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Stochastic PDEs

We consider stochastic PDEs/Cauchy problems of the form

(∂t − L)u =
n∑

i=0

Fi (u,∇u, . . .)ξi ,

where

u : R+ × Td → R is a periodic function/distribution;

L is an elliptic di�erential operator;

ξi are �su�ciently nice� noises;

Fi (u,∇u, . . .) is a smooth function of the jet of u.
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Examples

Dynamical Φ4
3 model:

(∂t −∆)u = u3 + ξ,

where u : R+ × T3 → R and ξ is space-time white noise.

Generalised parabolic Anderson model (gPAM):

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ,

where u : R+ × T2 → R and ξ is space white noise.

We allow d = 0! SDEs/rough paths:

∂tu =
n∑

i=0

Fi (u)ξi ,

where u : R+ → R and (ξ)ni=0 are (time) white noises.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Examples

Dynamical Φ4
3 model:

(∂t −∆)u = u3 + ξ,

where u : R+ × T3 → R and ξ is space-time white noise.

Generalised parabolic Anderson model (gPAM):

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ,

where u : R+ × T2 → R and ξ is space white noise.

We allow d = 0! SDEs/rough paths:

∂tu =
n∑

i=0

Fi (u)ξi ,

where u : R+ → R and (ξ)ni=0 are (time) white noises.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Examples

Dynamical Φ4
3 model:

(∂t −∆)u = u3 + ξ,

where u : R+ × T3 → R and ξ is space-time white noise.

Generalised parabolic Anderson model (gPAM):

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ,

where u : R+ × T2 → R and ξ is space white noise.

We allow d = 0! SDEs/rough paths:

∂tu =
n∑

i=0

Fi (u)ξi ,

where u : R+ → R and (ξ)ni=0 are (time) white noises.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Examples

Dynamical Φ4
3 model:

(∂t −∆)u = u3 + ξ,

where u : R+ × T3 → R and ξ is space-time white noise.

Generalised parabolic Anderson model (gPAM):

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ,

where u : R+ × T2 → R and ξ is space white noise.

We allow d = 0! SDEs/rough paths:

∂tu =
n∑

i=0

Fi (u)ξi ,

where u : R+ → R and (ξ)ni=0 are (time) white noises.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Stability in the limit

What we want: a deterministic theory which takes as input ξε and
outputs the solution to

(∂t − L)uε =
n∑

i=0

Fi (u
ε,∇uε)ξε

as a continuous function of ξε.

Then we send ξε → ξ as distributions (e.g., molli�er
approximations) and conclude uε → u.

We want to do this in spaces where the noises a.s. take values.
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Singular equations

Main di�culty: these equations can be singular.

Example (gPAM)

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ,

ξ is space white noise ⇒ ξ ∈ C−1−κ(R+ × T2).

Schauder estimates ⇒ u is at best in C 1−κ(R+ × T2).

Moreover ∂iu is at best in C−κ(R+ × T2).

Such equations appear in mathematical physics.

Scaling limits of statistical models (KPZ, PAM, Φ4
3).

Quantization of euclidean quantum �eld theories (Φ4
3, Φp

2 ,
Yang-Mills, sine-Gordon).
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Stability in the limit

In fact, stability is impossible even for SDEs.

Theorem (Lyons `91)

There does not exist a Banach space E ⊂ C ([0, 1],R2) such that

E contains all smooth paths,

E contains a.e. sample path of Brownian motion,

the quadratic map

C∞([0, 1],R2) 3 (W1,W2) 7→
∫ 1

0

∫ t

0
dW1(s)dW2(t)dt

extends continuously to all of E .
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Hope!

Not all is lost: the above equations are also sub-critical.

Example (gPAM)

On small scales ξ̃(t, x) = εξ(ε2t, εx) ∼ ξ, ũ(t, x) = ε−1u(ε2t, εx)

(∂t −∆)ũ = ε
2∑

i ,j=1

fi ,j(εũ)∂i ũ∂j ũ + g(εũ)ξ̃.

The non-linearities disappear in the formal limit ε→ 0.

⇒ u locally looks like the SHE G ∗ ξ (G the Green's function).

In QFT, this corresponds to super-renormalisable theories.
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Generalised Taylor expansion

Consider just PAM

(∂t −∆)u = uξ ⇔ u = G ∗ (uξ) + init. cond.

We make an ansatz: around 0

u = u0 + u1G ∗ ξ + R.

Substituting this back into the equation

u = u0G ∗ ξ + u1G ∗ (ξ(G ∗ ξ)) + R̃.

