Nonanticipative functional calculus and controlled rough paths

Rama Cont Dept. of Mathematics Imperial College London

Joint work with: Anna Ananova (Imperial College)

2017.

Notations

 $D([0, T], \mathbb{R}^d)$ space of cadlag functions (right continuous with left limits). $C^{\alpha}([0, T], \mathbb{R}^d) \alpha$ -Holder functions For a path $\omega \in D([0, T], \mathbb{R}^d)$, denote by

< ∃ > < ∃ >

- $\omega(t) \in \mathbb{R}^d$ the value of ω at t
- $\omega_t = \omega(t \land .)$: path stopped at t

$$\blacktriangleright \ \omega_{t-} = \omega \quad \mathbf{1}_{[0,t[} + \omega(t-) \quad \mathbf{1}_{[t,T]})$$

For a process X we denote

- ► X(t) its value and
- $X_t = X(t \land .)$ its path stopped at t.

- A Ananova, R Cont (2017) Pathwise integration with respect to paths of finite quadratic variation, Journal de Mathématiques Pures et appliquées.
- A Ananova, R Cont (2017) Functionals of irregular paths as controlled rough paths, WP.
- ▶ R Cont, P Das (2017) On pathwise quadratic variation, WP.
- R Cont & Yi LU (2016) Weak approximations for martingale representations, Stochastic Processes and Applications
- R Cont & Candia Riga (2015) Pathwise analysis and robustness of hedging strategies for path-dependent derivatives, Working Paper.
- R Cont Functional Ito Calculus and Functional Kolmogorov Equations, (Lectures Notes of the Barcelona Summer School on Stochastic Analysis, July 2012), Springer.
- R Cont and D Fournié (2010) Change of variable formulas for non-anticipative functional on path space, Journal of Functional Analysis, 259, 1043 - 1072.

Advanced Courses in Mathematics CRM Barcelona

Vlad Bally Lucia Caremellino Rama Cont

Stochastic Integration by Parts and Functional Itô Calculus

A pathwise approach of the Ito formula

Consider a continuous \mathbb{R}^d -valued process X and $f \in C^2(\mathbb{R}^d, \mathbb{R})$. The main idea in the oroof of the lto formula is to consider a sequence of partitions $\pi_n = (0 = t_0^n < t_1^n ... < t_{N(\pi_n)}^n = T)$ of [0, T] with step size decreasing to zero and expand increments of f(X(t)) along the partition using a 2nd order Taylor expansion:

$$f(X(t)) - f(X(0)) = \sum_{\pi_n} f(X(t_{i+1}^n)) - f(X(t_i^n))$$
$$= \sum_{\pi_n} \nabla f(X(t_i^n)) \cdot (X(t_{i+1}^n) - X(t_i^n))$$
$$\frac{1}{2}^t (X(t_{i+1}^n) - X(t_i^n)) \nabla^2 f(X(t_i^n)) \cdot (X(t_{i+1}^n) - X(t_i^n)) + r(X(t_{i+1}^n), X(t_i^n))$$

+

Summing over π_n we get

$$f(X(t)) - f(X(0)) = S_1(\pi_n, f) + S_2(\pi_n, f) + R(\pi_n, f)$$

► By uniform continuity of

$$r(x,y) = f(y) - f(x) - \nabla f(x) \cdot (y-x) - 0.5^t (y-x) \nabla^2 f(x) (y-x),$$

$$r(x,y) \le \varphi(||x-y||) ||x-y||^2$$

with $\varphi(u) \to 0$ as $u \to 0$ so $R(\pi_n, f) = \sum_{\pi_n} r(X(t_{i+1}^n), X(t_i^n)) \to 0$ pointwise if $\sum_{\pi_n} \|X(t_{i+1}^n) - X(t_i^n)\|^2$ bounded.

• Under this condition the (left) Riemann sum $S_1(\pi_n, f) = \sum_{\pi_n} \nabla f(X(t_i^n)).(X(t_{i+1}^n - X(t_i^n)) \text{ converges if and only if}$ the 'quadratic Riemann sum'

$$S_{2}(\pi_{n},f) = \frac{1}{2} \sum_{\pi_{n}} {}^{t} (X(t_{i+1}^{n}) - X(t_{i}^{n})) \nabla^{2} f(X(t_{i}^{n})) . (X(t_{i+1}^{n}) - X(t_{i}^{n}))$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

converges.

Quadratic Riemann sums

For d=1: given a path of X, pointwise convergence of 'quadratic Riemann sums'

$$S_2(\pi_n, f) = rac{1}{2} \sum_{\pi_n}
abla^2 f(X(t_i^n)) \cdot (X(t_{i+1}^n) - X(t_i^n))^2$$

along the path for every $f \in C^2(\mathbb{R}^d, \mathbb{R})$ is exactly equivalent to the weak convergence of the sequence of discrete measures

$$\mu_n = \sum_{t_j \in \pi^n} (X(t_{j+1}^n) - X(t_j^n))^2 \delta_{t_j}$$

where δ_t denotes a point mass at t. This is a joint property of X and (π_n) .

This motivated Föllmer (1981)'s definition of 'pathwise quadratic variation along a sequence of partitions.

Definition (Quadratic variation along a sequence of partitions)

Let $\pi_n = (0 = t_0^n < t_1^n ... < t_{N(\pi_n)}^n = T)$ be a sequence of partitions of [0, T] with step $|\pi_n|$ decreasing to zero. A càdlàg function $x \in D([0, T], \mathbb{R})$ is said to have finite quadratic variation along the sequence of partitions $(\pi_n)_{n\geq 1}$ if

(i) the sequence of discrete measures

$$\sum_{t_j\in\pi^n}(x(t_{j+1}^n)-x(t_j^n))^2\delta_{t_j} \stackrel{n o\infty}{\Rightarrow} \mu(dt)=d[\omega]_\pi$$

converges weakly;

(ii) $[x]^c_{\pi}$ defined by $[x]^c_{\pi}(t) = \mu([0, t]) - \sum_{0 < s \le t} |\Delta x(s)|^2$ is continuous and increasing.

We denote $Q_{\pi}([0, T], \mathbb{R})$ the set of functions with the above properties.

Characterization in continuous case

Proposition (C. & Das (2017))

Let $x \in C^0([0, T], \mathbb{R})$ and define

$$[x]_{\pi_n}(t) = \sum_{t_j \in \pi^n} (\omega(t_{j+1}^n \wedge t) - \omega(t_j^n \wedge t))^2$$

The following properties are equivalent:

- 1. x has finite quadratic variation along the sequence of partitions $(\pi_n)_{n\geq 1}$.
- 2. The sequence $[x]_{\pi_n}$ converges uniformly on [0, T] to a continuous function $[x]_{\pi}$.
- The sequence [x]_{π_n} converges pointwise on [0, T] to a continuous function [x]_π.

