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Notations

D([0, T],R9) space of cadlag functions (right continuous with left limits).
c([o, T],R?) a—Holder functions
For a path w € D([0, T],R?), denote by

» w(t) € RY the value of w at t

» w; =w(t A.): path stopped at t

> wie =w I tw(t-) 17
For a process X we denote

» X(t) its value and

» X; = X(tA.) its path stopped at t.
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A pathwise approach of the Ito formula

Consider a continuous R9-valued process X and f € C?(R? R). The
main idea in the oroof of the Ito formula is to consider a sequence of
partitions m, = (0 = t§ < t].. < PNy = T) of [0, T] with step size
decreasing to zero and expand increments of f(X(t)) along the partition
using a 2nd order Taylor expansion:

F(X(2)) = £(X(0)) = Y F(X(tf1)) — F(X(2))

Tn

=D VAX(EN)-(X (1) = X ()

+%t(X(f,-”+1) = X(EMVAAX(E7)-(X(t.1) = X(£7) + r(X (1), X (1))
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Summing over m, we get

f(X(t)) — f(X(0)) = Si(mp, f) + So(mn, f) + R(mn, f)

» By uniform continuity of
r(x,y) = f(y) = f(x) = VF(x).(y — x) = 0.5(y — x)VZf(x)(y — x),

r(xy) < ¢(llx = yIDlx = yI?
with o(u) = 0as u — 0so R(m,, f) = > r(X(t] 1), X(t)) — 0
pointwise if > [ X(t7,) — X(t)|? bounded.
» Under this condition the (left) Riemann sum
Si(mn, £) =D VA(X(t]))- (X( t 1-X(t7)) converges if and only if
the ‘quadratic Riemann sum’

2(mn F) = 5 Z (1) = X(EM)VAFX(E)-(X(8]1) — X(2))

converges.
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Quadratic Riemann sums

For d=1: given a path of X, pointwise convergence of ‘quadratic
Riemann sums’

2(7n, ZVZ )-(X(tf1) — X(¢7))?

along the path for every f € C2(R?,R) is exactly equivalent to the weak
convergence of the sequence of discrete measures

Hn = Z (X(t') — X(t‘:jn))26tj
temn

where §; denotes a point mass at t. This is a joint property of X and

(7).
This motivated Follmer (1981)’s definition of ‘pathwise quadratic
variation along a sequence of partitions.
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Definition (Quadratic variation along a sequence of partitions)

Let mp = (0 = tg < t{.. <ty = T) be a sequence of partitions of

[0, T] with step |m,| decreasing to zero. A cadlag function
x € D([0, T],R) is said to have finite quadratic variation along the

sequence of partitions (7,)n>1 if
(i) the sequence of discrete measures

Y (x(tha) = x(i)?6, " u(de) = dlwlx

converges weakly;
(i) [x]S defined by [x]<(t) = p([0, t]) — Y9 s<r |AX(s)|? is continuous
and increasing. a

We denote Q([0, T],R) the set of functions with the above properties.
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Characterization in continuous case

Proposition (C. & Das (2017))
Let x € C°([0, T],R) and define

Xz, (8) = D (@(tfia A L) —w(t] At))?

tem”
The following properties are equivalent:

1. x has finite quadratic variation along the sequence of partitions
(’R—n)n21 .

2. The sequence [x],, converges uniformly on [0, T| to a continuous
function [x].

3. The sequence [x],, converges pointwise on [0, T|] to a continuous
function [x].
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Definition (Pathwise quadratic variation: multidimensional

case)

x € Qx([0, T],RY) if, forall 1 < i,j < d, x',x' +x/ in Q([0, T],R).
[x]~ is a positive symmetric d x d matrix:

[XIx(8) = lim D (x(th) = x(¢)) - “(x(t1) = x(27)) < +o0,

t1<t
with elements given by

()i (8) = 5 (I + #1a(8) = ¥12() — ()
=, X5+ > AX(s)AX(s), ij=1,....d

0<s<t

R Cont

Functional calculus and controlled rough paths



Imperial College
London

Follmer's 'pathwise Ito formula’

Proposition (Follmer, 1981)

