Hausdorff dimension of the boundary of Brownian bubbles

Robert C. Dalang

Ecole Polytechnique Fédérale de Lausanne

Based on joint work with:

T. Mountford (EPF - Lausanne)

э

() <) <)
 () <)
 () <)
</p>

< 🗇 🕨

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

 $E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler 1980's: W. Kendall, J.B. Walsh, D. Nualart 1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan & Z. Shi 2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

э.

・ロン ・四 と ・ ヨ と ・

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

 $E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler
1980's: W. Kendall, J.B. Walsh, D. Nualart
1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan & Z. Shi
2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

 $E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler 1980's: W. Kendall, J.B. Walsh, D. Nualart 1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan & Z. Shi

2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Level sets

For $x \in \mathbb{R}$, the level set of W at level x is the random closed set

$$L(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) = x\}.$$

The complement of the level set is the union of two random open sets

Definition. A Brownian bubble is one connected component of $L_+(x)$ or $L_-(x)$.

Ρ1

(Recall that any open subset of \mathbb{R}^2_+ is a countable disjoint union of connected components.)

3

Level sets

For $x \in \mathbb{R}$, the level set of W at level x is the random closed set

$$L(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) = x\}.$$

The complement of the level set is the union of two random open sets

Definition. A Brownian bubble is one connected component of $L_+(x)$ or $L_-(x)$.

Ρ1

(Recall that any open subset of \mathbb{R}^2_+ is a countable disjoint union of connected components.)

э.

・ロト ・回ト ・ヨト ・ヨト

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: ≥ 1.25 and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Question. Do all bubble boundaries have the same dimension? If so, what is it?

<ロ> <同> <同> < 回> < 回>

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: ≥ 1.25 and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Question. Do all bubble boundaries have the same dimension? If so, what is it?

・ロン ・回と ・ヨン ・ ヨン

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: ≥ 1.25 and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Question. Do all bubble boundaries have the same dimension? If so, what is it?

イロン 不同 とくほう イヨン

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: $\geqslant 1.25$ and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Question. Do all bubble boundaries have the same dimension? If so, what is it?

Explanation for Adler's theorem

Upper bounds on Hausdorff dimension \leftarrow coverings.

Let

$$V_n := \{(1 + i2^{-2n}, 1 + j2^{-2n}) : i, j \in \{0, \dots, 2^{2n} - 1\}.$$

Then V_n = vertices of a grid in $[1, 2]^2$, $\sharp V_n = 2^{4n}$.

For $t \in \mathbb{E}_n$, define $E_n(t) :=$ the square in the grid with lower left corner at t. P2 One covering of $L(x) \cap [1,2]^2$, with diameter $c2^{-2n}$, is:

 $\{E_n(t): t \in V_n, E_n(t) \cap L(x) \neq \emptyset\}.$

$$E\left[\sum_{t\in V_n} (2^{-2n})^{\alpha} 1_{\{E_n(t)\cap L(x)\neq\emptyset\}}\right] = (2^{-2n})^{\alpha} (2^{2n})^2 P\{E_n(t)\cap L(x)\neq\emptyset\}.$$

$$P\{E_n(t)\cap L(x)\neq\emptyset\}\simeq P\{|W(t)-x|\leqslant 2^{-n}\}\simeq 2^{-n},$$

$$\leq 2^{(4-2\alpha)n}2^{-n} = 2^{(3-2\alpha)n} \to 0$$

・ロン ・四 と ・ ヨ と ・

Explanation for Adler's theorem

Upper bounds on Hausdorff dimension \leftarrow coverings.

Let

$$V_n := \{(1+i2^{-2n}, 1+j2^{-2n}) : i, j \in \{0, \dots, 2^{2n}-1\}.$$

For $t \in \mathbb{E}_n$, define $E_n(t) :=$ the square in the grid with lower left corner at t. P2 One covering of $L(x) \cap [1,2]^2$, with diameter $c2^{-2n}$, is:

 $\{E_n(t): t \in V_n, E_n(t) \cap L(x) \neq \emptyset\}.$

Calculation:

$$E\left[\sum_{t\in V_n} (2^{-2n})^{\alpha} \mathbf{1}_{\{E_n(t)\cap L(x)\neq\emptyset\}}\right] = (2^{-2n})^{\alpha} (2^{2n})^2 P\{E_n(t)\cap L(x)\neq\emptyset\}.$$

Now

$$P{E_n(t) \cap L(x) \neq \emptyset} \simeq P{|W(t) - x| \leq 2^{-n}} \simeq 2^{-n},$$

so the expectation above is

$$\leqslant 2^{(4-2\alpha)n}2^{-n}=2^{(3-2\alpha)n}\to 0$$

as $n \to \infty$ if and only if $\alpha > \frac{3}{2}$.

