Renormalisation of singular stochastic PDEs

Ilya Chevyrev (work in progress with Y. Bruned, A. Chandra, M. Hairer)

University of Oxford

19 July 2017 Durham Symposium on Stochastic Analysis

llya Chevyrev Renormalisation of SPDEs

三日 のへで

▶ ★ 문 ▶ ★ 문 ▶

We consider stochastic PDEs/Cauchy problems of the form

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i,$$

• • = • • =

We consider stochastic PDEs/Cauchy problems of the form

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i,$$

where

• $u: \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$ is a periodic function/distribution;

→ Ξ → < Ξ →</p>

We consider stochastic PDEs/Cauchy problems of the form

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i,$$

where

- $u: \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$ is a periodic function/distribution;
- \mathcal{L} is an elliptic differential operator;

• = • •

We consider stochastic PDEs/Cauchy problems of the form

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i,$$

where

- $u: \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$ is a periodic function/distribution;
- \mathcal{L} is an elliptic differential operator;
- ξ_i are "sufficiently nice" noises;

We consider stochastic PDEs/Cauchy problems of the form

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i,$$

where

- $u: \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$ is a periodic function/distribution;
- \mathcal{L} is an elliptic differential operator;
- ξ_i are "sufficiently nice" noises;
- $F_i(u, \nabla u, ...)$ is a smooth function of the jet of u.

A B > A B >

Examples

• Dynamical Φ_3^4 model:

$$(\partial_t - \Delta)u = u^3 + \xi,$$

where $u: \mathbb{R}_+ \times \mathbb{T}^3 \to \mathbb{R}$ and ξ is space-time white noise.

▶ < ∃ > < ∃</p>

Examples

• Dynamical Φ_3^4 model:

$$(\partial_t - \Delta)u = u^3 + \xi,$$

where $u: \mathbb{R}_+ \times \mathbb{T}^3 \to \mathbb{R}$ and ξ is space-time white noise.

• Generalised parabolic Anderson model (gPAM):

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

where $u: \mathbb{R}_+ \times \mathbb{T}^2 \to \mathbb{R}$ and ξ is space white noise.

Examples

• Dynamical Φ_3^4 model:

$$(\partial_t - \Delta)u = u^3 + \xi,$$

where $u:\mathbb{R}_+ imes\mathbb{T}^3 o\mathbb{R}$ and ξ is space-time white noise.

• Generalised parabolic Anderson model (gPAM):

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

where $u:\mathbb{R}_+\times\mathbb{T}^2\to\mathbb{R}$ and ξ is space white noise.

• We allow d = 0! SDEs/rough paths:

$$\partial_t u = \sum_{i=0}^n F_i(u)\xi_i,$$

where $u: \mathbb{R}_+ \to \mathbb{R}$ and $(\xi)_{i=0}^n$ are (time) white noises.

Examples

• Dynamical Φ_3^4 model:

$$(\partial_t - \Delta)u = u^3 + \xi,$$

where $u:\mathbb{R}_+ imes\mathbb{T}^3 o\mathbb{R}$ and ξ is space-time white noise.

• Generalised parabolic Anderson model (gPAM):

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

where $u:\mathbb{R}_+\times\mathbb{T}^2\to\mathbb{R}$ and ξ is space white noise.

• We allow d = 0! SDEs/rough paths:

$$\partial_t u = \sum_{i=0}^n F_i(u)\xi_i,$$

where $u: \mathbb{R}_+ \to \mathbb{R}$ and $(\xi)_{i=0}^n$ are (time) white noises.

What we want: a deterministic theory which takes as input ξ^{ε} and outputs the solution to

$$(\partial_t - \mathcal{L})u^{\varepsilon} = \sum_{i=0}^n F_i(u^{\varepsilon}, \nabla u^{\varepsilon})\xi^{\varepsilon}$$

as a continuous function of ξ^{ε} .

∃ > < ∃</p>

What we want: a deterministic theory which takes as input ξ^{ε} and outputs the solution to

$$(\partial_t - \mathcal{L})u^{\varepsilon} = \sum_{i=0}^n F_i(u^{\varepsilon}, \nabla u^{\varepsilon})\xi^{\varepsilon}$$

as a continuous function of ξ^{ε} .

