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The Brownian sheet

A standard two-parameter Brownian sheet is a centered Gaussian random field
W = (W(ti, t2), (t1, t2) € R%) defined on a probability space (Q, F, P), with
continuous sample paths and covariance

E[W(S17 SQ)W(&7 tg)] = mil’1(517 t1) min(sz, t‘2).

For fixed tp, t1 — W(t1, t2) is a Brownian motion (with speed t,).
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Issues: Sample path properties, Markov properties, potential theory, level sets,
small ball probabilities, hitting probabilities, multiple points.
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Level sets
Level sets and bubbles

For x € R, the level set of W at level x is the random closed set
L(x):={(t1,t) e R} : W(t, ) = x}.

The complement of the level set is the union of two random open sets
Li(x):={(t1, ) €R% : W(t:, 1) > x},

Lf(X) = {(t1, t2) S Ri : W(i‘1, t2) < X}.
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Level sets
Level sets and bubbles

For x € R, the level set of W at level x is the random closed set
L(x):={(t1,t) e R} : W(t, ) = x}.

The complement of the level set is the union of two random open sets
Li(x):={(t1, ) €R% : W(t:, 1) > x},

Lf(X) = {(t1, t2) S Ri : W(i‘1, t2) < X}.

Definition. A Brownian bubble is one connected component of L (x) or
L_(x).

P1
(Recall that any open subset of ]R%r is a countable disjoint union of connected
components.)
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Hausdorff dimension
Hausdorff dimension of level sets

Theorem 1 (R.J. Adler, 1978)

A.s., for all x € R, dimyL(x) = 1.5
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Hausdorff dimension
Hausdorff dimension of level sets

Theorem 1 (R.J. Adler, 1978)

A.s., for all x € R, dimyL(x) = 1.5

Theorem 2 (T. Mountford, 1993)

Fix x € R. A.s., the Hausdorff dimension of the boundary of any Brownian
bubble is: > 1.25 and < 1.5.

Interpretation: “Most of L(x) is not part of the boundary of any bubble.”
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Hausdorff dimension
Hausdorff dimension of level sets

Theorem 1 (R.J. Adler, 1978)

A.s., for all x € R, dimyL(x) = 1.5

Theorem 2 (T. Mountford, 1993)

Fix x € R. A.s., the Hausdorff dimension of the boundary of any Brownian
bubble is: > 1.25 and < 1.5.

Interpretation: “Most of L(x) is not part of the boundary of any bubble.”
Comparison with standard Brownian motion:

bubbles +— excursions above/below level x;
boundaries of bubbles «+— extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but
the dimension of level sets of standard Brownian motion is %
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Hausdorff dimension
Hausdorff dimension of level sets

Theorem 1 (R.J. Adler, 1978)

A.s., for all x € R, dimyL(x) = 1.5

Theorem 2 (T. Mountford, 1993)

Fix x € R. A.s., the Hausdorff dimension of the boundary of any Brownian
bubble is: > 1.25 and < 1.5.

Interpretation: “Most of L(x) is not part of the boundary of any bubble.”
Comparison with standard Brownian motion:

bubbles +— excursions above/below level x;
boundaries of bubbles «+— extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but
the dimension of level sets of standard Brownian motion is %

Question. Do all bubble boundaries have the same dimension? If so, what is it?
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Covering arguments
Explanation for Adler's theorem

Upper bounds on Hausdorff dimension «— coverings.

Let
Vo ={(1+i272"14+,22"):ije{0,...,22" —1}.

Then V,, = vertices of a grid in [1, 2]2, 1V, = 2%

For t € E,, define E,(t) := the square in the grid with lower left corner at t.
P2 One covering of L(x) N [1,2]?, with diameter c27", is:

{En(t): t € Vn, Ej(t)NL(x)#£0}.
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Covering arguments
Explanation for Adler's theorem

Upper bounds on Hausdorff dimension «— coverings.

Let
Vo ={(1+i272"14+,22"):ije{0,...,22" —1}.

Then V,, = vertices of a grid in [1, 2]2, 1V, = 2%

For t € E,, define E,(t) := the square in the grid with lower left corner at t.
P2 One covering of L(x) N [1,2]?, with diameter c27", is:

{En(t): t € Vn, Ej(t)NL(x)#£0}.