Vf € C3(RY,R),Vw € Q([0, T],RY), the non-anticipative Riemann sums
along m

E:Vf £)).((ty) — ”*”/ VF(w(t)).d™w

converge pointwise and

F(w(t)) — F((0)) = / VHw).d + & / < V(). L >
+ 3 F(w(s)) — F(w(s—)) = VF(w(s—)).Aw(s)

s<t
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Dependence on the partition

Consider now two sequences of partitions 7w, 7 and a continuous path
w e Qﬂ'([ov T]v Rd) N QT([07 T]7 Rd)
Since Vf € C?(RY),

f@@»—awmyzéxﬁw)mW+%/‘<v%w%qqﬂ>

0
:A\quww+;At<v%@yﬂqT> (1)

the pathwise integrals are equal if and only if [w], = [w].
But the pathwise quadratic variation does depend on the sequence of
partition...
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Quadratic variation along a sequence of partitions

This notion of 'pathwise quadratic variation along a sequence of
partitions’ depends on the chosen sequence of partitions:

Proposition ((Friedman))

Let w € CO([0, T],RY). There exists a sequence of partitions (1,) such
that [w],. = 0.

Proof: We construct recursively partitions 7, such that

sy

|7Tn| <

S|

and Y |w(tfyq) —w(tp) <

;.
Assume we have constructed 7, with this property. Adding to 7, the
points k/(n+ 1), k = 1..n we obtain a partition o, = (s/,i = 0..M,)
with |o,] <1/(n+1).
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For i = 0..(M, — 1), we further refine [s/, s/, ;] as follows. Let J(i) be an
integer with
J(i) = (n + D) Malw(sf,1) = w(s?)I?,
k n Y w(sh
e =00t 2 77y fe) = ofef) + DD,

Then points (77, k = 1..J(i)) defines a partition of [s], s ;] with

S n oy (i) — w(sP)
|7 M1 — ’.7k| < m and |w(Ti,k+1) w( :k)| HJ#
J(i) n ny|2
! — ! 1
n - n 2 < . |w(sl+1) w(sl)| — .
2 kelrfin) = (P < S (n+1)M,

Sorting (77, i = 0..M,, k = 1..J(i)) gives mp11 = (tJf’H) such that

1 o 1
< —- .
ol € =0 D lwltf) — ()P < —

Tn+1
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Definition (Well-balanced sequence of partitions)

Let ﬂ = inf,'zonN(ﬂ-")_l |tl-n+1 = tln|
The sequence of partitions (7,),>1 well-balanced if

dc > 0, Vn>1,

Theorem (R.C. & P. Das, 2016)

Let a >0, f € C*([0, T],R%) and 7 = (7")n>1 and o = (0")p>1 two
well-balanced partition sequences such that

f € @ ([0, T,RY) N ([0, T,RY) and  [f], >0, [f],>0.

Then: Vt € [0, T], [flo(t) = [f]-(t)
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Non-anticipative Functionals
Denote wy = w(t A.) the past i.e. the path stopped at t.

Definition (Non-anticipative Functionals)

A causal, or non-anticipative functional is a functional
F : [0, T] x D([0, T],R%) ~ R whose value only depends on the past:

YweQ, Vtelo,T], F(t,w) = F(t,w;). (3)

Causal functional= map on the space /\‘} of stopped paths, defined as
the quotient space:

A% = ([0, T] x D(0, T],RY) / ~
where (t,x) ~ (t/,x') <> t = t/, x; = x{. A% is equipped with a metric

doo((t,x), (t',x")) = sup |x(unt)—xX'(unt)+|t—1]
u€l0,T]
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Functionals of piecewise constant paths

A piecewise-constant path w = 22:1 Xk L[t t.41] 1S Obtained by
> “horizontal stretchings” from tx to ti1, followed by
» addition of a jump at each discontinuity point:
Wy = Wy + (Xk-‘rl - Xk)ltk+1
Key idea: The evolution of a non-anticipative functional along w may be
decomposed into its variations with respect to two types of operations:

> “horizontal extension” of the path from t, to txi1
F(tkt1, we, ) — Ftk,we,)
> 'vertical step’ at partition points: addition of a jump at tx11
F(tis1, wey) — Ftist, wey,)

If one can control the behavior of F under these two types of path
perturbations, then one can follow/reconstitute F(t,w).
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Definition (Horizontal and vertical derivatives)
A non-anticipative functional F is said to be:
» horizontally differentiable at (t,w) € A% if the finite limit exists
F(t+ h,w:) — F(t,w:)

DF(t,w) := hl_i>ng+ P .