Definition (Pathwise quadratic variation: multidimensional case)

 $x \in Q_{\pi}([0, T], \mathbb{R}^d)$ if, for all $1 \leq i, j \leq d, x^i, x^i + x^j$ in $Q_{\pi}([0, T], \mathbb{R})$. [x]_{π} is a positive symmetric $d \times d$ matrix:

$$[x]_{\pi}(t) = \lim_{n \to \infty} \sum_{t_i^n \leq t} (x(t_{i+1}^n) - x(t_i^n)) \cdot {}^t (x(t_{i+1}^n) - x(t_i^n)) < +\infty,$$

with elements given by

$$\begin{split} ([x]_{\pi})_{i,j}(t) &= \frac{1}{2} \left([x^{i} + x^{j}]_{\pi}(t) - [x^{i}]_{\pi}(t) - [x^{j}]_{\pi}(t) \right) \\ &= [x^{i}, x^{j}]_{\pi}^{c}(t) + \sum_{0 < s \le t} \Delta x^{i}(s) \Delta x^{j}(s), \quad i, j = 1, \dots, d \end{split}$$

R Cont Functional calculus and controlled rough paths

Föllmer's 'pathwise Ito formula'

Proposition (Föllmer, 1981)

 $\forall f \in C^2(\mathbb{R}^d, \mathbb{R}), \forall \omega \in Q_{\pi}([0, T], \mathbb{R}^d)$, the non-anticipative Riemann sums along π

$$\sum_{\pi_n} \nabla f(\omega(t_i^n)).(\omega(t_{i+1}^n) - \omega(t_i^n)) \stackrel{n \to \infty}{\to} \int_0^T \nabla f(\omega(t)).d^{\pi}\omega$$

converge pointwise and

$$egin{aligned} f(\omega(t)) - f(\omega(0)) &= \int_0^t
abla f(\omega).d^\pi \omega + rac{1}{2}\int_0^t <
abla^2 f(\omega), d[\omega]^c_\pi > \ &+ \sum_{s \leq t} f(\omega(s)) - f(\omega(s-)) -
abla f(\omega(s-)).\Delta \omega(s) \end{aligned}$$

Dependence on the partition

Consider now two sequences of partitions π, τ and a continuous path $\omega \in Q_{\pi}([0, T], \mathbb{R}^d) \cap Q_{\tau}([0, T], \mathbb{R}^d)$. Since $\forall f \in C^2(\mathbb{R}^d)$,

$$\begin{split} f(\omega(t)) - f(\omega(0)) &= \int_0^t \nabla f(\omega) . d^{\pi} \omega + \frac{1}{2} \int_0^t < \nabla^2 f(\omega), d[\omega]_{\pi} > \\ &= \int_0^t \nabla f(\omega) . d^{\tau} \omega + \frac{1}{2} \int_0^t < \nabla^2 f(\omega), d[\omega]_{\tau} > \quad (1) \end{split}$$

the pathwise integrals are equal if and only if $[\omega]_{\pi} = [\omega]_{\tau}$. But the pathwise quadratic variation **does** depend on the sequence of partition...

Quadratic variation along a sequence of partitions

This notion of 'pathwise quadratic variation along a sequence of partitions' depends on the chosen sequence of partitions:

Proposition ((Friedman))

Let $\omega \in C^0([0, T], \mathbb{R}^d)$. There exists a sequence of partitions (π_n) such that $[\omega]_{\pi} = 0$.

Proof: We construct recursively partitions π_n such that

$$|\pi_n| \leq rac{1}{n} \qquad ext{and} \qquad \sum_{\pi_n} |\omega(t_{k+1}^n) - \omega(t_k^n)|^2 \leq rac{1}{n}.$$

Assume we have constructed π_n with this property. Adding to π_n the points k/(n+1), k = 1..n we obtain a partition $\sigma_n = (s_i^n, i = 0..M_n)$ with $|\sigma_n| \le 1/(n+1)$.

For $i = 0..(M_n - 1)$, we further refine $[s_i^n, s_{i+1}^n]$ as follows. Let J(i) be an integer with

$$J(i) \ge (n+1)M_n |\omega(s_{i+1}^n) - \omega(s_i^n)|^2,$$

$$\tau_{i,k+1}^n = \inf\{t \ge \tau_{i,k}^n, \quad \omega(t) = \omega(s_i^n) + \frac{k\left(\omega(s_{i+1}^n) - \omega(s_i^n)\right)}{J(i)}\}.$$

Then points $(\tau_{i,k}^n, k = 1..J(i))$ defines a partition of $[s_i^n, s_{i+1}^n]$ with

$$|\tau_{i,k+1}^n - \tau_{i,k}^n| \leq \frac{1}{n+1} \quad \text{and} \quad |\omega(\tau_{i,k+1}^n) - \omega(\tau_{i,k}^n)| = \frac{|\omega(s_{i+1}^n) - \omega(s_i^n)|}{J(i)}$$

so
$$\sum_{k=1}^{J(i)} |\omega(\tau_{i,k+1}^n) - \omega(\tau_{i,k}^n)|^2 \le J(i) \frac{|\omega(s_{i+1}^n) - \omega(s_i^n)|^2}{J(i)^2} = \frac{1}{(n+1)M_n}.$$

Sorting $(\tau_{i,k}^n, i = 0..M_n, k = 1..J(i))$ gives $\pi_{n+1} = (t_j^{n+1})$ such that

$$|\pi_{n+1}| \leq rac{1}{n+1}, \qquad \sum_{\pi_{n+1}} |\omega(t_{i+1}^n) - \omega(t_i^n)|^2 \leq rac{1}{n+1}.$$

3

R Cont Functional calculus and controlled rough paths

Definition (Well-balanced sequence of partitions)

Let $\underline{\pi_n} = \inf_{i=0..N(\pi_n)-1} |t_{i+1}^n - t_i^n|$. The sequence of partitions $(\pi_n)_{n\geq 1}$ well-balanced if

$$\exists c > 0, \qquad \forall n \ge 1, \quad \frac{|\pi_n|}{\underline{\pi}_n} \le c.$$

(2)

Theorem (R.C. & P. Das, 2016)

Let $\alpha > 0$, $f \in C^{\alpha}([0, T], \mathbb{R}^d)$ and $\tau = (\tau^n)_{n \ge 1}$ and $\sigma = (\sigma^n)_{n \ge 1}$ two well-balanced partition sequences such that

 $f\in Q_{ au}([0,T],\mathbb{R}^d)\cap Q_{\sigma}([0,T],\mathbb{R}^d) \quad ext{and} \qquad [f]_{\sigma}>0, \quad [f]_{ au}>0.$

Then: $\forall t \in [0, T], \qquad [f]_{\sigma}(t) = [f]_{\tau}(t)$

Non-anticipative Functionals

Denote $\omega_t = \omega(t \wedge .)$ the *past* i.e. the path stopped at *t*.