Calculation:
E D 27" Lignieozoy | = (277) (") P{EA(t) N L(x) # 0}.
teVy

Now
P{E.(t)NL(x) # 0} ~ P{IW(t) — x| <27 "} =277

so the expectation above is
< 2(472a)n27n _ 2(372a)n =0

asn—>ooifandon|yifa>%.

Hausdorff dimension of the boundary of Brownian bubbles Robert C. Dalang



Covering arguments
Towards the dimension of bubble boundaries

Let C; be a bubble of height > 1 (in [1,2]?). Then:

t € 9C, <= W(t) = x and for all ¢ > 0, there exists a path I with
d(T(0),t) > e and W(I'(-)) — x hits 1 before 0.
P3
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Covering arguments
Towards the dimension of bubble boundaries

Let C; be a bubble of height > 1 (in [1,2]?). Then:

t € 9C, <= W(t) = x and for all ¢ > 0, there exists a path I with
d(T(0),t) > e and W(I'(-)) — x hits 1 before 0.
P3

Covering of 9C; N [1,2]*:
{En(t) : En(t) N L(x) # 0 and F(t) occurs},

where
F(t) ={3r : 1(0) =t and W(I'(-)) — x hits 1 before 0}.
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Covering arguments
Towards the dimension of bubble boundaries

Let C; be a bubble of height > 1 (in [1,2]?). Then:

t € 9C, <= W(t) = x and for all ¢ > 0, there exists a path I with
d(T(0),t) > e and W(I'(-)) — x hits 1 before 0.
P3

Covering of 9C; N [1,2]*:
{En(t) : En(t) N L(x) # 0 and F(t) occurs},
where

F(t) ={3r : 1(0) =t and W(I'(-)) — x hits 1 before 0}.

Should examine the behavior as n — oo of

D7) PUW(r) — x| <277 P{F(2) [ IW(t) — x| <277}
tev,
~ 2% 272N TN PLF(E) [ |W(t) — x| < 27"}
Main difficulty in estimating P{F(t | [W(t) — x| <27"}: there are infinitely
many possible paths, and these can be arbitrarily “twisty” [D. & Walsh, 1993].
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Covering arguments
Local decomposition of the Brownian sheet

The event F(t) is “local”: either 0 is hit rather quickly, or not, and in this case,
W — x will typically escape to a height of order 1 (the same occurs for
Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix t = (t1, t2). For v, u» € R,
W(ts + w1, t2 + u2) = W (ts, t2) + Bi(ur) + Bs(u2) + £ (ur, u2),

where:
Bi, B} are independent (two-sided) BM'’s, and

E'is “small” (of order \/|u1usl).

Hausdorff dimension of the boundary of Brownian bubbles Robert C. Dalang



Covering arguments
Local decomposition of the Brownian sheet

The event F(t) is “local”: either 0 is hit rather quickly, or not, and in this case,
W — x will typically escape to a height of order 1 (the same occurs for
Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix t = (t1, t2). For v, u» € R,
W(ts + w1, t2 + u2) = W (ts, t2) + Bi(ur) + Bs(u2) + £ (ur, u2),

where:
Bi, B} are independent (two-sided) BM'’s, and

E'is “small” (of order \/|u1usl).

This suggest to study additive Brownian motion:

X(ul,U2) = X(0,0)+Bl(ul)+Bz(U2), uy, Uz € R.
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Additive Brownian motion
Gambler's ruin problem for additive BM

Let X = (X(u1, u2), (u1, u2) € R?) be an additive Brownian motion.
For x € [0, 1], define
E(x) := P{3 path I : T(0) = (0,0), X(I'(-)) hits 1 before 0 ’ X(0,0) = x}.
Problem. Estimate E(x).
P4

Main difficulty: there is no constraint on the path I': one has to consider all
paths, with no restrictions.
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Additive Brownian motion
Gambler's ruin problem for additive BM

Let X = (X(u1, u2), (u1, u2) € R?) be an additive Brownian motion.
For x € [0, 1], define
E(x) := P{3 path I : T(0) = (0,0), X(I'(-)) hits 1 before 0 ’ X(0,0) = x}.
Problem. Estimate E(x).
P4

Main difficulty: there is no constraint on the path I': one has to consider all
paths, with no restrictions.