Then we send $\xi^{\varepsilon} \to \xi$ as distributions (e.g., mollifier approximations) and conclude $u^{\varepsilon} \to u$.

A B > A B >

What we want: a deterministic theory which takes as input ξ^{ε} and outputs the solution to

$$(\partial_t - \mathcal{L})u^{\varepsilon} = \sum_{i=0}^n F_i(u^{\varepsilon}, \nabla u^{\varepsilon})\xi^{\varepsilon}$$

as a continuous function of ξ^{ε} .

Then we send $\xi^{\varepsilon} \to \xi$ as distributions (e.g., mollifier approximations) and conclude $u^{\varepsilon} \to u$.

We want to do this in spaces where the noises a.s. take values.

· • E • • E • E

Main difficulty: these equations can be singular.

Example (gPAM)

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

□ > 《注》 《注》

315

Main difficulty: these equations can be singular.

Example (gPAM)

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

 ξ is space white noise $\Rightarrow \xi \in \mathcal{C}^{-1-\kappa}(\mathbb{R}_+ imes \mathbb{T}^2).$

Main difficulty: these equations can be singular.

Example (gPAM)

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

 ξ is space white noise $\Rightarrow \xi \in C^{-1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$. Schauder estimates $\Rightarrow u$ is at best in $C^{1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$.

(日本) (日本) (日本) (日本)

Main difficulty: these equations can be singular.

Example (gPAM)

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

 ξ is space white noise $\Rightarrow \xi \in C^{-1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$. Schauder estimates $\Rightarrow u$ is at best in $C^{1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$. Moreover $\partial_i u$ is at best in $C^{-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$.

周 > 《 글 > 《 글 > (글] 글

Main difficulty: these equations can be singular.

Example (gPAM)

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi,$$

 ξ is space white noise $\Rightarrow \xi \in C^{-1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$. Schauder estimates $\Rightarrow u$ is at best in $C^{1-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$. Moreover $\partial_i u$ is at best in $C^{-\kappa}(\mathbb{R}_+ \times \mathbb{T}^2)$.

Such equations appear in mathematical physics.

- Scaling limits of statistical models (KPZ, PAM, Φ_3^4).
- Quantization of euclidean quantum field theories (Φ_3^4 , Φ_2^p , Yang-Mills, sine-Gordon).

くロト く得ト くヨト くヨト ヨ

In fact, stability is impossible even for SDEs.

Theorem (Lyons '91)

There does not exist a Banach space $E \subset C([0,1],\mathbb{R}^2)$ such that

- E contains all smooth paths,
- E contains a.e. sample path of Brownian motion,
- the quadratic map

$$C^\infty([0,1],\mathbb{R}^2)
i(W_1,W_2)\mapsto \int_0^1\int_0^t dW_1(s)dW_2(t)dt$$

extends continuously to all of E.

3 K (3 K

Not all is lost: the above equations are also sub-critical.

<□> < 三> < 三> < 三> < 三> < 三< つへ ○

Not all is lost: the above equations are also sub-critical.

Example (gPAM)

On small scales $\tilde{\xi}(t,x) = \varepsilon \xi(\varepsilon^2 t, \varepsilon x) \sim \xi$, $\tilde{u}(t,x) = \varepsilon^{-1} u(\varepsilon^2 t, \varepsilon x)$

$$(\partial_t - \Delta)\tilde{u} = \varepsilon \sum_{i,j=1}^2 f_{i,j}(\varepsilon \tilde{u}) \partial_i \tilde{u} \partial_j \tilde{u} + g(\varepsilon \tilde{u}) \tilde{\xi}.$$

The non-linearities disappear in the formal limit $\varepsilon
ightarrow 0$.

▶ ▲ 프 ▶ ▲ 프 ▶ ▲ 프 ►

Not all is lost: the above equations are also sub-critical.