Definition (Non-anticipative Functionals)

A causal, or non-anticipative functional is a functional $F : [0, T] \times D([0, T], \mathbb{R}^d) \mapsto \mathbb{R}$ whose value only depends on the past:

$$\forall \omega \in \Omega, \quad \forall t \in [0, T], \qquad F(t, \omega) = F(t, \omega_t).$$
 (3)

Causal functional= map on the space Λ^d_T of stopped paths, defined as the quotient space:

$$\Lambda^d_T := \left([0,T] imes D([0,T],\mathbb{R}^d)
ight) \Big/ \sim$$

where $(t,x) \sim (t',x') \leftrightarrow t = t', x_t = x'_t$. Λ^d_T is equipped with a metric

$$d_{\infty}((t,x),(t',x')) = \sup_{u \in [0,T]} |x(u \wedge t) - x'(u \wedge t')| + |t - t'|.$$

Functionals of piecewise constant paths

A piecewise-constant path $\omega = \sum_{k=1}^{n} x_k \mathbb{1}_{[t_k, t_{k+1}]}$ is obtained by

- "horizontal stretchings" from t_k to t_{k+1} , followed by
- addition of a jump at each discontinuity point:

 $\omega_{t_{k+1}} = \omega_{t_k} + (x_{k+1} - x_k)\mathbf{1}_{t_{k+1}}$

Key idea: The evolution of a non-anticipative functional along ω may be decomposed into its variations with respect to two types of operations:

• "horizontal extension" of the path from t_k to t_{k+1}

$$F(t_{k+1},\omega_{t_k})-F(t_k,\omega_{t_k})$$

• 'vertical step' at partition points: addition of a jump at t_{k+1}

$$F(t_{k+1},\omega_{t_{k+1}})-F(t_{k+1},\omega_{t_k})$$

If one can control the behavior of F under these two types of path perturbations, then one can follow/reconstitute $F(\underline{t}, \omega)_{\overline{c}}$, \underline{c} is a set of the set

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

▶ horizontally differentiable at $(t, \omega) \in \Lambda_T^d$ if the finite limit exists

$$\mathcal{D}F(t,\omega) := \lim_{h \to 0+} \frac{F(t+h,\omega_t) - F(t,\omega_t)}{h}$$

• vertically differentiable at $(t, \omega) \in \Lambda_T^d$ if the map

$$\mathbb{R}^d \to \mathbb{R}, \ e \mapsto F(t, \omega(t \land .) + e1_{[t, T]})$$

is differentiable at 0; its gradient at 0 is denoted by $\nabla_{\omega}F(t,\omega)$.

Note that $\mathcal{D}F(t,\omega)$ is **not** the partial derivative in t:

$$\mathcal{D}F(t,\omega) \neq \partial_t F(t,\omega) = \lim_{h \to 0} \frac{F(t+h,\omega) - F(t,\omega)}{h}.$$

Smooth functionals

Definition $(\mathbb{C}_b^{1,2}(\Lambda_T^d)$ functionals)

We denote by $\mathbb{C}_{b}^{1,2}(\Lambda_{T}^{d})$ the set of non-anticipative functionals $F \in \mathbb{C}_{l}^{0,0}(\Lambda_{T}^{d})$, such that

- F is horizontally differentiable with $\mathcal{D}F$ continuous at fixed times,
- *F* is twice vertically differentiable with $\nabla^j_{\omega} F \in \mathbb{C}^{0,0}_l(\Lambda^d_T)$ for j = 1, 2;

A B A A B A

• $\mathcal{D}F, \nabla_{\omega}F, \nabla_{\omega}^2F \in \mathbb{B}(\Lambda_T^d).$

Examples of smooth functionals

Example (Cylindrical functionals) For $g \in C^0(\mathbb{R}^{d \times n}), h \in C^k(\mathbb{R}^d)$ with h(0) = 0. Then $F(t,\omega) = h(\omega(t) - \omega(t_n -))$ $1_{t \ge t_n} g(\omega(t_1 -), \omega(t_2 -)..., \omega(t_n -))$ is in $\mathbb{C}_b^{1,k}$ and $\mathcal{D}_t F(\omega) = 0$, and $\forall j = 1..k$, $\nabla^j_{\omega} F(t,\omega) = h^{(j)}(\omega(t) - \omega(t_n -)) 1_{t \ge t_n} g(\omega(t_1 -), \omega(t_2 -)..., \omega(t_n -))$

 $\mathbb{S}(\Lambda_T, \pi_n) :=$ space of simple predictable cylindrical functionals piecewise constant along π_n , $\mathbb{S}(\Lambda_T, \pi) := \cup_{n>1} \mathbb{S}(\Lambda_T, \pi_n) \times \mathbb{S}(\Lambda_T, \pi_n)$

(日) (同) (三) (三)

Examples of smooth functionals

Example (Integral functionals) For $g \in C_0(\mathbb{R}^d)$, $Y(t) = \int_0^t g(X(u))\rho(u)du = F(t, X_t)$ where $F(t, \omega) = \int_0^t g(\omega(u))\rho(u)du$ (4) $F \in \mathbb{C}_b^{1,\infty}$, with:

$${\mathcal D}_t {\mathcal F}(\omega) = {\mathsf g}(\omega(t))
ho(t) \qquad
abla^j_\omega {\mathcal F}(t,\omega) = 0$$

(5)

< ∃ >

R Cont Functional calculus and controlled rough paths

Conditional expectations as smooth functionals Let $\sigma \in \mathbb{C}^{0,0}(W_T)$ be such that

$$X(t) = X(0) \exp\left(\int_0^t \sigma(u) dW(u) - \frac{1}{2} \int_0^t \sigma^2(u) du\right) \qquad (*)$$

is a martingale, i.e. E(X(T)) = 1 and denote by \mathbb{Q}^{σ} the law of (*).

Proposition (Cont & Riga 2015)

Let $h : (D([0, T], R), \|.\|_{\infty}) \mapsto \mathbb{R}$ be \mathbb{Q}^{σ} -integrable and Lipschitz. Assume that for $(t, \omega) \in \mathcal{W}_{T}$, the map

$$g^{h}(.;t,\omega):e\in\mathbb{R}^{d}\rightarrow g^{h}(e)=h\left(\omega+e\mathbf{1}_{[t,T]}\right),$$
 (6)

is twice differentiable at 0, with derivatives bounded uniformly in $(t,\omega) \in W_T$ in a neighborhood of 0. Then, there exists $F \in \mathbb{C}^{0,2}_b(W_T)$ such that $F(t,X_t) = E^{\mathbb{Q}^{\sigma}}[H|\mathcal{F}^X_t] \mathbb{Q}^{\sigma}-a.s.$

Weak Euler schemes as smooth functionals

Let $\sigma: (\Lambda_T, d_\infty) \to \mathbb{R}^{d \times d}$ be a Lipschitz map. Then

$${}_{n}X(t_{j+1},\omega) = {}_{n}X(t_{j},\omega) + \sigma(t_{j},{}_{n}X_{t_{j}}(\omega)) \cdot (\omega(t_{j+1}-) - \omega(t_{j}-)).$$
(7)

defines a non-anticipative functional $_nX$ which approximates

$$X(t) = X(0) + \int_0^t \sigma(u, X_u) dW(u)$$
(8)

For a Lipschitz functional $g : (D([0, T], \mathbb{R}^d), \|.\|_{\infty}) \to \mathbb{R}$, consider the 'weak Euler approximation' of $\mathbb{E}\left[g(X_T)|\mathcal{F}_t^W\right]$:

$$\mathcal{F}_{n}(t,\omega) = \mathbb{E}\left[g\left({}_{n}X_{T}(W_{T})\right)|\mathcal{F}_{t}^{W}\right](\omega).$$
(9)

(R Cont- Yi Lu, SPA 2016): $F_n \in \mathbb{C}^{1,\infty}_b(\mathcal{W}_T)$.