Related problem. For X(0,0) # 0, let C(o,0) be the bubble “stradling” (0,0).

Question. For a > 0, what is the probability that the bubble C ) extends at
least a units away from the origin?

P5
That is, estimate

D(x, a) = P{C(0,0) Z [—a, 3]2 ’ X(0,0) = x}.
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Additive Brownian motion
Gambler's ruin problem for additive BM

Let X = (X(u1, u2), (u1, u2) € R?) be an additive Brownian motion.
For x € [0, 1], define
E(x) := P{3 path I : T(0) = (0,0), X(I'(-)) hits 1 before 0 ’ X(0,0) = x}.
Problem. Estimate E(x).
P4

Main difficulty: there is no constraint on the path I': one has to consider all
paths, with no restrictions.

Related problem. For X(0,0) # 0, let C(o,0) be the bubble “stradling” (0,0).

Question. For a > 0, what is the probability that the bubble C ) extends at
least a units away from the origin?

P5
That is, estimate

D(x, a) = P{C(0,0) Z [—a, 3]2 ’ X(0,0) = x}.

By scaling, D(x, a) = D(x/+/a, 1), and we expect D(x, 1) ~ E(x) for x | 0.
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Additive Brownian motion
Gambler’s ruin

Theorem 3 (D. & Mountford)
For x € [0, 1],

A by A A
E(x) = aix™ + aox"? + azx™® + aax™,

where

{A, A2, A3, M} = {% (Sﬁ: 1314\/§>},
Al:%(5—\/m):o.158 < A~149 <o

a1 ~0.939, a, = ... (exact, explicit formulas are given).
In particular, E(x) ~ x™ as x | 0.

Comparison. For standard BM, we would have E(x) ~ x <« x.

Theorem 3 is somewhat surprising!
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Additive Brownian motion

Escape probabilities

There exist 0 < ¢ < C < oo such that, for all a > x?,
x \ ™M x \ ™M
—= <D(x,a) < C| — :

‘ (ﬁ) (.a) (\/5>

Proving Corollary 1 from Theorem 3 requires some effort.
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Additive Brownian motion
Main result

Theorem 4 (D. & Mountford)

Fix x € R. For the Brownian sheet, the Hausdorff dimension of the boundary of

every x-bubble is
g_ % =1 <1+ 13+4\/§) ~ 1.421.
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Additive Brownian motion
Main result

Theorem 4 (D. & Mountford)

Fix x € R. For the Brownian sheet, the Hausdorff dimension of the boundary of

every x-bubble is
3 X\
55 = : <1+ 13+4\/§> ~ 1.421.

Once Theorem 3 and Corollary 1 are proved, the road map to prove Theorem 4
is fairly clear. Carrying out these steps requires some effort.

Will explain why Theorem 3 is true, then give some ideas on how to deduce
Theorem 4.
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Additive Brownian motion

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)
There is a specific path ° such that

E(x) = P{X(I°(-)) hits 1 before 0 | X(0,0) = x}.

P6 Explain construction of I'°: the DW-algorithm.
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Additive Brownian motion

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)
There is a specific path ° such that

E(x) = P{X(I°(-)) hits 1 before 0 | X(0,0) = x}.

P6 Explain construction of I'°: the DW-algorithm.

The sequence My = x, My, Ma, ... of successive maxima encountered along the
horizontal/vertical segments of the path I'° is Markov of order 2, with
transition probabilities

P{M,,+16d2|l\/l,,:y, M,—1 = x} = f(x,y, z) dz, z>y> X,

where )
2y —x)  2(y —x)
z2 z3

flx,y,2) =

)

and

2
P{Mniz =y |Mn=y, Moy = x} = <5) :
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Additive Brownian motion

Study of the Markov chain ©, = (M,_1, M)

State space: S = {(y1,¥2) ERZ : 0 < y1 < yo}
P7 Consider the paths of (©,)

Define the subsets:
WIN = {(y1,y2) €S : yo > 1},
LOSE := {(y1,y2) €ES:y2 =n}.
P8 and set

a(x,y) = P{(©,) visits LOSE before WIN |©; = (x,y)}.
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Additive Brownian motion

