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The Brownian sheet

A standard two-parameter Brownian sheet is a centered Gaussian random field
W = (W (t1, t2), (t1, t2) ∈ R2

+) defined on a probability space (Ω,F ,P), with
continuous sample paths and covariance

E [W (s1, s2)W (t1, t2)] = min(s1, t1) min(s2, t2).

For fixed t2, t1 7→W (t1, t2) is a Brownian motion (with speed t2).

References:
1970’s: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler
1980’s: W. Kendall, J.B. Walsh, D. Nualart
1990’s: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan
& Z. Shi
2000’s: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets,
small ball probabilities, hitting probabilities, multiple points.
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Level sets

Level sets and bubbles

For x ∈ R, the level set of W at level x is the random closed set

L(x) := {(t1, t2) ∈ R2
+ : W (t1, t2) = x}.

The complement of the level set is the union of two random open sets

L+(x) := {(t1, t2) ∈ R2
+ : W (t1, t2) > x},

L−(x) := {(t1, t2) ∈ R2
+ : W (t1, t2) < x}.

Definition. A Brownian bubble is one connected component of L+(x) or
L−(x).

P1
(Recall that any open subset of R2

+ is a countable disjoint union of connected
components.)
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Hausdorff dimension

Hausdorff dimension of level sets

Theorem 1 (R.J. Adler, 1978)

A.s., for all x ∈ R, dimHL(x) = 1.5

Theorem 2 (T. Mountford, 1993)

Fix x ∈ R. A.s., the Hausdorff dimension of the boundary of any Brownian
bubble is: > 1.25 and < 1.5.

Interpretation: “Most of L(x) is not part of the boundary of any bubble.”

Comparison with standard Brownian motion:

bubbles ←→ excursions above/below level x ;
boundaries of bubbles ←→ extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but
the dimension of level sets of standard Brownian motion is 1

2
.

Question. Do all bubble boundaries have the same dimension? If so, what is it?
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Covering arguments

Explanation for Adler’s theorem

Upper bounds on Hausdorff dimension ←− coverings.

Let
Vn := {(1 + i2−2n, 1 + j2−2n) : i , j ∈ {0, . . . , 22n − 1}.

Then Vn = vertices of a grid in [1, 2]2, ]Vn = 24n.

For t ∈ En, define En(t) := the square in the grid with lower left corner at t.
P2 One covering of L(x) ∩ [1, 2]2, with diameter c2−2n, is:

{En(t) : t ∈ Vn, En(t) ∩ L(x) 6= ∅}.

Calculation:

E

[∑
t∈Vn

(2−2n)α 1{En(t)∩L(x) 6=∅}

]
= (2−2n)α (22n)2 P{En(t) ∩ L(x) 6= ∅}.

Now
P{En(t) ∩ L(x) 6= ∅} ' P{|W (t)− x | 6 2−n} ' 2−n,

so the expectation above is

6 2(4−2α)n2−n = 2(3−2α)n → 0

as n→∞ if and only if α > 3
2
.
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Covering arguments

Towards the dimension of bubble boundaries

Let C1 be a bubble of height > 1 (in [1, 2]2). Then:

t ∈ ∂C1 ⇐⇒W (t) = x and for all ε > 0, there exists a path Γ with
d(Γ(0), t) > ε and W (Γ(·))− x hits 1 before 0.

P3

Covering of ∂C1 ∩ [1, 2]2:

{En(t) : En(t) ∩ L(x) 6= ∅ and F (t) occurs},

where
F (t) = {∃Γ : Γ(0) = t and W (Γ(·))− x hits 1 before 0}.

Should examine the behavior as n→∞ of∑
t∈Vn

(2−2n)α P{|W (t)− x | 6 2−n} P{F (t)
∣∣ |W (t)− x | 6 2−n}

' 24n 2−2αn 2−n P{F (t)
∣∣ |W (t)− x | 6 2−n}.