Example (gPAM)

On small scales $\tilde{\xi}(t,x) = \varepsilon \xi(\varepsilon^2 t, \varepsilon x) \sim \xi$, $\tilde{u}(t,x) = \varepsilon^{-1} u(\varepsilon^2 t, \varepsilon x)$

$$(\partial_t - \Delta)\tilde{u} = \varepsilon \sum_{i,j=1}^2 f_{i,j}(\varepsilon \tilde{u}) \partial_i \tilde{u} \partial_j \tilde{u} + g(\varepsilon \tilde{u}) \tilde{\xi}.$$

The non-linearities disappear in the formal limit $\varepsilon \rightarrow 0$.

 \Rightarrow *u* locally looks like the SHE *G* * ξ (*G* the Green's function).

▶ ▲ 글 ▶ ▲ 글 ▶ _ 글 글

Not all is lost: the above equations are also sub-critical.

Example (gPAM)

On small scales $\tilde{\xi}(t,x) = \varepsilon \xi(\varepsilon^2 t, \varepsilon x) \sim \xi$, $\tilde{u}(t,x) = \varepsilon^{-1} u(\varepsilon^2 t, \varepsilon x)$

$$(\partial_t - \Delta)\tilde{u} = \varepsilon \sum_{i,j=1}^2 f_{i,j}(\varepsilon \tilde{u}) \partial_i \tilde{u} \partial_j \tilde{u} + g(\varepsilon \tilde{u}) \tilde{\xi}.$$

The non-linearities disappear in the formal limit $\varepsilon \rightarrow 0$.

 \Rightarrow *u* locally looks like the SHE *G* * ξ (*G* the Green's function).

In QFT, this corresponds to super-renormalisable theories.

(신문) 신문) 문

Generalised Taylor expansion

Consider just PAM

$$(\partial_t - \Delta) u = u \xi \, \Leftrightarrow \, u = G * (u \xi) + \,$$
 init. cond.

• = • •

Generalised Taylor expansion

Consider just PAM

$$(\partial_t - \Delta) u = u \xi \, \Leftrightarrow \, u = G * (u \xi) + \, { ext{init. cond.}}$$

We make an ansatz: around 0

 $u = u_0 + u_1 G * \xi + R.$

Ilya Chevyrev Renormalisation of SPDEs

- 비 프 아 - 비 프

Generalised Taylor expansion

Consider just PAM

$$(\partial_t - \Delta) u = u \xi \Leftrightarrow u = G * (u \xi) +$$
init. cond.

We make an ansatz: around 0

$$u = u_0 + u_1 G * \xi + R.$$

Substituting this back into the equation

$$u = u_0 G * \xi + u_1 G * (\xi (G * \xi)) + \tilde{R}.$$

Generalised Taylor expansion

Consider just PAM

$$(\partial_t - \Delta) u = u \xi \iff u = G * (u \xi) + ext{ init. cond.}$$

We make an ansatz: around 0

$$u=u_0+u_1G*\xi+R.$$

Substituting this back into the equation

$$u = u_0 G * \xi + u_1 G * (\xi(G * \xi)) + \tilde{R}.$$

Idea: View *u* as a function of $(\xi, \xi(G * \xi))$.

Identical to the idea in rough paths to consider iterated integrals.

Extra terms

Hence we instead consider as input $(\xi, \xi(G * \xi))$ to solve PAM.

(For gPAM, one also needs the terms $((\partial_i G * \xi)(\partial_j G * \xi))_{i,j=1}^2$.)

→ < Ξ → <</p>

Extra terms

Hence we instead consider as input $(\xi, \xi(G * \xi))$ to solve PAM.

(For gPAM, one also needs the terms $((\partial_i G * \xi)(\partial_j G * \xi))_{i,j=1}^2$.)

For a distribution ξ on $\mathbb{R}_+ \times \mathbb{T}^d$:

- These terms together must satisfy certain algebraic constraints.
- They can be given *extrinsically*.
- For smooth ξ^{ε} , there is a canonical choice for these terms.

Continuity of the solution map

Given such a collection of terms Π = (ξ, ξ(G * ξ),...) (a model), one can build a solution map

 $\mathcal{S}_A: \mathbf{\Pi} \mapsto U$

('A' for 'abstract').