Study of the Markov chain ©, = (M,_1, M)

State space: S = {(y1,¥2) ERZ : 0 < y1 < yo}
P7 Consider the paths of (©,)

Define the subsets:
WIN = {(y1,y2) €S : yo > 1},
LOSE := {(y1,y2) €ES:y2 =n}.
P8 and set

a(x,y) = P{(©,) visits LOSE before WIN |©; = (x,y)}.
Then ) )
o) = (2) + [ defxy2)aty.2) &)

This is an unusual sort of linear integral equation (but similar to the system of
equations for absorption probabilities for Markov chains). After several
manipulations, one checks that:
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Additive Brownian motion
Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.’s
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Additive Brownian motion
Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.’s
x(y)=A-x(y)+b,  y>0,

where A is the 6 X 6 matrix and b and x(0) are the column vectors

0 10 0 0 0 0 0
0 0 1 0 0 0 0 1
0 -9 6 4 00 ) -3
A= 0 0 0 0 10 |0 2= o |- xO= 0
0 00 0 0 1 0 1
8 2 0 28 -2 9 -6 —4

Hausdorff dimension of the boundary of Brownian bubbles Robert C. Dalang



Additive Brownian motion
Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.’s
x(y)=A-x(y)+b,  y>0,

where A is the 6 X 6 matrix and b and x(0) are the column vectors

0 1 0 O 0 0 0 0
0 01 o 0 0 0 -1
0 -9 6 4 0 0 -2 3
A=l 0 00 o 10| 27| o *XO=| 4
0 00 O 0 1 0 1
-8 2 0 28 —-26 9 —6 —4
This yields an explicit formula for a(x, y), via the 4 real eigenvalues A1, ..., \s

and eigenvectors of A. Finally,

E(x) =1 — E[a(x, H1)],

2
where P{H, < y} = (P{B(-) hits 0 before y})? = (YY;X) .

This leads to the explicit formula for E(x).
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Additive Brownian motion
Proving Theorem 4

Theorem. dimy "bubble” = 2 — 2L
Part 1. Upper bound: dimy “bubble” < 2 — X

27 2
Use the covering argument discussed previously:

D@7 P{IW(E) — x| < 27" P{F(t) | IW(t) — x| <277}

teVy
~ 2% 27227 PLF(t) | [W(E) — x| <27}
~ 2 (3—2a)n (2— ))\1

_ 2(3—2&—)\1)n

3— M
5

—0 if a >

Note. (2) concerns the Brownian sheet, not ABM: some effort is needed to go
from one to the other (“robustness” of the DW-algorithm).
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Additive Brownian motion
Proving Theorem 4

Part 2. Lower bound: dimy “bubble” > % — %
Energy method: For « 3 - ﬂ, seek a measure y supported on the boundary

of a bubble, such that
/ u(ds) u(dt
|t — 5|

Via a “second moment argument”, the key estimate is:
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Additive Brownian motion

Part 2 (continued)

Fors,t € [1,2]%, with |s; — t;] 22" |5y — tp| ~ 2267 (1 < k < £ < n),

P{W(1)] < 27", F(2), [W(s)] < 27", F(s)} <27"27° (27" M2 ")™.

(recall that F(t) = {3r : T(0) = t and W(I(-)) hits 1 before 0}; here x = 0.)
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Additive Brownian motion

Part 2 (continued)

Fors,t € [1,2]%, with |s; — t;] 22" |5y — tp| ~ 2267 (1 < k < £ < n),

P{W(1)] < 27", F(2), [W(s)] < 27", F(s)} <27"27° (27" M2 ")™.

(recall that F(t) = {3r : T(0) = t and W(I(-)) hits 1 before 0}; here x = 0.)
Explanation of each factor:
P9 W(t) ~ 27" prob. ~ 27"
W(s) ~27" (given W(t) ~27"): prob. ~ ;e:nn =27

F(t) N F(s): first both paths reach level 2" units: prob. [(27%)*]°.

In the big rectangle, the maximum of W is ~ 2¢=". Starting from this level,
one path (at least) must reach level 1 before 0: prob. ~ (2°7")*1.

A good bound is obtained by multiplying these factors (even though the events
are not independent!).
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