» vertically differentiable at (t,w) € A4 if the map
RY =R, e F(t,w(tA.)+ely )

is differentiable at 0; its gradient at 0 is denoted by V,,F(t,w).

Note that DF(t,w) is not the partial derivative in t:

— Im F(t+ hw)— F(t,w).
h—0 h

DF(t,w) # 0:F(t,w)
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Smooth functionals

Definition (C,*(A%) functionals)

We denote by Clb’z(A‘-,f-) the set of non-anticipative functionals

F € CY°(A%), such that
» F is horizontally differentiable with DF continuous at fixed times,
» F is twice vertically differentiable with V/,F € C?°(A%) for j = 1,2;
» DF,V,F,V2F € B(A%).

R Cont
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Examples of smooth functionals

Example (Cylindrical functionals)
For g € CO(RY*"), h € C¥(RY) with h(0) = 0. Then
F(tw) = h(w(t) —w(ta=))  Lleze, gw(ti—) w(t2—)...,w(ta—))
is in Ct’k and
D:F(w)=0, and Vj = 1.k,
VI F(t,w) = A9 (w(t) — w(ta—)) Lest,8 (w(ti—), w(ta—)..., w(t,—))

v

S(At,7,) := space of simple predictable cylindrical functionals piecewise
constant along m,, S(A7,7) := Up>1S(A1, 7p)x
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Examples of smooth functionals
Example (Integral functionals)
For g € Go(RY), Y(t) = [y g(X(u))p(u)du = F(t, X;) where

Fltw) = / g(w(u))p(u)du
F e Clb’oo, with:

D:F(w) = g(w(t)p(t)  VLF(t,w)=0
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Conditional expectations as smooth functionals
Let o € CO°(Wr) be such that
xuy:xmnm<liﬂwmmwy-;A}%@do (%)
is a martingale, i.e. E(X(T)) =1 and denote by Q the law of (*).
Proposition (Cont & Riga 2015)

Let h: (D([0, T], R), ||.|lcc) — R be Q7-integrable and Lipschitz. Assume
that for (t,w) € Wr, the map

gh(.; tw):ee€ RY — gh(e) =h (w + el[t,T])) , (6)

is twice differentiable at 0, with derivatives bounded uniformly in
(t,w) € Wr in a neighborhood of 0. Then, there exists F € C)*(Wr)
such that F(t,X;) = EQ"[H|FX] Q7 —a.s.
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Weak Euler schemes as smooth functionals
Let o : (AT, ds) — R¥*9 be a Lipschitz map. Then

nX(G1,w) = o X(4,w) + o (8, n X (W) - (W(tj12—) —w(g=)) . (7)
defines a non-anticipative functional ,X which approximates

mn=mm+A¥wmwww (8)

For a Lipschitz functional g : (D([0, T],R9), |.|l~) — R, consider the
'weak Euler approximation’ of E [g(X7)|F}V]:

Fu(t,w) = E [g (X 7(Wr)) |FY] (). (9)

(R Cont- Yi Lu, SPA 2016): F, € C;*(Wr).

R Cont
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Controlled Holder rough paths

Definition (Controlled rough path (Gubinelli 2004))

Let X € C*([0, T], V). Y € C*([0, T], W) is a controlled rough path
controlled by X if there exists Y’ € C*([0, T], L(V, W)) such that

R(s,t) = Y(t) = Y(s) = Y.(X(t) = X(s)), T>t>s>0

satisfies ||R]|, < oc. for some v > a.

X is called the control or reference path.

R(s, t) can be thought of as the remainder in a first order Taylor
expansion.

Any Y’ satisfying this property is called a ‘Gubinelli derivative' for Y.