Controlled Hölder rough paths

Definition (Controlled rough path (Gubinelli 2004))

Let $X \in C^{\alpha}([0, T], V)$. $Y \in C^{\alpha}([0, T], W)$ is a controlled rough path controlled by X if there exists $Y' \in C^{\alpha}([0, T], \mathcal{L}(V, W))$ such that

$$R(s,t)=Y(t)-Y(s)-Y_s'.(X(t)-X(s)), \qquad T\geq t\geq s\geq 0$$

satisfies $||R||_{\nu} < \infty$. for some $\nu > \alpha$.

X is called the *control* or *reference path*.

R(s, t) can be thought of as the remainder in a first order Taylor expansion.

Any Y' satisfying this property is called a 'Gubinelli derivative' for Y.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Regular functionals as controlled rough paths

If $F \in \mathcal{R}(\Lambda^d_T), \omega \in C^{\nu}([0, T], \mathbb{R}^d)$ then $t \mapsto (F(t, \omega), \nabla_{\omega}F(t, \omega))$ is a rough path controlled by ω in the sense of Gubinelli (2004):

Proposition

Let $\omega \in C^{\nu}([0, T], \mathbb{R}^d)$ for some $\nu \in (1/3, 1/2]$ and $F \in \mathbb{C}^{1,2}_b(\Lambda^d_T, \mathbb{R}^n)$ with $\nabla_{\omega}F \in \mathbb{C}^{1,1}_b(\Lambda^d_T, \mathbb{R}^{n \times d})$ and $F \in Lip(\Lambda^d_T, \|\cdot\|_{\infty})$. Define

$$R_{s,t}^{F}(\omega) := F(s,\omega_{s}) - F(t,\omega_{t}) - \nabla_{\omega}F(t,\omega_{t})(\omega(s) - \omega(t)).$$
(10)

A I A A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Then there exists a constant $C_{F,T,\omega}$, increasing in T and $\|\omega\|_{\nu}$, such that

$$|R_{s,t}^{F}(\omega)| \leq C_{F,T,\omega}|s-t|^{2
u(1+
u)}$$

Controlled rough paths as regular functionals

Conversely, a **family** of controlled rough paths indexed by the reference path is none other than a .. vertically differentiable functional, whose 'Gubinelli derivative' is none other than the Dupire/ vertical derivative:

Proposition (Ananova & Cont, 2017)

Let $F \in \mathbb{C}^{0,0}(\mathcal{W}_T^d, \mathbb{R}), G \in \mathbb{C}^{0,0}(\mathcal{W}_T^d, \mathbb{R}^d)$ be non-anticipative functionals. Assume that for any $\omega \in C^{\nu}([0, T]), \nu \in (0, 1)$ the pair $(F(\cdot, \omega), G(\cdot, \omega))$ is a controlled rough path with respect to ω s.t. $\exists C_{F,T,\omega} > 0$

 $|F(s,\omega_s)-F(t,\omega_t)-G(t,\omega_t)(\omega(s)-\omega(t))|\leq C|s-t|+C|s-t|^{
u(1+
u)}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where the constants depend only on T, F and $\|\omega\|_{\nu}$. Then $F \in \mathbb{C}^{0,1}(\mathcal{W}^d_T, \mathbb{R})$ and $\nabla_{\omega}F(t, \omega) = G(t, \omega)$.

Chain rule for functionals

Proposition

Let $G \in \mathbb{C}_{b}^{1,1}(\Lambda_{T}^{d})$ and $F \in \mathbb{C}_{b}^{1,1}(\Lambda_{T}^{1})$ be non anticipative functionals and $H(\omega, t) := F(G(t, \omega), t)$. Then $H \in C_{b}^{1,1}(\Lambda_{T}^{d})$ and $\mathcal{D}H(t, \omega_{t}) = \mathcal{D}F(t, G(t, \omega_{t})) + \nabla F(t, G(t, \omega_{t}))\mathcal{D}G(t, \omega_{t}),$ $\nabla H(t, \omega_{t}) = \nabla F(t, G(t, \omega_{t}))\nabla G(t, \omega_{t}).$ Moreover , if $G, F \in C_{b}^{1,2}$ then $H \in C_{b}^{1,2}$ I and

$$\nabla^{2} H(t,\omega_{t}) = \nabla F(t,G(t,\omega_{t})) \nabla G(t,\omega_{t}) {}^{t} \nabla G(t,\omega_{t}) + \nabla F(t,G(t,\omega_{t})) \nabla^{2} G(t,\omega_{t})$$
(1)

This result implies the stability of the concept controlled rough paths under smooth functionals:

Proposition (Change of variable formula for controlled rough paths)

Let $(X, X') \in \mathcal{D}^{2\nu}_{\omega}([0, T], \mathbb{R}^d)$ be a controlled rough path with control $\omega \in C^{\nu}([0, T], \mathbb{R}^d)$. Then for any $F \in \mathbb{C}^{1,1}_b(\Lambda^1_T)$,

 $(F(t,X),
abla_{\omega}F(t,X).X') \in \mathcal{D}_X^{2
u}([0,T],\mathbb{R}^d)$

is a controlled rough path with control X.

Similar transformation rules exist in the theory of controlled rough paths (see Friz-Hairer Ch .4) but here the derivation is much simpler.

(人間) くちり くちり

The concept of controlled rough path does not come with a natural approximation theory. Our representation yields such an approximation theory.

Let $(X, X') \in \mathcal{D}^{2\nu}_{\omega}([0, T], \mathbb{R}^d)$ be a controlled rough path with control $\omega \in C^{\nu}([0, T], \mathbb{R}^d)$ and $F \in \mathbb{C}^{1,1}_b(\Lambda^1_T)$ a functional such that $(X, X') = (F(., \omega), \nabla_{\omega}F(., \omega))$. Then if $X_n = F_n(., \omega)$ is a sequence of (piecewise) smooth approximations of X then a natural approximation for (X, X') is $(X_n, \nabla_{\omega}F_n(., \omega))$ Example (C.-Lu, 2016): numerical approximations of martingale representations.