(日) (四) (注) (注) (日) (日)

Covering arguments

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height ≥ 1 (in $[1,2]^2$). Then:

 $t \in \partial C_1 \iff W(t) = x$ and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0), t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0.

Ρ3

Covering of $\partial C_1 \cap [1,2]^2$:

 $\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},\$

where

$$F(t) = \{ \exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0 \}.$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$
$$\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}.$$

Main difficulty in estimating $P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993]

Covering arguments

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height ≥ 1 (in $[1, 2]^2$). Then: $t \in \partial C_1 \iff W(t) = x$ and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0), t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0. P3

Covering of $\partial C_1 \cap [1,2]^2$:

$$\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},\$$

where

$$F(t) = \{ \exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0 \}.$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$
$$\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}.$$

Main difficulty in estimating $P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993]

Covering arguments

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height ≥ 1 (in $[1, 2]^2$). Then: $t \in \partial C_1 \iff W(t) = x$ and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0), t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0. P3

Covering of $\partial C_1 \cap [1,2]^2$:

$$\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},\$$

where

$$F(t) = \{ \exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0 \}.$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$
$$\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}.$$

Main difficulty in estimating $P\{F(t) \mid |W(t) - x| \le 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993].

・ロン ・四 と ・ ヨン ・ ヨン

The event F(t) is "local": either 0 is hit rather quickly, or not, and in this case, W - x will typically escape to a height of order 1 (the same occurs for Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix $t = (t_1, t_2)$. For $u_1, u_2 \in \mathbb{R}$,

$$W(t_1 + u_1, t_2 + u_2) = W(t_1, t_2) + B_1^t(u_1) + B_2^t(u_2) + \mathcal{E}^t(u_1, u_2),$$

where:

 B_1^t , B_2^t are independent (two-sided) BM's, and \mathcal{E}^t is "small" (of order $\sqrt{|u_1u_2|}$).

This suggest to study additive Brownian motion:

 $X(u_1, u_2) := X(0, 0) + B_1(u_1) + B_2(u_2), \qquad u_1, u_2 \in \mathbb{R}.$

・ロト ・回ト ・ヨト ・ヨト

The event F(t) is "local": either 0 is hit rather quickly, or not, and in this case, W - x will typically escape to a height of order 1 (the same occurs for Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix $t = (t_1, t_2)$. For $u_1, u_2 \in \mathbb{R}$,

$$W(t_1 + u_1, t_2 + u_2) = W(t_1, t_2) + B_1^t(u_1) + B_2^t(u_2) + \mathcal{E}^t(u_1, u_2),$$

where:

 B_1^t , B_2^t are independent (two-sided) BM's, and \mathcal{E}^t is "small" (of order $\sqrt{|u_1u_2|}$).

This suggest to study additive Brownian motion:

$$X(u_1, u_2) := X(0, 0) + B_1(u_1) + B_2(u_2), \qquad u_1, u_2 \in \mathbb{R}.$$

Gambler's ruin problem for additive BM

Let $X=(X(u_1,u_2),\ (u_1,u_2)\in\mathbb{R}^2)$ be an additive Brownian motion. For $x\in[0,1],$ define

 $\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $C_{(0,0)}$ be the bubble "stradling" (0,0).

Question. For a > 0, what is the probability that the bubble $C_{(0,0)}$ extends at least *a* units away from the origin?

P5

That is, estimate

$$\mathbb{D}(x,a) = P\{\mathcal{C}_{(0,0)} \not\subset [-a,a]^2 \mid X(0,0) = x\}.$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$.

・ロン ・四 と ・ ヨン ・ ヨン

Gambler's ruin problem for additive BM

Let $X=(X(u_1,u_2),\ (u_1,u_2)\in\mathbb{R}^2)$ be an additive Brownian motion. For $x\in[0,1],$ define

 $\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $C_{(0,0)}$ be the bubble "stradling" (0,0).

Question. For a > 0, what is the probability that the bubble $C_{(0,0)}$ extends at least *a* units away from the origin?

Ρ5

That is, estimate

$$\mathbb{D}(x,a) = P\{\mathcal{C}_{(0,0)} \not\subset [-a,a]^2 \mid X(0,0) = x\}.$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$.