R Cont
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Regular functionals as controlled rough paths

If F e R(AY),w € C¥([0, T],RY) then t — (F(t,w), Vo F(t,w) is a
rough path controlled by w in the sense of Gubinelli (2004):

Proposition

Let w € C*([0, T],R?) for some v € (1/3,1/2] and F € C,*(A%,R")
with V,F € Cp* (A%, R™9) and F € Lip(A%, ]| - o). Define

R:t(w) = F(s,ws) — F(t,w:) — Vo, F(t,we)(w(s) — w(t)). (10)

Then there exists a constant Cr T, increasing in T and ||w||,, such that

|R£t(w)| < CF,T,w|S — t|2V(1+V)

IR va
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Controlled rough paths as regular functionals

Conversely, a family of controlled rough paths indexed by the reference
path is none other than a .. vertically differentiable functional, whose
‘Gubinelli derivative’ is none other than the Dupire/ vertical derivative:

Proposition (Ananova & Cont, 2017)

Let F € CO%(W4,R), G € C¥°(W2,RY) be non-anticipative functionals.
Assume that for any w € C”([0, T]), v € (0, 1) the pair (F(-,w), G(+,w))
is a controlled rough path with respect to w s.t. 3Cr 1., > 0

|F(s,ws) — F(t,w:) — G(t,w:)(w(s) — w(t))| < Cl|s — t| + C|s — ¢[*+¥)

where the constants depend only on T, F and ||w||,. Then
F € CoY(W4,R) and V,F(t,w) = G(t,w).

R Cont
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Chain rule for functionals

Let G € C})’l(/\‘%) and F € C})’l(/\lT) be non anticipative functionals and
H(w,t) := F(G(t,w),t). Then H € Cp*(A%) and

DH(t,w:) = DF(t, G(t,w:)) + VF(t, G(t,w:))DG(t,w:),
VH(t,w:) = VF(t, G(t,w:))VG(t,w).
Moreover , if G, F € C}? then H € Cp* I and

V2H(t,w:) = VF(t, G(t,w:))VG(t,w:) 'V G(t,w:)
+VF(t, G(t,w:))V3G(t,w;) (1)

IR va
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This result implies the stability of the concept controlled rough paths
under smooth functionals:

Proposition (Change of variable formula for controlled rough

paths)

Let (X,X") € D?([0, T],RY) be a controlled rough path with control
w e ([0, T],R?). Then for any F € CpH(AL),

(F(t, X),V,F(t, X).X") € D¥ ([0, T],R?)

is a controlled rough path with control X.

Similar transformation rules exist in the theory of controlled rough paths
( see Friz-Hairer Ch .4) but here the derivation is much simpler.

R Cont
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The concept of controlled rough path does not come with a natural
approximation theory. Our representation yields such an approximation
theory.

Let (X, X") € D2(]0, T],RY) be a controlled rough path with control

w € €¥([0, T],RY) and F € C}*(AL) a functional such that

(X, X") = (F(.,w), VuF(.,w)).

Then if X, = Fo(.,w) is a sequence of (piecewise) smooth approximations
of X then a natural approximaation for (X, X’) is (Xp, Vi Fa(.,w))
Example (C.-Lu, 2016): numerical approximations of martingale
representations.

R Cont
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Theorem (Change of variable formula (Cont- Fournié ,2010))

Let w € Q™ ([0, T],RY) such that sup,co 17\ |Aw(t)] = 0 and denote
W= O w(tl )y, +w(T)1(ry. Then for any F € Cy 2(AY), the
limit

.

bfvwF(t,wt,).dm:anwz?;(g)—lvwF(t,." "A“(”)(w(t,ﬂ) w(th)

exists, and

T T
F(T,w):F(O,w)+/VwF(t,wt_)-d”w+/DF(t,wt_)dt

0 0
T
i
0

tr (V2 F(t,we- )dw]S(t)) + Z (F(s,ws) — F(s,ws—) — Vi F(s,ws—) - Aw(s)).
s€[0,T]
(ChV)

N =

R Cont
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Functional lto formula
Applied to a semimartingale, these results lead to a functional extension
of the Ito formula:

Theorem (Functional Ito formula (Dupire 09, C.& Fournié
2009))

Let X be a continuous semimartingale and F € C}.2([0, T[). For any
teo, Tl

F(t,Xt) — FO(XQ) = /(;t DUF(Xu)du B

/ VoFu(X,).dX(s) + / L (V2F,(%) diX|(w)  as.
0 0

In particular, Y (t) = F(t, X:) is a semimartingale.

