The KPZ Equation and its space-time discretization

Giuseppe Cannizzaro joint project with K. Matetski

University of Warwick
Durham Symposium, Stochastic Analysis

$$
\text { July 15, } 2017
$$

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\left(\partial_{t}-\Delta\right) h=\left(\partial_{x} h\right)^{2}+\xi \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\left(\partial_{t}-\Delta\right) h=\left(\partial_{x} h\right)^{2}+\underset{\substack{\frac{3}{2}^{-}}}{\xi} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{aligned}
& \left(\partial_{t}-\Delta\right) h \\
& \quad+2
\end{aligned}=\left(\partial_{x} h\right)^{2}+\underset{-\frac{3}{2}^{-}}{\xi} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{array}{cccc}
\left(\partial_{t}-\Delta\right) h & = & \left(\partial_{x} h\right)^{2} & + \\
+2 & ? & { }_{-\frac{3}{2}^{-}}
\end{array} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{array}{cccc}
\left(\partial_{t}-\Delta\right) h & = & \left(\partial_{x} h\right)^{2} & + \\
+2 & ? & { }_{-\frac{3}{2}^{-}}
\end{array} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

■ The Cole-Hopf transform, $h=\log w$ where w solves (SHE) (Bertini-Giacomin 1997)

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{gathered}
\left(\partial_{t}-\Delta\right) h= \\
+2
\end{gathered} \underset{+2}{\left(\partial_{x} h\right)^{2}}+\underset{-\frac{3}{2}^{-}}{\xi} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

- The Cole-Hopf transform, $h=\log w$ where w solves (SHE) (Bertini-Giacomin 1997)

■ Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{gathered}
\left(\partial_{t}-\Delta\right) h \\
+2
\end{gathered} \underset{+2}{\left(\partial_{x} h\right)^{2}}+\underset{-\frac{3^{-}}{2}}{\xi} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

- The Cole-Hopf transform, $h=\log w$ where w solves (SHE) (Bertini-Giacomin 1997)

■ Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)

- Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$
\begin{gathered}
\left(\partial_{t}-\Delta\right) h \\
+2
\end{gathered} \underset{+2}{\left(\partial_{x} h\right)^{2}}+\underset{-\frac{3}{2}}{\xi} \quad \underset{-}{\xi} \quad, \quad h(0, \cdot)=h_{0}(\cdot)
$$

where $h=h(t, x)$ is our stochastically growing height function, h_{0} the initial condition and ξ is space-time white noise.

■ The Cole-Hopf transform, $h=\log w$ where w solves (SHE) (Bertini-Giacomin 1997)

■ Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)

■ Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

Set $u \xlongequal{\text { def }} \partial_{x} h$, then u solves the Stochastic Burgers Equation (SBE)

$$
\left(\partial_{t}-\Delta\right) u=\partial_{x} u^{2}+\partial_{x} \xi \quad, \quad u(0, \cdot)=u_{0}(\cdot)
$$

Space-Time Discretization

Let $\varepsilon>0, \Lambda_{\varepsilon^{2}, T} \xlongequal{\text { def }} \varepsilon^{2} \mathbb{Z} \cap(0, T]$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$
\left(\bar{D}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

for $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$, where $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3}

Space-Time Discretization

Let $\varepsilon>0, \Lambda_{\varepsilon^{2}, T} \xlongequal{\text { def }} \varepsilon^{2} \mathbb{Z} \cap(0, T]$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$
\left(\bar{D}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

for $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$, where $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

where μ is a symmetric measure supported on the integers.

Space-Time Discretization

Let $\varepsilon>0, \Lambda_{\varepsilon^{2}, T} \xlongequal{\text { def }} \varepsilon^{2} \mathbb{Z} \cap(0, T]$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$
\left(\bar{D}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

for $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$, where $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

where μ is a symmetric measure supported on the integers.

- $\mu=\delta_{(0,0)}$, the usual pointwise product

Space-Time Discretization

Let $\varepsilon>0, \Lambda_{\varepsilon^{2}, T} \xlongequal{\text { def }} \varepsilon^{2} \mathbb{Z} \cap(0, T]$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$
\left(\bar{D}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

for $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$, where $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

where μ is a symmetric measure supported on the integers.