Idea: View u as a function of (ξ, ξ(G ∗ ξ)).

Identical to the idea in rough paths to consider iterated integrals.
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Extra terms

Hence we instead consider as input (ξ, ξ(G ∗ ξ)) to solve PAM.

(For gPAM, one also needs the terms ((∂iG ∗ ξ)(∂jG ∗ ξ))2i ,j=1.)

For a distribution ξ on R+ × Td :

These terms together must satisfy certain algebraic constraints.

They can be given extrinsically.

For smooth ξε, there is a canonical choice for these terms.
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Continuity of the solution map

Given such a collection of terms Π = (ξ, ξ(G ∗ ξ), . . .) (a
model), one can build a solution map

SA : Π 7→ U

(`A' for `abstract').

U encodes a function which locally looks like terms of Π and
solves

U = G ∗
n∑

i=0

Fi (U,∇U, . . .)Ξi + init. cond.

One then applies a �reconstruction� map

R : U 7→ u ∈ S ′(R+ × Td).
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Continuity of the solution map

The abstract solution and reconstruction maps are continuous.

Moreover, they commute with the �canonical lift� Ψ

Ψ : C∞(R+ × Td) 3 ξε 7→ Π = (ξε, ξε(G ∗ ξε), . . .).

and the classical solution map SC

Π U

ξε u

RΨ

SA

SC

What is not continuous is Ψ (and thus SC ).
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One-dimensional case

The above all holds true in one-dimensions (SDEs are not
continuous functions of Brownian trajectories)

→ advent of rough paths.

What is special about one-dimensions:

Let ξε ∈ C∞([0,T ],Rn) be a molli�cation of white noise.

As ε→ 0, we have convergence a.s.

Ψ(ξε) = Π = (ξε, ξε(G ∗ ξε))→
(
ξ,

∫ ·
0
ξ(t)dt ◦ ξ(·)

)
(G is Green's function of ∂t).

Therefore uε → u a.s. where u solves an SDE.
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Multi-dimensional case

In higher dimensions, this typically fails!

Example

For ξε molli�cation of white noise on T2 and generic ψ ∈ C∞(T2),

|〈ξε(G ∗ ξε), ψ〉| → ∞ a.s.

As a consequence, we have divergence (as distributions) of
solutions to PAM

(∂t −∆)uε = uεξε.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Multi-dimensional case

In higher dimensions, this typically fails!

Example

For ξε molli�cation of white noise on T2 and generic ψ ∈ C∞(T2),

|〈ξε(G ∗ ξε), ψ〉| → ∞ a.s.

As a consequence, we have divergence (as distributions) of
solutions to PAM

(∂t −∆)uε = uεξε.

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Renormalisation

Remark

Replacing ξε(G ∗ ξε) by ξε(G ∗ ξε)− Cε,

Cε := E [ξε(G ∗ ξε)(0)] ,

it holds that for all ψ ∈ C∞(T2)

〈ξε(G ∗ ξε)− Cε, ψ〉 → 〈ξ(G ∗ ξ), ψ〉

in probability (where the RHS is now a de�nition).

In fact, we have convergence in a space of models

Π̂
ε

= (ξε, ξε(G ∗ ξε)− Cε)→ Π = (ξ, ξ(G ∗ ξ)).
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= (ξε, ξε(G ∗ ξε)− Cε)→ Π = (ξ, ξ(G ∗ ξ)).
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Renormalisation of SPDEs

Renormalised equations

Recall that a model can be used as input to drive a PDE.

Question

What does it mean to drive the PDE

“(∂t −∆)u = uξ”

with the couple (ξε, ξε(G ∗ ξε)− Cε)?

Claim: this amounts to solving the classical PDE

(∂t −∆)uε = uε(ξε − Cε).
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A renormalised equation

Recall the ansatz

uε = u0 + u1G ∗ ξε + R.

Substitution into u = G ∗ (uξ) yields

uε = u0G ∗ ξε + u1G ∗ (ξε(G ∗ ξε)) + R̃.

But now ξε(G ∗ ξε)→ ξε(G ∗ ξε)− C :

u = u0G ∗ ξε + u1G ∗ (ξε(G ∗ ξε)− C ) + R̃

= u0G ∗ (ξε − C ) + u1G ∗ (ξε(G ∗ ξε)) + R̃ (using u0 = u1)

= G ∗ (uε(ξε − C )) (using u ≈ u0)

The usual Itô�Stratonovich correction appears for identical reasons.
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A general approach

We aim to give a general description of this phenomenon.