R Cont
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Brownian martingales as harmonic functionals

Theorem (R.C. & D Fournié 2010)

Let P be the Wiener measure on the canonical space,
H: (D(LO, T], R, |l-ll) = R a P-integrable functional. If there exists
F € Cp2(Wr) such that

loc

M(t) = F(t, W) = EP[H(W)|FY] P — a.s.

then 1
Y(t,w) € Wr, DF(t,w) + Etr(ViF)(t, w)=0
and .
M(t) = F(t, W) = M(0) + / V. F(s, W)dW(s).
0

R Cont
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These result allows to construct fo Vo F as a pointwise limit of
non-anticipative 'Riemann sums’:

m(n)—1

.
/mftwt -d™w = lim Z:VF wt ) w(th ) — w(t))
0

n— o0

F € R(A%), we C:([0, T],RY) = V,,F(t,w) e Cz=([0, T],RY).

The pathwise integral is a strict extension of the Young integral.

Does this integral verify any continuity/ stability property?
Does it share any of the other ‘nice’ properties of the Ito integral?

R Cont
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Assumptions on F

Assumption (Lipschitz continuity of F)

F e Lip(AL, || - lo): 3K >0, Vuw,w' € D([0, T],RY),

|F(t7w) — F(tvw/)l S K”wf _W;EHOO

\

Assumption (Regularity of F)

FeCY?(Ar) and V,F e CL'(AY).

\
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Denote C%_([O, T],RY) = n _c¥([o, T],RY)
v<1/2

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)

Under the above assumptions on F € C12(At), for any path
w € Q:([0, T],R) N CY2([0, T],RY) and any sequence of partitions
7w = (7n)n>1 satisfying osc(F(.,w), Tp) —n—s+oo 0 we have

[F(t,w)]" (t) =
[/ VwF(s,w).d”w} (t) = /(tiF(s, w).VuF(s,w), d[w]™(s)).
0

(Isometry)
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As a consequence:

Proposition

Let w € Q([0, T],RY) N C/2~([0, T],RY) such that 4l .= a(t) > 0 is
right-continuous. Then the path t — F(t,w) has a zero quadratic
variation along the partition 7 if and only if V,,F(t,w) =0, Vt € [0, T].

R Cont
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Proof of the pathwise isometry formula
For simplicity set d = 1. Let

REY = F(s,w) — F(t,w) — Vo F(t,w)(w(s) — w(t)).
First we prove that

1
IRES| SE g, s — t/OH), vu < 5 (*)

For that, we will use the following formula for R:’t’\ for Lipschitz
continuous paths A:

FA— ) u u ) i r i(s) = Ni(r))dr
R _/t DF(u, \)d +/t DVwF-( NN (s) — N (r)d )
+/t VI F(r, VN (RN (s) — N(r))dr.
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(12) follows from the following result

Lemma (R. C. 2012)

Assume G € Cp'' (A1) and X is a continuous path with finite variation on
[t,s], then

G@M—G@M:/Em@ﬂw+/\uquw@%

where the second integration is in the Riemann-Stieltjes sense.

IR va
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Thanks to (12), Lipschitz property of F and since w € C¥, Vv < % we
can construct a Lipschitz continuous approximation w” to w such that

IRtF,’s“’NI Sls—t[+ N'7[s — [, and IRtF,;“’N —RESISN™|s—t”.
Thus

REENS s —t] + N7 )s — ¢ + N7¥|s — t".

We conclude the proof of (x) by choosing N ~ |s — t| 7.

ont
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For the proof of the Theorem, note that from the assumptions on the
partitions 7, we have

F,w
Rtn tﬂ

it

M, 1= max — 0.
1

Next we choose v close to 3 so that 12 4+ v > 3, then from (x)

2
REY,
Z ‘ t, 7t1+1

2— 51— o1
< CM, Nt — ] < CTM, 7 — 0.
i

R Cont
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Thus, since

n n 2 n
|(Ftf1,w) = F(t,w0))” = V(e wP((th) - w(t)?|
< |Rf”¢:" |2+CF|Rt" £ wa t? |

[RMESY

using the triangle and Cauchy-Schwarz inequalities, we get
'Z I+17 F(tl awt" Zv F ( l+1) (tln))2
< Z Repen 1P+ CF\/Z Reter, \/Z jwep g0 [2 = 0.
i

ont
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The result of the Theorem now follows from the fact
T
S VLR P (th) = () > [ VoF(s.wPdlel ()
- 0
1

which is a consequence of the weak convergence of

D (@) = w(th))?8y — dlw]”

tienn

and the strong convergence of

> VL w) e ) — VuF(tw)2.

t?<t
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Relation with Ito isometry