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

Gambler's ruin problem for additive BM

Let $X=(X(u_1,u_2),\ (u_1,u_2)\in\mathbb{R}^2)$ be an additive Brownian motion. For $x\in[0,1],$ define

 $\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $C_{(0,0)}$ be the bubble "stradling" (0,0).

Question. For a > 0, what is the probability that the bubble $C_{(0,0)}$ extends at least *a* units away from the origin?

Ρ5

That is, estimate

$$\mathbb{D}(x,a) = P\{\mathcal{C}_{(0,0)} \not\subset [-a,a]^2 \, \big| \, X(0,0) = x\}.$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$.

Theorem 3 (D. & Mountford)

For $x \in [0, 1]$,

$$\mathbb{E}(\mathbf{x}) = \alpha_1 \mathbf{x}^{\lambda_1} + \alpha_2 \mathbf{x}^{\lambda_2} + \alpha_3 \mathbf{x}^{\lambda_3} + \alpha_4 \mathbf{x}^{\lambda_4},$$

where

$$\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\} = \left\{ \frac{1}{2} \left(5 \pm \sqrt{13 \pm 4\sqrt{5}} \right) \right\},$$

 $\begin{array}{ll} \lambda_1 = \frac{1}{2} \left(5 - \sqrt{13 + 4\sqrt{5}} \right) \simeq 0.158 & < \lambda_2 \simeq 1.49 \\ \alpha_1 \simeq 0.939, \ \alpha_2 = \dots \ (exact, \ explicit \ formulas \ are \ given). \\ In \ particular, \ \mathbb{E}(x) \simeq x^{\lambda_1} \ as \ x \downarrow 0. \end{array}$

Comparison. For standard BM, we would have $\mathbb{E}(x) \simeq x \ll x^{\lambda_1}$.

Theorem 3 is somewhat surprising!

イロン 不得 とくほう イヨン しほう

Escape probabilities

Corollary 1

There exist $0 < c < C < \infty$ such that, for all $a \ge x^2$,

$$c\left(\frac{x}{\sqrt{a}}\right)^{\lambda_1} \leqslant \mathbb{D}(x,a) \leqslant C\left(\frac{x}{\sqrt{a}}\right)^{\lambda_1}$$

Proving Corollary 1 from Theorem 3 requires some effort.

3

Theorem 4 (D. & Mountford)

Fix $x \in \mathbb{R}$. For the Brownian sheet, the Hausdorff dimension of the boundary of every x-bubble is

$$rac{3}{2} - rac{\lambda_1}{2} = rac{1}{4} \left(1 + \sqrt{13 + 4\sqrt{5}}
ight) \simeq 1.421.$$

Once Theorem 3 and Corollary 1 are proved, the road map to prove Theorem 4 is fairly clear. Carrying out these steps requires some effort.

Will explain why Theorem 3 is true, then give some ideas on how to deduce Theorem 4.

э

(日) (同) (三) (三)

Theorem 4 (D. & Mountford)

Fix $x \in \mathbb{R}$. For the Brownian sheet, the Hausdorff dimension of the boundary of every x-bubble is

$$\frac{3}{2} - \frac{\lambda_1}{2} = \frac{1}{4} \left(1 + \sqrt{13 + 4\sqrt{5}} \right) \simeq 1.421.$$

Once Theorem 3 and Corollary 1 are proved, the road map to prove Theorem 4 is fairly clear. Carrying out these steps requires some effort.

Will explain why Theorem 3 is true, then give some ideas on how to deduce Theorem 4.

э

(日) (同) (三) (三)

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)

There is a specific path $\Gamma^{\rm o}$ such that

$$\mathbb{E}(x) = P\{X(\Gamma^{\circ}(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$$

P6 Explain construction of Γ^0 : the DW-algorithm.

Lemma

The sequence $M_0 = x, M_1, M_2, \ldots$ of successive maxima encountered along the horizontal/vertical segments of the path Γ° is Markov of order 2, with transition probabilities

$$P\{M_{n+1} \in dz \mid M_n = y, M_{n-1} = x\} = f(x, y, z) dz, \qquad z > y > x,$$

where

$$f(x, y, z) = \frac{2(y - x)}{z^2} - \frac{2(y - x)^2}{z^3},$$

and

$$P\{M_{n+1} = y \mid M_n = y, M_{n-1} = x\} = \left(\frac{x}{y}\right)^2$$

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)

There is a specific path Γ° such that

```
\mathbb{E}(x) = P\{X(\Gamma^{\circ}(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.
```

P6 Explain construction of Γ^0 : the DW-algorithm.