- $\mu=\delta_{(0,0)}$, the usual pointwise product
- $\mu=\frac{1}{3}\left(\delta_{(0,0)}+\frac{1}{2} \delta_{(0,1)}+\frac{1}{2} \delta_{(1,0)}+\delta_{(1,1)}\right)$, Zabusky/Sasamoto-Spohn

Space-Time Discretization

Let $\varepsilon>0, \Lambda_{\varepsilon^{2}, T} \xlongequal{\text { def }} \varepsilon^{2} \mathbb{Z} \cap(0, T]$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$
\left(\overline{(}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

for $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$, where $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

where μ is a symmetric measure supported on the integers.

- $\mu=\delta_{(0,0)}$, the usual pointwise product
- $\mu=\frac{1}{3}\left(\delta_{(0,0)}+\frac{1}{2} \delta_{(0,1)}+\frac{1}{2} \delta_{(1,0)}+\delta_{(1,1)}\right)$, Zabusky/Sasamoto-Spohn

AIM: Show that, in a suitable sense, $u^{\varepsilon} \longrightarrow u$ as $\varepsilon \rightarrow 0$.

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
\left(\partial_{t}-\Delta\right) u=\partial_{x} u^{2}+\partial_{x} \xi, \quad u(0, \cdot)=u_{0}(\cdot)
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
\left(\partial_{t}-\Delta\right) u=\partial_{x} u^{2}+\partial_{x} \xi, \quad u(0, \cdot)=u_{0}(\cdot)
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise

- Infer a suitable family of processes depending on ξ, that we will denote by \mathbb{X}

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
\left(\partial_{t}-\Delta\right) u=\partial_{x} u^{2}+\partial_{x} \xi, \quad u(0, \cdot)=u_{0}(\cdot)
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise

- Infer a suitable family of processes depending on ξ, that we will denote by \mathbb{X}

■ Make sense of the ill-posed operations \longrightarrow Regularity Structures

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
\left(\partial_{t}-\Delta\right) u=\partial_{x} u^{2}+\partial_{x} \xi, \quad u(0, \cdot)=u_{0}(\cdot)
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise

- Infer a suitable family of processes depending on ξ, that we will denote by \mathbb{X}
- Make sense of the ill-posed operations \longrightarrow Regularity Structures

■ Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
u_{\varepsilon}=P_{t} u_{0}+P^{\prime} *\left(u_{\varepsilon}^{2}\right)+P^{\prime} * \xi_{\varepsilon}
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise,$\xi_{\varepsilon} \stackrel{\text { def }}{=} \xi * \varrho_{\varepsilon}$, ϱ_{ε} a smooth mollifier, P is the heat kernel, $P^{\prime} \xlongequal{\text { def }} \partial_{x} P$

- Infer a suitable family of processes depending on ξ, that we will denote by \mathbb{X}

■ Make sense of the ill-posed operations \longrightarrow Regularity Structures
■ Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally $u \stackrel{\text { def }}{=} \partial_{x} h$ satisfies

$$
u_{\varepsilon}=P_{t} u_{0}+P^{\prime} *\left(u_{\varepsilon}^{2}\right)+X_{\varepsilon}^{\bullet}
$$

on $[0, T] \times \mathbb{T}$, where u_{0} is the initial condition, ξ a space-time white noise,$\xi_{\varepsilon} \stackrel{\text { def }}{=} \xi * \varrho_{\varepsilon}$, ϱ_{ε} a smooth mollifier, P is the heat kernel, $P^{\prime} \stackrel{\text { def }}{=} \partial_{x} P$ and $X_{\varepsilon}^{*} \stackrel{\text { def }}{=} P^{\prime} * \xi_{\varepsilon}$.