Let P be a martingale measure on C°([0, T],R) under which the
canonical process X is a square integrable martingale. Then the integral
Jy VuF(t,w).d™w is a version of the Ito integral [; V,,F(t, X)dX and
integrating the pathwise isometry formula with respect to P yields the
well-known Ito isometry formula :

([/ Vo F(t, X)dX](t ) =E (/ |V, F(t X)|2d[X]>

So our pathwise isometry formula uncovers a pathwise relation which
underlies the lto isometry property.
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Theorem (Properties of the pathwise integral (R.C. 2012))

1. Quadratic covariation formula: for ¢, € V(A%), the limit
[Iw(¢)7 /w('@[])]ﬁ(T) =
Tim 3 (ha(@)(1) = ho(B(t8)) (o ($)(t51) — () (20))

Tn

exists and  [L,(¢), L.(¥)]=(T) = /0 < Pt o(t,we), d[w] > .

2. Associativity: Let ¢ € V(N%),v € V(AL) and x € D([0, T],R)
defined by x(t) = [ ¢(u,w,_).d"w. Then

/OTz/)(th).d“x—/ /tb u,wy—).d"w ¢(wt ) )
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Regular functionals

Assumption (Horizontal local Lipschitz property)

A functional G: /\‘71- — R is said to satisfy horizontal local Lipschitz
property, if: Yw € D([0, T],RY),3 C >0,7>0,Yh >0Vt < T — h,

lwe — willoo <m, = [G(t + h,w;) — G(t,w})| < Ch.

Definition (Regular Functionals)

R(A%) = set of functionals F € C12(A4,) with
VKF, e CyY(AY), k=T1,2, F,DF,V3F € Lip(A%, || - [loc) and V3F
horizontally locally Lipschitz.

Example: cylindrical non-anticipative functionals are regular.
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Uniqueness and pathwise nature of integral

Proposition (Follmer integral as a limit of Riemann sums)
Let F € R(AY) and w € Q([0, T],RY) N CY/2=([0, T],R9). Then

F m(n)—1
L/ VoF(nw)d™w = lim S VuF(tw)- (w(thy) — ().
0 i=0

n—+00

In particular, if VF(t,w) = VG(t,w) for F, G € R(A%) then

t t
vVt e [0, T], / VF(u,w)d™w = / VG (u,w)d™w.
0 0
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Lemma

Under the assumptions of the previous result, for consecutive endpoints
t<semn", we have

F@MJ—ngﬁi[wawﬁw+Vfﬁwgw@—wM)

-l-%(ViF(t,wt), (w(s) — w(t)) @ (w(s) — w(t))) + O(|s — t|3,,2+u)'

IR va

R Cont : q |€.’
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The pathwise integral as a continuous map

Definition (a—harmonic functionals)

Let a: [0, T] — S¢ be a continuous function taking values in
positive-definite symmetric matrices. F € H,(A1) if

V(t,w) € Ar, DF@¢W)+%G%FU¢WLJQ):O

Let & € Q. ([0, T],RY) N CP([0, T],R9), d[@]/dt = a. Then
t
VF € Ha(AT), F(t, &) = F(0,®) +/ VwF(u,@).d"@.
0
so by the isometry formula

[F(-,@)]w(t)—/o Vo (u,®).a(u) Vo F(u,@)du = [V F (., ®)lI20,77,2) < 00
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Continuity of the pathwise integral

Let @ € Q([0, T],RY) n C¥/2~([0, T],RY), d[©]./dt = a > 0.
Ha(@) :={ F(-,@.) | F € Ha(AT)} C Q([0, T],R),
Vo(@) := { VL F(-,&.) | F € Ha(A7)} C L2([0, T], a).

Proposition (Pathwise integral as an injective isometry)

The pathwise integral

5(6) = lim S S(e).(@(eh4) — B(eR)

defines an injective isometry

Is: (Va(@): [l 2o, 11,0)) = (Ha(@), ]| - 1)
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A pathwise ‘Doob-Meyer’ decomposition

Given @ € Q([0, T],RY) N C27[0, T],R? with strictly increasing
quadratic variation along 7:

d[@]x
& € Q.([0, T],RY) N C¥?~ ([0, T],RY) with % >0 dt — a.e. (13)

and consider the set of regular transformations of &:
R(@) == { F(-,@)| F e R(A7)} C Q«([0, T],R).