Lemma

The sequence $M_0 = x, M_1, M_2, ...$ of successive maxima encountered along the horizontal/vertical segments of the path Γ° is Markov of order 2, with transition probabilities

$$P\{M_{n+1} \in dz \mid M_n = y, M_{n-1} = x\} = f(x, y, z) dz, \qquad z > y > x_y$$

where

$$f(x,y,z) = \frac{2(y-x)}{z^2} - \frac{2(y-x)^2}{z^3},$$

and

$$P\{M_{n+1} = y \mid M_n = y, M_{n-1} = x\} = \left(\frac{x}{y}\right)^2$$

Study of the Markov chain $\Theta_n = (M_{n-1}, M_n)$

State space:
$$\mathcal{S} = \{(y_1, y_2) \in \mathbb{R}^2_+ : 0 < y_1 \leqslant y_2\}$$

P7 Consider the paths of (Θ_n)

Define the subsets:

WIN := {
$$(y_1, y_2) \in S : y_2 \ge 1$$
},
LOSE := { $(y_1, y_2) \in S : y_2 = y_1$ }.

P8 and set

$$\alpha(x,y) = P\{(\Theta_n) \text{ visits LOSE before WIN } | \Theta_1 = (x,y)\}.$$

Then

$$\alpha(x,y) = \left(\frac{x}{y}\right)^2 + \int_y^1 dz \, f(x,y,z) \, \alpha(y,z). \tag{1}$$

This is an unusual sort of linear integral equation (but similar to the system of equations for absorption probabilities for Markov chains). After several manipulations, one checks that:

э

Study of the Markov chain $\Theta_n = (M_{n-1}, M_n)$

State space:
$$S = \{(y_1, y_2) \in \mathbb{R}^2_+ : 0 < y_1 \leqslant y_2\}$$

P7 Consider the paths of (Θ_n)

Define the subsets:

WIN := {
$$(y_1, y_2) \in S : y_2 \ge 1$$
},
LOSE := { $(y_1, y_2) \in S : y_2 = y_1$ }.

P8 and set

$$\alpha(x, y) = P\{(\Theta_n) \text{ visits LOSE before WIN } | \Theta_1 = (x, y)\}.$$

Then

$$\alpha(x,y) = \left(\frac{x}{y}\right)^2 + \int_y^1 dz \, f(x,y,z) \, \alpha(y,z). \tag{1}$$

This is an unusual sort of linear integral equation (but similar to the system of equations for absorption probabilities for Markov chains). After several manipulations, one checks that:

3

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\dot{\underline{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6×6 matrix and <u>b</u> and <u>x(0)</u> are the column vectors

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{pmatrix}, \quad \underline{x}(0) = \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{pmatrix}$$

This yields an explicit formula for $\alpha(x, y)$, via the 4 real eigenvalues $\lambda_1, \ldots, \lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(x) = 1 - E[\alpha(x, H_1)],$$

where $P\{H_1 \leq y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$.

・ロト ・回ト ・ヨト ・ヨト

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\dot{\underline{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6×6 matrix and <u>b</u> and <u>x(0)</u> are the column vectors

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{pmatrix}, \quad \underline{x}(0) = \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{pmatrix}$$

This yields an explicit formula for $\alpha(x, y)$, via the 4 real eigenvalues $\lambda_1, \ldots, \lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(x) = 1 - E[\alpha(x, H_1)],$$

where $P\{H_1 \leq y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$.

・ロン ・回と ・ヨン ・ ヨン

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\dot{\underline{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6×6 matrix and <u>b</u> and <u>x(0)</u> are the column vectors

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{pmatrix}, \quad \underline{x}(0) = \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{pmatrix}$$

This yields an explicit formula for $\alpha(x, y)$, via the 4 real eigenvalues $\lambda_1, \ldots, \lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(x) = 1 - E[\alpha(x, H_1)],$$

where $P\{H_1 \leq y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$.

◆□→ ◆□→ ◆三→ ◆三→ 三三 -

Proving Theorem 4

Theorem. dim_{*H*} "bubble" $= \frac{3}{2} - \frac{\lambda_1}{2}$.

Part 1. Upper bound: dim_H "bubble" $\leq \frac{3}{2} - \frac{\lambda_1}{2}$.