Theorem (Change of variable formula (Cont- Fournié ,2010))

Let $\omega \in Q^{\pi}$ $([0, T], \mathbb{R}^d)$ such that $\sup_{t \in [0, T] \setminus \pi^n} |\Delta \omega(t)| \to 0$ and denote $\omega^n := \sum_{i=0}^{m(n)-1} \omega(t_{i+1}^n -) \mathbf{1}_{[t_i^n, t_{i+1}^n)} + \omega(T) \mathbf{1}_{\{T\}}$. Then for any $F \in \mathbb{C}_b^{1,2}(\Lambda_T^d)$, the limit

$$\int_{0}^{l} \nabla_{\omega} F(t, \omega_{t-}) \cdot d^{\pi} \omega = \lim_{n \to \infty} \sum_{i=0}^{m(n)-1} \nabla_{\omega} F(t_i^n, \omega_{t_i^n}^{n, \Delta \omega(t_i^n)})(\omega(t_{i+1}^n) - \omega(t_i^n))$$

exists, and

$$F(T,\omega) = F(0,\omega) + \int_{0}^{T} \nabla_{\omega} F(t,\omega_{t-}) \cdot d^{\pi}\omega + \int_{0}^{T} \mathcal{D}F(t,\omega_{t-})dt$$

+
$$\int_{0}^{T} \frac{1}{2} tr \left(\nabla_{\omega}^{2} F(t,\omega_{t-}) d[\omega]_{\pi}^{c}(t)\right) + \sum_{s \in [0,T]} \left(F(s,\omega_{s}) - F(s,\omega_{s-}) - \nabla_{\omega} F(s,\omega_{s-}) \cdot \Delta\omega(s)\right).$$

(ChV)

Functional Ito formula

Applied to a semimartingale, these results lead to a functional extension of the Ito formula:

Theorem (Functional Ito formula (Dupire 09, C.& Fournié 2009))

Let X be a continuous semimartingale and $F \in \mathbb{C}^{1,2}_{loc}([0, T[).$ For any $t \in [0, T[,$

$$F(t, X_t) - F_0(X_0) = \int_0^t \mathcal{D}_u F(X_u) du + \int_0^t \nabla_\omega F_u(X_u) dX(u) + \int_0^t \frac{1}{2} \operatorname{tr} \left({}^t \nabla_\omega^2 F_u(X_u) d[X](u) \right) \quad a.s.$$

In particular, $Y(t) = F(t, X_t)$ is a semimartingale.

Brownian martingales as harmonic functionals

Theorem (R.C. & D Fournié 2010)

Let \mathbb{P} be the Wiener measure on the canonical space, $H: (D([0, T], \mathbb{R}^d), \|.\|_{\infty}) \mapsto \mathbb{R}$ a \mathbb{P} -integrable functional. If there exists $F \in \mathbb{C}^{1,2}_{loc}(\mathcal{W}_T)$ such that

$$M(t) = F(t, W_{\cdot}) = E^{\mathbb{P}}[H(W_{\cdot})|\mathcal{F}_t^W] \mathbb{P} - a.s.$$

then

$$orall (t,\omega)\in \mathcal{W}_{\mathcal{T}}, \qquad \mathcal{D}F(t,\omega)+rac{1}{2}\mathrm{tr}(
abla^2_\omega F)(t,\omega)=0$$

and

$$M(t)=F(t,W_{\cdot})=M(0)+\int_{0}^{t}
abla_{\omega}F(s,W)dW(s).$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

These result allows to construct $\int_0^{\cdot} \nabla_{\omega} F$ as a pointwise limit of non-anticipative 'Riemann sums':

$$\int_{0}^{T} \nabla_{\omega} F(t, \omega_{t-}) \cdot d^{\pi} \omega = \lim_{n \to \infty} \sum_{i=0}^{m(n)-1} \nabla_{\omega} F(t_i^n, \omega_{t_i^n-}^{n, \Delta \omega(t_i^n)}) (\omega(t_{i+1}^n) - \omega(t_i^n))$$

Remark

$$F \in \mathcal{R}(\Lambda^d_T), \, \omega \in C^{\frac{1}{2}-}([0,T],\mathbb{R}^d) \Rightarrow \nabla_{\omega}F(t,\omega) \in C^{\frac{1}{2}-}([0,T],\mathbb{R}^d).$$

5 x x 5 x

The pathwise integral is a strict extension of the Young integral.

Does this integral verify any continuity/ stability property? Does it share any of the other 'nice' properties of the Ito integral?

Assumptions on F

Assumption (Lipschitz continuity of F)

 $F \in Lip(\Lambda_T^d, \|\cdot\|_{\infty}): \exists K > 0, \quad \forall \omega, \, \omega' \in D([0, T], \mathbb{R}^d),$

 $|F(t,\omega) - F(t,\omega')| \le K \|\omega_t - \omega'_t\|_{\infty}$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Assumption (Regularity of F)

 $F \in \mathbb{C}^{1,2}(\Lambda_T)$ and $\nabla_{\omega}F \in \mathbb{C}^{1,1}_b(\Lambda^d_T).$

Denote
$$C^{\frac{1}{2}-}([0, T], \mathbb{R}^d) = \bigcap_{\nu < 1/2} C^{\nu}([0, T], \mathbb{R}^d)$$

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)

Under the above assumptions on $F \in \mathbb{C}^{1,2}(\Lambda_T)$, for any path $\omega \in Q_{\pi}([0, T], \mathbb{R}) \cap C^{1/2-}([0, T], \mathbb{R}^d)$ and any sequence of partitions $\pi = (\pi_n)_{n \geq 1}$ satisfying $osc(F(., \omega), \pi_n) \rightarrow_{n \to +\infty} 0$ we have

$$[F(t,\omega)]^{\pi}(t) = \left[\int_{0}^{\cdot} \nabla_{\omega}F(s,\omega).d^{\pi}\omega\right]^{\pi}(t) = \int_{0}^{t} \langle^{t}\nabla_{\omega}F(s,\omega).\nabla_{\omega}F(s,\omega),d[\omega]^{\pi}(s)\rangle.$$
(Isometry)

As a consequence:

Proposition

Let $\omega \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^{1/2-}([0, T], \mathbb{R}^d)$ such that $\frac{d[\omega]}{dt} := a(t) > 0$ is right-continuous. Then the path $t \mapsto F(t, \omega)$ has a zero quadratic variation along the partition π if and only if $\nabla_{\omega}F(t, \omega) = 0$, $\forall t \in [0, T]$.