• • E • • E • E

Continuity of the solution map

Given such a collection of terms Π = (ξ, ξ(G * ξ),...) (a model), one can build a solution map

$$\mathcal{S}_A: \mathbf{\Pi} \mapsto U$$

('A' for 'abstract').

U encodes a function which locally looks like terms of **Π** and solves

$$U = G * \sum_{i=0}^{n} F_i(U, \nabla U, \ldots) \Xi_i + \text{ init. cond}$$

Continuity of the solution map

Given such a collection of terms Π = (ξ, ξ(G * ξ),...) (a model), one can build a solution map

$$\mathcal{S}_A: \mathbf{\Pi} \mapsto U$$

('A' for 'abstract').

U encodes a function which locally looks like terms of **Π** and solves

$$U = G * \sum_{i=0}^{n} F_i(U, \nabla U, \ldots) \Xi_i + \text{ init. cond.}$$

• One then applies a "reconstruction" map

$$\mathcal{R}: U \mapsto u \in \mathcal{S}'(\mathbb{R}_+ \times \mathbb{T}^d).$$

Continuity of the solution map

• The abstract solution and reconstruction maps are continuous.

• = • • = •

ъ

Continuity of the solution map

- The abstract solution and reconstruction maps are continuous.
- $\bullet\,$ Moreover, they commute with the "canonical lift" Ψ

$$\Psi: C^{\infty}(\mathbb{R}_+\times\mathbb{T}^d) \ni \xi^{\varepsilon} \mapsto \mathbf{\Pi} = (\xi^{\varepsilon},\xi^{\varepsilon}(G*\xi^{\varepsilon}),\ldots).$$

and the classical solution map $\mathcal{S}_{\mathcal{C}}$

Continuity of the solution map

- The abstract solution and reconstruction maps are continuous.
- $\bullet\,$ Moreover, they commute with the "canonical lift" Ψ

$$\Psi: C^{\infty}(\mathbb{R}_+ \times \mathbb{T}^d) \ni \xi^{\varepsilon} \mapsto \mathbf{\Pi} = (\xi^{\varepsilon}, \xi^{\varepsilon}(G * \xi^{\varepsilon}), \ldots).$$

and the classical solution map $\mathcal{S}_{\mathcal{C}}$

What is *not* continuous is Ψ (and thus S_C).
The above all holds true in one-dimensions (SDEs are not continuous functions of Brownian trajectories)

 \rightarrow advent of rough paths.

(*) *) *) *)

The above all holds true in one-dimensions (SDEs are not continuous functions of Brownian trajectories)

ightarrow advent of rough paths.

What is special about one-dimensions:

∃ ► < ∃ ►</p>

The above all holds true in one-dimensions (SDEs are not continuous functions of Brownian trajectories)

ightarrow advent of rough paths.

What is special about one-dimensions:

• Let $\xi^{\varepsilon} \in C^{\infty}([0, T], \mathbb{R}^n)$ be a mollification of white noise.

The above all holds true in one-dimensions (SDEs are not continuous functions of Brownian trajectories)

ightarrow advent of rough paths.

What is special about one-dimensions:

- Let $\xi^{\varepsilon} \in C^{\infty}([0,T],\mathbb{R}^n)$ be a mollification of white noise.
- As $\varepsilon \to 0$, we have convergence a.s.

$$\Psi(\xi^{\varepsilon}) = \mathbf{\Pi} = (\xi^{\varepsilon}, \xi^{\varepsilon}(G * \xi^{\varepsilon})) \to \left(\xi, \int_{0}^{\cdot} \xi(t) dt \circ \xi(\cdot)\right)$$

(*G* is Green's function of ∂_t).

The above all holds true in one-dimensions (SDEs are not continuous functions of Brownian trajectories)

ightarrow advent of rough paths.