Three earlier works are very important

Bruned�Hairer-Zambotti 2016 (algebraic)

Chandra�Hairer 2016 (analytic/stochastic)

Hairer 2014 (core theory)
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A general approach

The general theory can be summarised as follows.

Eq

[BHZ16]

M

Mε

× Dγ

Eq

Mε

[BCCH]

× C Cα(R+ × Td)

RΨ [CH16]

SA
[Hai14]

SC

Ilya Chevyrev Renormalisation of SPDEs



Introduction
Renormalisation of SPDEs

Non-linearities and trees

Consider the equation

(∂t − L)u =
n∑

i=0

Fi (u,∇u, . . .)ξi .

For every rooted decorated tree we recursively use (Fi )
n
i=0 to

construct a function of the jet of u.
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Non-linearities and trees

Every rooted decorated tree can be uniquely written as either

ΞjX
p, (no edges)

or
ΞjX

pIp1 [τ1] . . . Ipk [τk ], (k edges at the root)

where

Ξj is a noise term, j ∈ {0, . . . , n}
X p is a polynomial term p ∈ Nd+1

Ipi is a convolution with ∂piG , pi ∈ Nd+1

τi is another rooted tree.
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Non-linearities and trees

We view each non-linearity F (function of the jet of u) as an

element of C∞(RNd+1
,R).

We de�ne two di�erential-type operators on F :

For p ∈ Nd+1

DpF

is the derivative w.r.t the coordinate p;

For j ∈ {0, . . . , d}

∂jF =
∑

p∈Nd+1

Yp+jDpF

where Yp+j is multiplication by the coordinate (p + j) ∈ Nd+1.
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Non-linearities and trees

For the base case τ = ΞjX
p (no edges)

F τ := ∂pFj

(∂p for p ∈ Nd+1 de�ned via composition).

Then inductively for every other tree

τ = ΞjX
pIp1 [τ1] . . . Ipk [τk ],

F τ := (comb. factor)

(
k∏

i=1

F τi

)
∂p

(
k∏

i=1

Dpi

)
Fj .
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Non-linearities and trees

Final ingredient: every tree τ comes with a degree |τ | de�ned
inductively in terms of

Regularising e�ect of the Green's function G .

Regularity of the noises (ξi )
n
i=0.

Equation is subcritical ↔ �nitely many trees below any degree.
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Black-box convergence theorem

Theorem (Renormalised SPDEs)

Consider a subcritical SPDE on R+ × Td

(∂t − L)u =
n∑

i=0

Fi (u,∇u, . . .)ξi .

Suppose that (ξi )
n
i=0 are �su�ciently nice� stationary noises and

(ξεi )ni=0 are molli�cations.

Then there exists a family of constants

{Cτ,ε ∈ R | |τ | < 0, ε > 0}

such that
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Black-box convergence theorem

Theorem (Renormalised SPDEs)

the solutions to the classical PDE

(∂t − L)uε =
n∑

i=0

Fi (u
ε,∇uε, . . .)ξεi +

∑
|τ |<0

Cτ,εF
τ (uε,∇uε, . . .),

uε(0, ·) = u0 ∈ Cα(Td),

converges in probability to a locally de�ned distribution on R+×Td

(blow-up is possible) and the limit is a continuous function of u0.

Remarks

The constants Cτ,ε are not unique; a possible choice is given
by the BPHZ renormalisation of [BHZ16].

The limit is used to de�ne a solution of the original SPDE.
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Example

Example (gPAM)

Recall gPAM on R+ × T2:

(∂t −∆)u =
2∑

i ,j=1

fi ,j(u)∂iu∂ju + g(u)ξ.

There are two noises {Ξ0,Ξ} (Ξ0 ≡ 1 is the �constant noise�).

Degrees determined by |Ξ0| = 0, |Ξ| = −1− κ, |I| = 2.

There are two trees of negative degree (which need
renormalisation)

τ = ΞI[Ξ],

σi ,j = Ξ0Ii [Ξ]Ij [Ξ],

|τ | = −2κ,
|σi ,j | = −2κ.
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Example

Example (gPAM)

The counterterms:

F τ = g(u)g ′(u),

F σi,j = g(u)2fi ,j(u).

The renormalised SPDE takes the form

(∂t −∆)uε =
2∑

i ,j=1

fi ,j(u
ε)∂iu

ε∂ju
ε + g(uε)ξε

+ Cεg(uε)g ′(uε) +
2∑

i ,j=1

C i ,j
ε g(uε)2fi ,j(u

ε).
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