spaces H_{α} and m
BULETIN DE L＇ACADÉMIE POLONAISE DES SCIENCES
國 Gärtner，J．（1988）
On the McKean－Vlasov Limit for Interacting Diffusions
Math．Nachr． 137

Thank you