What is special about one-dimensions:

- Let $\xi^{\varepsilon} \in C^{\infty}([0,T],\mathbb{R}^n)$ be a mollification of white noise.
- As $\varepsilon \to 0$, we have convergence a.s.

$$\Psi(\xi^{\varepsilon}) = \mathbf{\Pi} = (\xi^{\varepsilon}, \xi^{\varepsilon}(G * \xi^{\varepsilon})) \to \left(\xi, \int_{0}^{\cdot} \xi(t) dt \circ \xi(\cdot)\right)$$

(*G* is Green's function of ∂_t).

• Therefore $u^{\varepsilon} \rightarrow u$ a.s. where u solves an SDE.

Multi-dimensional case

In higher dimensions, this typically fails!

Example

For ξ^{ε} mollification of white noise on \mathbb{T}^2 and generic $\psi \in C^{\infty}(\mathbb{T}^2)$,

$$|\langle \xi^{\varepsilon}({\mathcal G} * \xi^{\varepsilon}), \psi \rangle| o \infty$$
 a.s.

.⊒ ▶ ∢

Multi-dimensional case

In higher dimensions, this typically fails!

Example

For ξ^{ε} mollification of white noise on \mathbb{T}^2 and generic $\psi \in C^{\infty}(\mathbb{T}^2)$,

$$|\langle \xi^{arepsilon}({\sf G}*\xi^{arepsilon}),\psi
angle|
ightarrow\infty$$
 a.s.

As a consequence, we have divergence (as distributions) of solutions to PAM

$$(\partial_t - \Delta)u^{\varepsilon} = u^{\varepsilon}\xi^{\varepsilon}.$$

Renormalisation

Remark

Replacing
$$\xi^{\varepsilon}(G * \xi^{\varepsilon})$$
 by $\xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon}$,

$$C_{\varepsilon} := \mathbb{E}\left[\xi^{\varepsilon}(G * \xi^{\varepsilon})(0)\right],$$

it holds that for all $\psi\in \mathcal{C}^\infty(\mathbb{T}^2)$

$$\langle \xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon}, \psi \rangle \rightarrow \langle \xi(G * \xi), \psi \rangle$$

in probability (where the RHS is now a definition).

伺 ト イヨ ト イヨト

Renormalisation

Remark

Replacing
$$\xi^{\varepsilon}(G * \xi^{\varepsilon})$$
 by $\xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon}$,

$$C_{\varepsilon} := \mathbb{E}\left[\xi^{\varepsilon}(G * \xi^{\varepsilon})(0)\right],$$

it holds that for all
$$\psi\in \mathcal{C}^\infty(\mathbb{T}^2)$$

$$\langle \xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon}, \psi \rangle \rightarrow \langle \xi(G * \xi), \psi \rangle$$

in probability (where the RHS is now a definition).

In fact, we have convergence in a space of models

$$\hat{\boldsymbol{\mathsf{\Pi}}}^{arepsilon} = (\xi^{arepsilon},\xi^{arepsilon}(\mathsf{G}*\xi^{arepsilon})-\mathsf{C}_{arepsilon}) o \boldsymbol{\mathsf{\Pi}} = (\xi,\xi(\mathsf{G}*\xi)).$$

Renormalised equations

Recall that a model can be used as input to drive a PDE.

Question

What does it mean to drive the PDE

$$(\partial_t - \Delta)u = u\xi$$

with the couple $(\xi^{\varepsilon},\xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon})$?

A B + A B +

Renormalised equations

Recall that a model can be used as input to drive a PDE.

Question

What does it mean to drive the PDE

$$(\partial_t - \Delta)u = u\xi^{n}$$

with the couple $(\xi^{\varepsilon},\xi^{\varepsilon}(G * \xi^{\varepsilon}) - C_{\varepsilon})$?