Main difficulty in estimating P{F (t)
∣∣ |W (t)− x | 6 2−n}: there are infinitely

many possible paths, and these can be arbitrarily “twisty” [D. & Walsh, 1993].
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Covering arguments

Local decomposition of the Brownian sheet

The event F (t) is “local”: either 0 is hit rather quickly, or not, and in this case,
W − x will typically escape to a height of order 1 (the same occurs for
Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix t = (t1, t2). For u1, u2 ∈ R,

W (t1 + u1, t2 + u2) = W (t1, t2) + B t
1(u1) + B t

2(u2) + E t(u1, u2),

where:
B t

1 , B t
2 are independent (two-sided) BM’s, and

E t is “small” (of order
√
|u1u2|).

This suggest to study additive Brownian motion:

X (u1, u2) := X (0, 0) + B1(u1) + B2(u2), u1, u2 ∈ R.
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Additive Brownian motion

Gambler’s ruin problem for additive BM

Let X = (X (u1, u2), (u1, u2) ∈ R2) be an additive Brownian motion.

For x ∈ [0, 1], define

E(x) := P{∃ path Γ : Γ(0) = (0, 0), X (Γ(·)) hits 1 before 0
∣∣ X (0, 0) = x}.

Problem. Estimate E(x).
P4

Main difficulty: there is no constraint on the path Γ: one has to consider all
paths, with no restrictions.

Related problem. For X (0, 0) 6= 0, let C(0,0) be the bubble “stradling” (0, 0).

Question. For a > 0, what is the probability that the bubble C(0,0) extends at
least a units away from the origin?

P5
That is, estimate

D(x , a) = P{C(0,0) 6⊂ [−a, a]2
∣∣X (0, 0) = x}.

By scaling, D(x , a) = D(x/
√

a, 1), and we expect D(x , 1) ' E(x) for x ↓ 0.
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Additive Brownian motion

Gambler’s ruin

Theorem 3 (D. & Mountford)

For x ∈ [0, 1],
E(x) = α1xλ1 + α2xλ2 + α3xλ3 + α4xλ4 ,

where

{λ1, λ2, λ3, λ4} =

{
1
2

(
5±

√
13± 4

√
5

)}
,

λ1 = 1
2

(
5−

√
13 + 4

√
5
)
' 0.158 < λ2 ' 1.49 < · · ·

α1 ' 0.939, α2 = . . . (exact, explicit formulas are given).
In particular, E(x) ' xλ1 as x ↓ 0.

Comparison. For standard BM, we would have E(x) ' x � xλ1 .

Theorem 3 is somewhat surprising!
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Additive Brownian motion

Escape probabilities

Corollary 1

There exist 0 < c < C <∞ such that, for all a > x2,

c

(
x√
a

)λ1

6 D(x , a) 6 C

(
x√
a

)λ1

.

Proving Corollary 1 from Theorem 3 requires some effort.
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Additive Brownian motion

Main result

Theorem 4 (D. & Mountford)

Fix x ∈ R. For the Brownian sheet, the Hausdorff dimension of the boundary of
every x-bubble is

3

2
− λ1

2
= 1

4

(
1 +

√
13 + 4

√
5

)
' 1.421.

Once Theorem 3 and Corollary 1 are proved, the road map to prove Theorem 4
is fairly clear. Carrying out these steps requires some effort.

Will explain why Theorem 3 is true, then give some ideas on how to deduce
Theorem 4.
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Additive Brownian motion

Proving Theorem 3 (gambler’s ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)

There is a specific path Γo such that

E(x) = P{X (Γo(·)) hits 1 before 0
∣∣ X (0, 0) = x}.

P6 Explain construction of Γ0: the DW-algorithm.