• • = • • = •

Proof of the pathwise isometry formula

For simplicity set d = 1. Let

$$\mathcal{R}^{F,\omega}_{s,t} := F(s,\omega) - F(t,\omega) -
abla_\omega F(t,\omega)(\omega(s) - \omega(t)).$$

First we prove that

$$|\mathcal{R}_{s,t}^{F,\omega}| \lesssim_{F,T,\|\omega\|_{\nu}} |s-t|^{\nu(1+\nu)}, \forall \nu < \frac{1}{2}. \quad (*)$$

For that, we will use the following formula for $\mathcal{R}_{s,t}^{F,\lambda}$ for Lipschitz continuous paths λ :

$$\mathcal{R}_{t,s}^{F,\lambda} = \int_{t}^{s} \mathcal{D}F(u,\lambda)du + \int_{t}^{s} \mathcal{D}\nabla_{\omega}^{i}F(r,\lambda)(\lambda^{i}(s) - \lambda^{i}(r))dr + \int_{t}^{s} \nabla_{\omega}^{ij}F(r,\lambda)\dot{\lambda}^{j}(r)(\lambda^{i}(s) - \lambda^{i}(r))dr.$$
(12)

(12) follows from the following result

Lemma (R. C. 2012)

Assume $G \in C_b^{1,1}(\Lambda_T)$ and λ is a continuous path with finite variation on [t,s], then

$$G(s,\lambda) - G(t,\lambda) = \int_t^s \mathcal{D}G(u,\lambda) du + \int_t^s \nabla_\omega G(u,\lambda) d\lambda(u),$$

where the second integration is in the Riemann-Stieltjes sense.

Thanks to (12), Lipschitz property of *F* and since $\omega \in C^{\nu}$, $\forall \nu < \frac{1}{2}$, we can construct a Lipschitz continuous approximation ω^{N} to ω such that

$$|\mathcal{R}^{F,\omega^N}_{t,s}| \lesssim |s-t| + \textit{N}^{1-\nu}|s-t|^{2\nu}, \text{ and } |\mathcal{R}^{F,\omega^N}_{t,s} - \mathcal{R}^{F,\omega}_{t,s}| \lesssim \textit{N}^{-\nu}|s-t|^{\nu}.$$

Thus

$$|\mathcal{R}_{t,s}^{F,\omega}| \lesssim |s-t| + N^{1-\nu}|s-t|^{2\nu} + N^{-\nu}|s-t|^{\nu}.$$

A B M A B M

We conclude the proof of (*) by choosing $N \approx |s - t|^{-\nu}$.

For the proof of the Theorem, note that from the assumptions on the partitions π_n , we have

$$M_n := \max_i \left| \mathcal{R}_{t_i^n, t_{i+1}^n}^{F, \omega} \right| \to 0.$$

Next we choose ν close to $\frac{1}{2}$ so that $\nu^2 + \nu > \frac{1}{2}$, then from (*)

$$\sum_{i} \left| \mathcal{R}_{t_{i}^{n},t_{i+1}^{n}}^{F,\omega} \right|^{2} \leq C M_{n}^{2-\frac{1}{\nu^{2}+\nu}} \sum_{i} |t_{i+1}^{n} - t_{i}^{n}| \leq C T M_{n}^{2-\frac{1}{\nu^{2}+\nu}} \to 0.$$

э

Thus, since

$$\begin{split} \left| \left(\mathsf{F}(t_{i+1}^n,\omega) - \mathsf{F}(t_i^n,\omega_{t_i^n}) \right)^2 - \nabla_\omega \mathsf{F}(t_i^n,\omega)^2 (\omega(t_{i+1}^n) - \omega(t_i^n))^2 \right| \\ & \leq |\mathcal{R}_{t_i^n,t_{i+1}^n}^{\mathsf{F},\omega}|^2 + \mathsf{C}_{\mathsf{F}}|\mathcal{R}_{t_i^n,t_{i+1}^n}^{\mathsf{F},\omega}| |\omega_{t_i^n,t_{i+1}^n}|, \end{split}$$

using the triangle and Cauchy-Schwarz inequalities, we get

$$\begin{split} \left| \sum_{i} \left(F(t_{i+1}^{n}, \omega) - F(t_{i}^{n}, \omega_{t_{i}^{n}}) \right)^{2} - \sum_{i} \nabla_{\omega} F(t_{i}^{n}, \omega)^{2} (\omega(t_{i+1}^{n}) - \omega(t_{i}^{n}))^{2} \right| \\ \leq \sum_{i} |\mathcal{R}_{t_{i}^{n}, t_{i+1}^{n}}^{F, \omega}|^{2} + C_{F} \sqrt{\sum_{i} |\mathcal{R}_{t_{i}^{n}, t_{i+1}^{n}}^{F, \omega}|^{2}} \sqrt{\sum_{i} |\omega_{t_{i}^{n}, t_{i+1}^{n}}|^{2}} \to 0. \end{split}$$

B b

R Cont Functional calculus and controlled rough paths

The result of the Theorem now follows from the fact

$$\sum_{i} \nabla_{\omega} F(t_{i}^{n}, \omega)^{2} (\omega(t_{i+1}^{n}) - \omega(t_{i}^{n}))^{2} \rightarrow \int_{0}^{T} \nabla_{\omega} F(s, \omega)^{2} d[\omega]^{\pi}(s)$$

which is a consequence of the weak convergence of

$$\sum_{t_i \in \pi^n} (\omega(t_{i+1}^n) - \omega(t_i^n))^2 \delta_{t_j}
ightarrow d[\omega]^\pi$$

and the strong convergence of

$$\sum_{t_i^n \leq t} \nabla_{\omega} F(t_i^n, \omega)^2 \mathbf{1}_{[t_i^n, t_{i+1}^n)} \to \nabla_{\omega} F(t, \omega)^2.$$

(E)

э

Relation with Ito isometry

Let \mathbb{P} be a martingale measure on $C^0([0, T], \mathbb{R})$ under which the canonical process X is a square integrable martingale. Then the integral $\int_0^t \nabla_\omega F(t, \omega) d^\pi \omega$ is a version of the Ito integral $\int_0^t \nabla_\omega F(t, X) dX$ and integrating the pathwise isometry formula with respect to \mathbb{P} yields the well-known Ito isometry formula :

$$E\left(\left[\int_0^{\cdot} \nabla_{\omega} F(t,X) dX\right](t)\right) = E\left(\int_0^t |\nabla_{\omega} F(t,X)|^2 d[X]\right).$$

< 3 > < 3

So our pathwise isometry formula uncovers a pathwise relation which underlies the Ito isometry property.