Claim: this amounts to solving the classical PDE

$$(\partial_t - \Delta)u^{\varepsilon} = u^{\varepsilon}(\xi^{\varepsilon} - C_{\varepsilon}).$$

I = I → I

Recall the ansatz

$$u^{\varepsilon} = u_0 + u_1 G * \xi^{\varepsilon} + R.$$

Substitution into $u = G * (u\xi)$ yields

$$u^{\varepsilon} = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}.$$

★ ∃ →

Recall the ansatz

$$u^{\varepsilon} = u_0 + u_1 G * \xi^{\varepsilon} + R.$$

Substitution into $u = G * (u\xi)$ yields

$$u^{\varepsilon} = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}.$$

But now $\xi^{\varepsilon}(G * \xi^{\varepsilon}) \rightarrow \xi^{\varepsilon}(G * \xi^{\varepsilon}) - C$:

• • = • • = •

Recall the ansatz

$$u^{\varepsilon} = u_0 + u_1 G * \xi^{\varepsilon} + R.$$

Substitution into $u = G * (u\xi)$ yields

$$u^{\varepsilon} = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}.$$

But now $\xi^{\varepsilon}(G * \xi^{\varepsilon}) \rightarrow \xi^{\varepsilon}(G * \xi^{\varepsilon}) - C$:

$$u = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon}) - C) + \tilde{R}$$

= $u_0 G * (\xi^{\varepsilon} - C) + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}$ (using $u_0 = u_1$)
= $G * (u^{\varepsilon} (\xi^{\varepsilon} - C))$ (using $u \approx u_0$)

御 と く ヨ と く ヨ と

Recall the ansatz

$$u^{\varepsilon} = u_0 + u_1 G * \xi^{\varepsilon} + R.$$

Substitution into $u = G * (u\xi)$ yields

$$u^{\varepsilon} = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}.$$

But now $\xi^{\varepsilon}(G * \xi^{\varepsilon}) \rightarrow \xi^{\varepsilon}(G * \xi^{\varepsilon}) - C$:

$$u = u_0 G * \xi^{\varepsilon} + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon}) - C) + \tilde{R}$$

= $u_0 G * (\xi^{\varepsilon} - C) + u_1 G * (\xi^{\varepsilon} (G * \xi^{\varepsilon})) + \tilde{R}$ (using $u_0 = u_1$)
= $G * (u^{\varepsilon} (\xi^{\varepsilon} - C))$ (using $u \approx u_0$)

The usual Itô-Stratonovich correction appears for identical reasons.

A general approach

We aim to give a general description of this phenomenon.

Three earlier works are very important

- Bruned-Hairer-Zambotti 2016 (algebraic)
- Chandra-Hairer 2016 (analytic/stochastic)
- Hairer 2014 (core theory)

A general approach

The general theory can be summarised as follows.

∃ ▶ ∢

Consider the equation

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i.$$

For every rooted decorated tree we recursively use $(F_i)_{i=0}^n$ to construct a function of the jet of u.

Every rooted decorated tree can be uniquely written as either

$$\Xi_j X^p$$
, (no edges)

or

$$\Xi_j X^p \mathcal{I}_{p_1}[\tau_1] \dots \mathcal{I}_{p_k}[\tau_k], \quad (k \text{ edges at the root})$$

∃ → < ∃</p>

Every rooted decorated tree can be uniquely written as either

$$\Xi_j X^p$$
, (no edges)

or

$$\Xi_j X^p \mathcal{I}_{p_1}[\tau_1] \dots \mathcal{I}_{p_k}[\tau_k], \quad (k \text{ edges at the root})$$

where

- Ξ_j is a noise term, $j \in \{0, \ldots, n\}$
- X^p is a polynomial term $p \in \mathbb{N}^{d+1}$
- \mathcal{I}_{p_i} is a convolution with $\partial_{p_i} G$, $p_i \in \mathbb{N}^{d+1}$
- τ_i is another rooted tree.

→ Ξ →

We view each non-linearity F (function of the jet of u) as an element of $C^{\infty}(\mathbb{R}^{\mathbb{N}^{d+1}},\mathbb{R})$.

• • = • • = •

ъ

We view each non-linearity F (function of the jet of u) as an element of $C^{\infty}(\mathbb{R}^{\mathbb{N}^{d+1}},\mathbb{R})$.

We define two differential-type operators on F:

• For
$$p \in \mathbb{N}^{d+1}$$

D_pF

is the derivative w.r.t the coordinate *p*;

We view each non-linearity F (function of the jet of u) as an element of $C^{\infty}(\mathbb{R}^{\mathbb{N}^{d+1}},\mathbb{R})$.