Lemma

The sequence M0 = x ,M1,M2, . . . of successive maxima encountered along the
horizontal/vertical segments of the path Γo is Markov of order 2, with
transition probabilities

P{Mn+1 ∈ dz
∣∣Mn = y , Mn−1 = x} = f (x , y , z) dz , z > y > x ,

where

f (x , y , z) =
2(y − x)

z2
− 2(y − x)2

z3
,

and

P{Mn+1 = y
∣∣Mn = y , Mn−1 = x} =

(
x

y

)2

.
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Additive Brownian motion

Study of the Markov chain Θn = (Mn−1,Mn)

State space: S = {(y1, y2) ∈ R2
+ : 0 < y1 6 y2}

P7 Consider the paths of (Θn)

Define the subsets:
WIN := {(y1, y2) ∈ S : y2 > 1},
LOSE := {(y1, y2) ∈ S : y2 = y1}.

P8 and set

α(x , y) = P{(Θn) visits LOSE before WIN
∣∣Θ1 = (x , y)}.

Then

α(x , y) =

(
x

y

)2

+

∫ 1

y

dz f (x , y , z)α(y , z). (1)

This is an unusual sort of linear integral equation (but similar to the system of
equations for absorption probabilities for Markov chains). After several
manipulations, one checks that:
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Additive Brownian motion

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.’s

ẋ(y) = A · x(y) + b, y > 0,

where A is the 6× 6 matrix and b and x(0) are the column vectors

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 −9 6 4 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−8 2 0 28 −26 9

 , b =


0
0
−2

0
0
−6

 , x(0) =


0
−1
−3

0
1
−4

 .

This yields an explicit formula for α(x , y), via the 4 real eigenvalues λ1, . . . , λ4

and eigenvectors of A. Finally,

E(x) = 1− E [α(x ,H1)],

where P{H1 6 y} = (Px{B(·) hits 0 before y})2 =
(

y−x
y

)2

.

This leads to the explicit formula for E(x).
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Additive Brownian motion

Solving the integral equation
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Additive Brownian motion

Proving Theorem 4

Theorem. dimH“bubble” = 3
2
− λ1

2
.

Part 1. Upper bound: dimH“bubble” 6 3
2
− λ1

2
.

Use the covering argument discussed previously:∑
t∈Vn

(2−2n)α P{|W (t)− x | 6 2−n} P{F (t)
∣∣ |W (t)− x | 6 2−n}

' 24n 2−2αn 2−n P{F (t)
∣∣ |W (t)− x | 6 2−n}

' 2(3−2α)n (2−n)λ1 (2)

= 2(3−2α−λ1)n

−→ 0 if α >
3− λ1

2
.

Note. (2) concerns the Brownian sheet, not ABM: some effort is needed to go
from one to the other (“robustness” of the DW-algorithm).
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Additive Brownian motion

Proving Theorem 4

Part 2. Lower bound: dimH“bubble” > 3
2
− λ1

2
.

Energy method: For α < 3
2
− λ1

2
, seek a measure µ supported on the boundary

of a bubble, such that ∫ ∫
µ(ds)µ(dt)

|t − s|α <∞.

Via a “second moment argument”, the key estimate is:
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Additive Brownian motion

Part 2 (continued)

Lemma

For s, t ∈ [1, 2]2, with |s1 − t1| ' 22(k−n), |s2 − t2| ' 22(`−n) (1 6 k < ` 6 n),

P{|W (t)| 6 2−n, F (t), |W (s)| 6 2−n, F (s)} 6 2−n 2−`(2−kλ1 )2(2`−n)λ1 .

(recall that F (t) = {∃Γ : Γ(0) = t and W (Γ(·)) hits 1 before 0}; here x = 0.)

Explanation of each factor:

P9 W (t) ' 2−n: prob. ' 2−n

W (s) ' 2−n (given W (t) ' 2−n): prob. ' 2−n

2`−n = 2−`.

F (t) ∩ F (s): first both paths reach level 2k−n units: prob.
[
(2−k)λ1

]2
.

In the big rectangle, the maximum of W is ' 2`−n. Starting from this level,
one path (at least) must reach level 1 before 0: prob. ' (2`−n)λ1 .

A good bound is obtained by multiplying these factors (even though the events
are not independent!).
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