Theorem (Properties of the pathwise integral (R.C. 2012))

1. Quadratic covariation formula: for $\phi, \psi \in \mathbb{V}(\Lambda^d_T)$, the limit

 $[I_{\omega}(\phi), I_{\omega}(\psi)]_{\pi}(T) :=$

 $\lim_{n\to\infty}\sum_{\pi_n}\left(I_{\omega}(\phi)(t_{k+1}^n)-I_{\omega}(\phi(t_k^n))\left(I_{\omega}(\psi)(t_{k+1}^n)-I_{\omega}(\psi)(t_k^n)\right)\right)$

exists and
$$[I_{\omega}(\phi), I_{\omega}(\psi)]_{\pi}(T) = \int_{0}^{T} \langle \psi^{t} \phi(t, \omega_{t-}), d[\omega] \rangle.$$

2. Associativity: Let $\phi \in V(\Lambda_T^d), \psi \in V(\Lambda_T^1)$ and $x \in D([0, T], \mathbb{R})$ defined by $x(t) = \int_0^t \phi(u, \omega_{u-}) d^{\pi} \omega$. Then

$$\int_0^T \psi(t, x_{t-}) . d^{\pi} x = \int_0^T \psi(t, (\int_0^{\cdot} \phi(u, \omega_{u-}) . d^{\pi} \omega)) \phi(t, \omega_{t-}) d^{\pi} \omega$$

Regular functionals

Assumption (Horizontal local Lipschitz property)

A functional $G: \Lambda_T^d \to \mathbb{R}$ is said to satisfy horizontal local Lipschitz property, if: $\forall \omega \in D([0, T], \mathbb{R}^d), \exists C > 0, \eta > 0, \forall h \ge 0, \forall t \le T - h,$

 $\|\omega_t - \omega_t'\|_{\infty} < \eta, \Rightarrow |G(t+h,\omega_t') - G(t,\omega_t')| \le Ch.$

Definition (Regular Functionals)

 $\begin{aligned} \mathcal{R}(\Lambda^d_T) &= \text{set of functionals } F \in \mathbb{C}^{1,2}(\Lambda^d_T, \text{) with} \\ \nabla^k_\omega F, \in \mathbb{C}^{1,1}_b(\Lambda^d_T), \ k = \overline{1,2}, \ F, \mathcal{D}F, \nabla^3 F \in Lip(\Lambda^d_T, \|\cdot\|_\infty) \text{ and } \nabla^3_\omega F \\ \text{horizontally locally Lipschitz.} \end{aligned}$

▶ < ∃ ▶

Example: cylindrical non-anticipative functionals are regular.

Uniqueness and pathwise nature of integral

Proposition (Föllmer integral as a limit of Riemann sums)

Let $F \in \mathcal{R}(\Lambda^d_T)$ and $\omega \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^{1/2-}([0, T], \mathbb{R}^d)$. Then

$$\int_0^T \nabla_\omega F(u,\omega) d^\pi \omega = \lim_{n \to +\infty} \sum_{i=0}^{m(n)-1} \nabla_\omega F(t_i^n,\omega) \cdot \left(\omega(t_{i+1}^n) - \omega(t_i^n)\right).$$

In particular, if $\nabla F(t,\omega) = \nabla G(t,\omega)$ for $F, G \in \mathcal{R}(\Lambda^d_T)$ then

$$\forall t \in [0, T], \quad \int_0^t \nabla_\omega F(u, \omega) d^\pi \omega = \int_0^t \nabla_\omega G(u, \omega) d^\pi \omega.$$

Lemma

Under the assumptions of the previous result, for consecutive endpoints $t < s \in \pi^n$, we have

$$\begin{split} F(s,\omega_s)-F(t,\omega_t) &= \int_t^s \mathcal{D}_t F(u,\omega_u) du + \nabla_\omega F(t,\omega_t) \left(\omega(s)-\omega(t)\right) \\ &+ \frac{1}{2} \langle \nabla_\omega^2 F(t,\omega_t), (\omega(s)-\omega(t)) \otimes (\omega(s)-\omega(t)) \rangle + O(|s-t|^{3\nu^2+\nu}). \end{split}$$

3 🕨 🖌 3

The pathwise integral as a continuous map

Definition (*a*-harmonic functionals)

Let $a: [0, T] \to S^d_+$ be a continuous function taking values in positive-definite symmetric matrices. $F \in \mathcal{H}_a(\Lambda_T)$ if

$$orall (t,\omega)\in \Lambda_{\mathcal{T}}, \qquad \mathcal{DF}(t,\omega_t)+rac{1}{2}\langle
abla^2_\omega F(t,\omega_t), extbf{a}(t)
angle=0.$$

Let $\bar{\omega} \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^p([0, T], \mathbb{R}^d), d[\bar{\omega}]_{\pi}/dt = a$. Then $\forall F \in \mathcal{H}_a(\Lambda_T), \qquad F(t, \bar{\omega}) = F(0, \bar{\omega}) + \int_0^t \nabla_{\omega} F(u, \bar{\omega}) d^{\pi} \bar{\omega}.$

so by the isometry formula

$$[F(.,\bar{\omega})]_{\pi}(t) = \int_0^t {}^t \nabla_{\omega} F(u,\bar{\omega}) . a(u) \nabla_{\omega} F(u,\bar{\omega}) du = \|\nabla_{\omega} F(.,\bar{\omega})\|_{L^2([0,T],a)}^2 < \infty.$$

Continuity of the pathwise integral Let $\bar{\omega} \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^{1/2-}([0, T], \mathbb{R}^d), d[\bar{\omega}]_{\pi}/dt = a > 0.$ $\mathcal{H}_a(\bar{\omega}) := \{ F(\cdot, \bar{\omega}.) \mid F \in \mathcal{H}_a(\Lambda_T) \} \subset Q_{\pi}([0, T], \mathbb{R}),$ $\mathbb{V}_a(\bar{\omega}) := \{ \nabla_{\omega} F(\cdot, \bar{\omega}.) \mid F \in \mathcal{H}_a(\Lambda_T) \} \subset L^2([0, T], a).$

Proposition (Pathwise integral as an injective isometry)

The pathwise integral

$$I_{ar{\omega}}(\phi) = \lim_{n o \infty} \sum_{\pi_n} \phi(t_k^n) . (ar{\omega}(t_{k+1}^n) - ar{\omega}(t_k^n))$$

defines an injective isometry

$$I_{\bar{\omega}}: \ \left(\mathbb{V}_{a}(\bar{\omega}), \|\cdot\|_{L^{2}([0,T],a)}\right) \to \left(\mathcal{H}_{a}(\bar{\omega}), \|\cdot\|_{\pi}\right)$$

A pathwise 'Doob-Meyer' decomposition

Given $\bar{\omega} \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^{\frac{1}{2}-}[0, T], \mathbb{R}^d$ with strictly increasing quadratic variation along π :

 $\bar{\omega} \in Q_{\pi}([0, T], \mathbb{R}^d) \cap C^{1/2-}([0, T], \mathbb{R}^d) \text{ with } \frac{d[\bar{\omega}]_{\pi}}{dt} > 0 \ dt - a.e. (13)$ and consider the set of regular transformations of $\bar{\omega}$:

$$\mathcal{R}(\bar{\omega}) := \left\{ \left. F(\cdot, \bar{\omega}) \, \right| \, F \in \mathcal{R}(\Lambda_T)
ight\} \subset \mathcal{Q}_{\pi}([0, T], \mathbb{R}).$$

Proposition (Rough-smooth decomposition of paths)

Any path $\omega \in \mathcal{R}(ar{\omega})$ has a unique decomposition

$$\omega(t) = \omega(0) + \int_0^t \phi d^\pi \bar{\omega} + s(t)$$

where $\phi \in \mathbb{V}_a(\bar{\omega})$ and $[s]_{\pi} = 0$.