Proposition (Rough-smooth decomposition of paths)

Any path w € R(®) has a unique decomposition
t
w(t) = w(0) +/ 6.d"% + s(t)
0

where ¢ € V,(@) and [s]r = 0.
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» This result may be viewed as a pathwise analogue of the well-known
decomposition of a continuous semimartingale as the sum of a local
martingale and a process with finite variation.

» Similar results were obtained using rough path techniques
Hairer-Pillai (2013) using a uniform Hélder roughness condition on
the path and by by Hu & Tindel (2013) for fractional Brownian
motion.

» Our setting is closer to the original semimartingale decomposition:
the components are distinguished based on (pathwise) quadratic
variation.
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As in Cass-Litterer-Hairer-Tindel (2012) and Hairer-Pillai (2013), we
obtain a ‘Norris Lemma’ for this decomposition under a roughness
condition on the reference path @:

Theorem (Stability of rough-smooth decomposition)

Let & € CY?>=([0, T]) N @ ([0, T],R?) such that
30 <1, Le(@) >0Vte[0,T],ec (0,T/2],veR,

s € [0, T], |t —s| < eand|v-(@(s) —a@(t))| > Lo(@)e’.

There exists p, q > 0 such that for any w € R(@) with rough-smooth
decomposition

w(t) = w(0) + /thsw. "%+ su(t), ¢ € Va(®), [s]r=0.

we have B loc + [lswlloc < CMP|w]|S.
where M(w) := 1+ Lo(@) ™" + ¢/ llv + [IR?|l2v + @]l + [|d[&]/dt]| oo + lIs]l.-
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@-([0, T],R) is not a vector space and, given two paths
(w1,w2) € Q([0, T],R) the quadratic covariation along 7 cannot be

defined in general.
By contrast, the space

R(@) :={ F(-,@)| F € R(A7)} C Q«([0, T],R).

is a vector space of paths with finite quadratic variation along 7.
Moreover, for any pair of elements (wy,ws) € U(@)?, the quadratic
covariation along 7 is well defined; if w; = fo ¢;.d™w + s; is the
rough-smooth decomposition of w; the quadratic covariation is given by

[wr, wal«(t) = /0 < 6tdn, dm] >

This bilinear form on R(&) allows to define a weak pathwise functional
derivative (R.C.-Yi Lu, 2017) and extend the formulas above to a larger
class of functionals.
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A regularity structure on path space
Let X € CY?~ N Q.([0, T],RY) with [X], strictly increasing.
Define A = {—3—,0—,0,3—,1},
To=<1>Typ =<X' . X'> T 1p=<d"X',. dX >
Too =< d[X]¥,i,j=1.d >

The bijective regular functionals G € R(Wy) with V,F € GL(d,R) then
define a group of transformations which acts on

R(X) = {F(,X),F € R(Wr)} € Q([0, T],R%)
Expansion at (t,w) :
T(t,X)F(s,) =F(t,x)+ (s —t)DF + V F(t,x).(y —x)+ 1/2 <
V2 F(t,x).(y — x) ® (y — x) > The functional chain rule then allows to

transpose a functional expansion T, F at any y = Y(X) € R(X) to an
expansion T,F =T, ,(T,)F at z = Z(X) € R(X).
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A regularity structure on path space

The group of transformations G = {I', ,} then allows to define a
regularity structure (Hairer 2014) on the space of regular functionals of
an irregular path X:

Proposition (C. 2017)

Let X € CY2=([0, T]) N @ ([0, T],R¥) with [X], strictly increasing.
(T,Ax,T) defines a regularity structure over the space of paths R(X). A
realization of this regularity structure is given by the L? closure of regular
functionals of X and their (1,2)—jets given by the horizontal and (1st,

2nd) vertical derivatives.

In addition to this regularity structure, we also have an additional
structure on R(X) given by the quadratic form [.].
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Summary

Non-anticipative functional calculus for paths with finite quadratic
variation which gives a

» Global formulation and calculus for controlled rough paths.

» Pathwise analog of the Ito isometry: pathwise integral with respect
to paths of finite quadratic variation which satisfies a pathwise
isometry property

» Pathwise analog of the semimartingale decomposition for functionals
of an irregular path with strictly increasing quadratic variation

» Regularity structure for functionals defined on typical sample paths
of semimartingales.
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