We define two differential-type operators on F:

• For $p \in \mathbb{N}^{d+1}$

D_pF

is the derivative w.r.t the coordinate p;

• For $j \in \{0, \dots, d\}$

$$\partial^{j}F = \sum_{p \in \mathbb{N}^{d+1}} Y_{p+j}D_{p}F$$

where Y_{p+j} is multiplication by the coordinate $(p+j) \in \mathbb{N}^{d+1}$.

• For the base case
$$au = \Xi_j X^p$$
 (no edges)

$$F^{\tau} := \partial^{p} F_{j}$$

 $(\partial^p \text{ for } p \in \mathbb{N}^{d+1} \text{ defined via composition}).$

> < 볼 > <</p>

• For the base case
$$\tau = \Xi_j X^p$$
 (no edges)

$$F^{\tau} := \partial^{p} F_{j}$$

 $(\partial^p \text{ for } p \in \mathbb{N}^{d+1} \text{ defined via composition}).$

• Then inductively for every other tree

$$\tau = \Xi_j X^p \mathcal{I}_{p_1}[\tau_1] \dots \mathcal{I}_{p_k}[\tau_k],$$
$$F^{\tau} := (\text{comb. factor}) \left(\prod_{i=1}^k F^{\tau_i}\right) \partial^p \left(\prod_{i=1}^k D_{p_i}\right) F_j.$$

∃ ▶ ∢

Final ingredient: every tree τ comes with a degree $|\tau|$ defined inductively in terms of

- Regularising effect of the Green's function G.
- Regularity of the noises $(\xi_i)_{i=0}^n$.

Final ingredient: every tree τ comes with a degree $|\tau|$ defined inductively in terms of

- Regularising effect of the Green's function G.
- Regularity of the noises $(\xi_i)_{i=0}^n$.

Equation is subcritical \leftrightarrow finitely many trees below any degree.

Theorem (Renormalised SPDEs)

Consider a subcritical SPDE on $\mathbb{R}_+ \times \mathbb{T}^d$

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i.$$

Suppose that $(\xi_i)_{i=0}^n$ are "sufficiently nice" stationary noises and $(\xi_i^{\varepsilon})_{i=0}^n$ are mollifications.

Theorem (Renormalised SPDEs)

Consider a subcritical SPDE on $\mathbb{R}_+ imes \mathbb{T}^d$

$$(\partial_t - \mathcal{L})u = \sum_{i=0}^n F_i(u, \nabla u, \ldots)\xi_i.$$

Suppose that $(\xi_i)_{i=0}^n$ are "sufficiently nice" stationary noises and $(\xi_i^{\varepsilon})_{i=0}^n$ are mollifications. Then there exists a family of constants

$$\{C_{\tau,\varepsilon}\in\mathbb{R}\mid |\tau|<0,\varepsilon>0\}$$

such that

Theorem (Renormalised SPDEs)

the solutions to the classical PDE

$$(\partial_t - \mathcal{L})u^{\varepsilon} = \sum_{i=0}^n F_i(u^{\varepsilon}, \nabla u^{\varepsilon}, \ldots)\xi_i^{\varepsilon} + \sum_{|\tau| < 0} C_{\tau,\varepsilon}F^{\tau}(u^{\varepsilon}, \nabla u^{\varepsilon}, \ldots),$$

 $u^{\varepsilon}(0, \cdot) = u_0 \in C^{\alpha}(\mathbb{T}^d),$

converges in probability to a locally defined distribution on $\mathbb{R}_+ \times \mathbb{T}^d$ (blow-up is possible) and the limit is a continuous function of u_0 .

Theorem (Renormalised SPDEs)

the solutions to the classical PDE

$$(\partial_t - \mathcal{L})u^{\varepsilon} = \sum_{i=0}^n F_i(u^{\varepsilon}, \nabla u^{\varepsilon}, \ldots)\xi_i^{\varepsilon} + \sum_{|\tau| < 0} C_{\tau,\varepsilon}F^{\tau}(u^{\varepsilon}, \nabla u^{\varepsilon}, \ldots),$$

 $u^{\varepsilon}(0, \cdot) = u_0 \in C^{\alpha}(\mathbb{T}^d),$

converges in probability to a locally defined distribution on $\mathbb{R}_+ \times \mathbb{T}^d$ (blow-up is possible) and the limit is a continuous function of u_0 .