Use the covering argument discussed previously:

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$

$$\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$

$$\simeq 2^{(3-2\alpha)n} (2^{-n})^{\lambda_1}$$

$$= 2^{(3-2\alpha-\lambda_1)n}$$

$$\longrightarrow 0 \quad \text{if } \alpha > \frac{3-\lambda_1}{2}.$$
(2)

Note. (2) concerns the Brownian sheet, not ABM: some effort is needed to go from one to the other ("robustness" of the DW-algorithm).

3

イロン 不同 とくほう イヨン

Part 2. Lower bound: dim_H "bubble" $\geq \frac{3}{2} - \frac{\lambda_1}{2}$.

Energy method: For $\alpha < \frac{3}{2} - \frac{\lambda_1}{2}$, seek a measure μ supported on the boundary of a bubble, such that

$$\int\intrac{\mu(ds)\mu(dt)}{|t-s|^lpha}<\infty.$$

Via a "second moment argument", the key estimate is:

3

・ロト ・回ト ・ヨト ・ヨト

Part 2 (continued)

Lemma

For
$$s, t \in [1, 2]^2$$
, with $|s_1 - t_1| \simeq 2^{2(k-n)}$, $|s_2 - t_2| \simeq 2^{2(\ell-n)}$ $(1 \le k < \ell \le n)$,
 $P\{|W(t)| \le 2^{-n}$, $F(t), |W(s)| \le 2^{-n}$, $F(s)\} \le 2^{-n}2^{-\ell}(2^{-k\lambda_1})^2(2^{\ell-n})^{\lambda_1}$.

(recall that $F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0\}$; here x = 0.) Explanation of each factor:

P9
$$W(t) \simeq 2^{-n}$$
: prob. $\simeq 2^{-n}$
 $W(s) \simeq 2^{-n}$ (given $W(t) \simeq 2^{-n}$): prob. $\simeq \frac{2^{-n}}{2^{\ell-n}} = 2^{-\ell}$.
 $F(t) \cap F(s)$: first both paths reach level 2^{k-n} units: prob. [(2)

In the big rectangle, the maximum of W is $\simeq 2^{\ell-n}$. Starting from this level, one path (at least) must reach level 1 before 0: prob. $\simeq (2^{\ell-n})^{\lambda_1}$.

A good bound is obtained by multiplying these factors (even though the events are not independent!).

э.

Part 2 (continued)

Lemma

For
$$s, t \in [1, 2]^2$$
, with $|s_1 - t_1| \simeq 2^{2(k-n)}$, $|s_2 - t_2| \simeq 2^{2(\ell-n)}$ $(1 \le k < \ell \le n)$,
 $P\{|W(t)| \le 2^{-n}, F(t), |W(s)| \le 2^{-n}, F(s)\} \le 2^{-n} 2^{-\ell} (2^{-k\lambda_1})^2 (2^{\ell-n})^{\lambda_1}.$

(recall that $F(t) = \{ \exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) \text{ hits 1 before 0} \}$; here x = 0.) Explanation of each factor:

P9
$$W(t) \simeq 2^{-n}$$
: prob. $\simeq 2^{-n}$
 $W(s) \simeq 2^{-n}$ (given $W(t) \simeq 2^{-n}$): prob. $\simeq \frac{2^{-n}}{2^{\ell-n}} = 2^{-\ell}$.
 $F(t) \cap F(s)$: first both paths reach level 2^{k-n} units: prob. $[(2^{-k})^{\lambda_1}]^2$

In the big rectangle, the maximum of W is $\simeq 2^{\ell-n}$. Starting from this level, one path (at least) must reach level 1 before 0: prob. $\simeq (2^{\ell-n})^{\lambda_1}$.

A good bound is obtained by multiplying these factors (even though the events are not independent!).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Mountford, T.S. (1993). Estimates of the Hausdorff dimension of the boundary of positive Brownian sheet components. *Sém. de Probabilités* XXVII *Lect. Notes in Math.* vol. 1557, pp.233-255. Springer.

Dalang, R.C. & Walsh, J.B. (1993) The structure of a Brownian bubble. *Probab. Th. Relat. Fields* 96, 475-501.

Mörters, P. & Peres, Y. (2010). Brownian motion. Cambridge University Press.

Dalang, R.C. & Mountford, T. (2017). Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet (145pp). http://arxiv.org/abs/1702.08183

・ロン ・回 と ・ 回 と ・ ヨン