- This result may be viewed as a pathwise analogue of the well-known decomposition of a continuous semimartingale as the sum of a local martingale and a process with finite variation.
- Similar results were obtained using rough path techniques Hairer-Pillai (2013) using a uniform Hölder roughness condition on the path and by by Hu & Tindel (2013) for fractional Brownian motion.
- Our setting is closer to the original semimartingale decomposition: the components are distinguished based on (pathwise) quadratic variation.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

As in Cass-Litterer-Hairer-Tindel (2012) and Hairer-Pillai (2013), we obtain a **'Norris Lemma'** for this decomposition under a roughness condition on the reference path $\bar{\omega}$:

Theorem (Stability of rough-smooth decomposition)

Let $\bar{\omega} \in C^{1/2-}([0,T]) \cap Q_{\pi}^{++}([0,T],\mathbb{R}^d)$ such that $\exists \theta < 1, \ L_{\theta}(\bar{\omega}) > 0 \ \forall t \in [0,T], \epsilon \in (0,T/2], v \in \mathbb{R}^d,$

$$\exists s \in [0,T], \qquad |t-s| \leq \epsilon ext{ and } |v \cdot (ar{\omega}(s) - ar{\omega}(t))| > L_ heta(ar{\omega})\epsilon^ heta.$$

There exists p, q > 0 such that for any $\omega \in \mathcal{R}(\bar{\omega})$ with rough-smooth decomposition

$$\omega(t)=\omega(0)+\int_0^t\phi_\omega.d^\piar\omega+s_\omega(t),\quad \phi\in\mathbb{V}_a(ar\omega),\quad [s]_\pi=0.$$

we have $\|\phi_{\omega}\|_{\infty} + \|s_{\omega}\|_{\infty} \leq CM^{p} \|\omega\|_{\infty}^{q}.$

where $M(\omega) := 1 + L_{\theta}(\bar{\omega})^{-1} + \|\phi'\|_{\nu} + \|R^{\phi}\|_{2\nu} + \|\bar{\omega}\|_{\nu} + \|d[\bar{\omega}]/dt\|_{\infty} + \|s\|_{\nu}.$

 $Q_{\pi}([0, T], \mathbb{R})$ is not a vector space and, given two paths $(\omega_1, \omega_2) \in Q_{\pi}([0, T], \mathbb{R})$ the quadratic covariation along π cannot be defined in general.

By contrast, the space

$$\mathcal{R}(\bar{\omega}) := \left\{ \left. F(\cdot, \bar{\omega}) \, \right| \, F \in \mathcal{R}(\Lambda_T)
ight\} \subset Q_{\pi}([0, T], \mathbb{R}).$$

is a vector space of paths with finite quadratic variation along π . Moreover, for any pair of elements $(\omega_1, \omega_2) \in \mathcal{U}(\bar{\omega})^2$, the quadratic covariation along π is well defined; if $\omega_i = \int_0 \phi_i . d^{\pi} \overline{\omega} + s_i$ is the rough-smooth decomposition of ω_i the quadratic covariation is given by

$$[\omega_1,\omega_2]_{\pi}(t)=\int_0^t <\phi_1^t\phi_2, d[\overline{\omega}]>.$$

This bilinear form on $\mathcal{R}(\bar{\omega})$ allows to define a weak pathwise functional derivative (R.C.-Yi Lu, 2017) and extend the formulas above to a larger class of functionals.

A regularity structure on path space

Let $X \in C^{1/2-} \cap Q_{\pi}([0, T], \mathbb{R}^d)$ with $[X]_{\pi}$ strictly increasing. Define $A = \{-\frac{1}{2}, 0, 0, 0, \frac{1}{2}, 1\}$,

$$egin{aligned} T_0 = <1>, T_{1/2-} = , T_{-1/2} = \ T_{0-} = \end{aligned}$$

The bijective regular functionals $G \in \mathcal{R}(W_T)$ with $\nabla_{\omega}F \in GL(d,\mathbb{R})$ then define a group of transformations which acts on

$$\mathcal{R}(X) = \{F(.,X), F \in \mathcal{R}(\mathcal{W}_{\mathcal{T}})\} \subset Q_{\pi}([0,T],\mathbb{R}^d)$$

Expansion at (t, ω) : $T_{(t,x)}F(s,) = F(t,x) + (s-t)\mathcal{D}F + \nabla_{\omega}F(t,x).(y-x) + 1/2 < \nabla_{\omega}^{2}F(t,x).(y-x) \otimes (y-x) > \text{The functional chain rule then allows to}$ transpose a functional expansion $T_{y}F$ at any $y = Y(X) \in \mathcal{R}(X)$ to an expansion $T_{z}F = \Gamma_{y,z}(T_{y})F$ at $z = Z(X) \in \mathcal{R}(X)$

A regularity structure on path space

The group of transformations $G = \{\Gamma_{y,z}\}$ then allows to define a *regularity structure* (Hairer 2014) on the space of regular functionals of an irregular path X:

Proposition (C. 2017)

Let $X \in C^{1/2-}([0, T]) \cap Q_{\pi}([0, T], \mathbb{R}^d)$ with $[X]_{\pi}$ strictly increasing. (T, A_X, Γ) defines a regularity structure over the space of paths $\mathcal{R}(X)$. A realization of this regularity structure is given by the L^2 closure of regular functionals of X and their (1, 2)-jets given by the horizontal and (1st, 2nd) vertical derivatives.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

In addition to this regularity structure, we also have an additional structure on $\mathcal{R}(X)$ given by the quadratic form $[.]_{\pi}$.

Summary

Non-anticipative functional calculus for paths with finite quadratic variation which gives a

- Global formulation and calculus for controlled rough paths.
- Pathwise analog of the lto isometry: pathwise integral with respect to paths of finite quadratic variation which satisfies a pathwise isometry property
- Pathwise analog of the semimartingale decomposition for functionals of an irregular path with strictly increasing quadratic variation
- Regularity structure for functionals defined on typical sample paths of semimartingales.

References

- A Ananova, R Cont (2017) Pathwise integration with respect to paths of finite quadratic variation, Journal de Mathématiques Pures et appliquées.
- A Ananova, R Cont (2017) Functionals of irregular paths and controlled rough paths.
- ▶ R Cont, P Das (2017) On pathwise quadratic variation.
- R Cont Functional Ito Calculus and Functional Kolmogorov Equations, (Lectures Notes of the Barcelona Summer School on Stochastic Analysis, July 2012), Springer.
- R Cont and D Fournié (2010) Change of variable formulas for non-anticipative functional on path space, Journal of Functional Analysis, 259, 1043–1072.
- R Cont & Candia Riga (2015) Pathwise analysis and robustness of hedging strategies for path-dependent derivatives, Working Paper.