Remarks

- The constants $C_{\tau,\varepsilon}$ are *not* unique; a possible choice is given by the BPHZ renormalisation of [BHZ16].
- The limit is used to define a solution of the original SPDE.

Example (gPAM)

Recall gPAM on $\mathbb{R}_+\times\mathbb{T}^2\colon$

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi$$

Example (gPAM)

Recall gPAM on $\mathbb{R}_+\times\mathbb{T}^2\colon$

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi.$$

• There are two noises $\{\Xi_0, \Xi\}$ $(\Xi_0 \equiv 1$ is the "constant noise").

Example (gPAM)

Recall gPAM on $\mathbb{R}_+ \times \mathbb{T}^2$:

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi.$$

- There are two noises $\{ \Xi_0, \Xi \}$ $(\Xi_0 \equiv 1$ is the "constant noise").
- Degrees determined by $|\Xi_0| = 0$, $|\Xi| = -1 \kappa$, $|\mathcal{I}| = 2$.

Example (gPAM)

Recall gPAM on $\mathbb{R}_+\times\mathbb{T}^2\colon$

$$(\partial_t - \Delta)u = \sum_{i,j=1}^2 f_{i,j}(u)\partial_i u\partial_j u + g(u)\xi.$$

- There are two noises $\{\Xi_0, \Xi\}$ $(\Xi_0 \equiv 1$ is the "constant noise").
- Degrees determined by $|\Xi_0| = 0$, $|\Xi| = -1 \kappa$, $|\mathcal{I}| = 2$.
- There are two trees of negative degree (which need renormalisation)

$$\tau = \Xi \mathcal{I}[\Xi], \qquad |\tau| = -2\kappa,$$

$$\sigma_{i,j} = \Xi_0 \mathcal{I}_i[\Xi] \mathcal{I}_j[\Xi], \qquad |\sigma_{i,j}| = -2\kappa.$$

Example (gPAM)

The counterterms:

$$F^{\tau} = g(u)g'(u),$$

$$F^{\sigma_{i,j}} = g(u)^2 f_{i,j}(u)$$

llya Chevyrev Renormalisation of SPDEs

▲□▶ ▲ 国▶ ▲ 国▶

三日 のへの
Example

Example (gPAM)

The counterterms:

$$F^{\tau} = g(u)g'(u),$$

$$F^{\sigma_{i,j}} = g(u)^2 f_{i,j}(u)$$

The renormalised SPDE takes the form

$$\begin{aligned} (\partial_t - \Delta) u^{\varepsilon} &= \sum_{i,j=1}^2 f_{i,j}(u^{\varepsilon}) \partial_i u^{\varepsilon} \partial_j u^{\varepsilon} + g(u^{\varepsilon}) \xi^{\varepsilon} \\ &+ C_{\varepsilon} g(u^{\varepsilon}) g'(u^{\varepsilon}) + \sum_{i,j=1}^2 C_{\varepsilon}^{i,j} g(u^{\varepsilon})^2 f_{i,j}(u^{\varepsilon}) \end{aligned}$$

(日) (日) (日)

3 5

Thank you!

(日) (四) (종) (종) (종) (종)

References |

- Y. Bruned, M. Hairer, and L. Zambotti. "Algebraic renormalisation of regularity structures". *ArXiv e-prints* (Oct. 2016).
- Y. Bruned, A. Chandra, I. Chevyrev, and M. Hairer. *Renormalizing SPDEs in regularity structures*. In preparation.

- A. Chandra and M. Hairer. "An analytic BPHZ theorem for regularity structures". ArXiv e-prints (Dec. 2016).
- M. Hairer. "A theory of regularity structures". Invent. Math. 198.2 (2014), pp. 269-504.

▲冊▶ ▲目▶ ▲目▶ 目目 のQ@