- Infer a suitable family of processes depending on ξ, that we will denote by \mathbb{X}

■ Make sense of the ill-posed operations \longrightarrow Regularity Structures
■ Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

The ill-posed product

Expand u_{ε} around $X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\otimes}$:

The ill－posed product

Expand u_{ε} around $X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\ominus}$ ：set $u^{\varepsilon}=X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\ominus}+v_{\varepsilon}$ ．Then v_{ε} solves

$$
v_{\varepsilon}=4 X_{\varepsilon}^{\dot{シ}}+2 P^{\prime} *\left(v_{\varepsilon} X_{\varepsilon}^{\bullet}\right)+P^{\prime} * F_{v_{\varepsilon}}^{\varepsilon}
$$

where $X_{\varepsilon}^{シ} \overbrace{}^{シ} \frac{1}{2}^{-}$and $X^{\bullet} \sim-\frac{1}{2}^{-}$．

The ill-posed product

Expand u_{ε} around $X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\bullet}$: set $u^{\varepsilon}=X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\ominus}+v_{\varepsilon}$. Then v_{ε} solves

$$
v_{\varepsilon}=4 X_{\varepsilon}^{\bullet シ}+2 P^{\prime} *\left(v_{\varepsilon} X_{\varepsilon}^{\bullet}\right)+P^{\prime} * F_{v_{\varepsilon}}^{\varepsilon}
$$

where $X_{\varepsilon}^{シ} \sim \frac{1}{2}^{-}$and $X^{\bullet} \sim-\frac{1}{2}^{-}$.

IDEAS:

- Look for a solution with the following structure

$$
v(\bar{z})=v(z)+v^{\prime}(z)\left(X^{\prime}(\bar{z})-X^{\prime}(z)\right)+R(z, \bar{z})
$$

where $X^{\boldsymbol{*}}=P^{\prime} * X^{*}$ has regularity $\frac{1}{2}^{-}$and R has regularity $>\frac{1}{2}$

The ill-posed product

Expand u_{ε} around $X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\bullet}$: set $u^{\varepsilon}=X_{\varepsilon}^{\bullet}+X_{\varepsilon}^{\bullet}+2 X_{\varepsilon}^{\bullet}+v_{\varepsilon}$. Then v_{ε} solves

$$
v_{\varepsilon}=4 X_{\varepsilon}^{\dot{シ}}+2 P^{\prime} *\left(v_{\varepsilon} X_{\varepsilon}^{\bullet}\right)+P^{\prime} * F_{v_{\varepsilon}}^{\varepsilon}
$$

where $X_{\varepsilon}^{シ} \stackrel{y}{*}_{\frac{1}{2}^{-}}$and $X \sim-\frac{1}{2}^{-}$.

IDEAS:

- Look for a solution with the following structure

$$
v(\bar{z})=v(z)+v^{\prime}(z)\left(X^{\prime}(\bar{z})-X^{\prime}(z)\right)+R(z, \bar{z})
$$

where $X^{*}=P^{\prime} * X^{*}$ has regularity $\frac{1}{2}^{-}$and R has regularity $>\frac{1}{2}$

- Then, the product to be defined is $\tilde{R}^{*} \cdot(z, \bar{z}) \xlongequal{\text { def }}\left(X_{\varepsilon}^{*}(\bar{z})-X_{\varepsilon}^{*}(z)\right) X_{\varepsilon}^{*}(z)$.

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z, \bar{z}} v=v^{\prime}(z) \delta_{z, \bar{z}} X^{\bullet}+\mathcal{C}^{\frac{1}{2}^{+}}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\bullet}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{*}$
- We made the ansatz $\delta_{z, \bar{z}} V=v^{\prime}(z) \delta_{z, \bar{z}} X^{\boldsymbol{\varphi}}+\mathcal{C}^{\frac{1}{2}^{+}}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
\tilde{R}^{\bullet} \cdot \varepsilon(z, \bar{z})=\left(X_{\varepsilon}^{*}(\bar{z})-X_{\varepsilon}^{\dot{\varepsilon}}(z)\right) X_{\varepsilon}^{\dot{\varepsilon}}(z)
$$

in principle does not converge

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{*}$
- We made the ansatz $\delta_{z, \bar{z}} v=v^{\prime}(z) \delta_{z, \bar{z}} X^{\boldsymbol{\varphi}}+\mathcal{C}^{\frac{1}{2}}{ }^{+}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\dagger}$:

$$
R^{\bullet \bullet} \cdot \varepsilon(z, \bar{z})=\left(X_{\varepsilon}^{\bullet}(\bar{z})-X_{\varepsilon}^{\bullet}(z)\right) X_{\varepsilon}^{\bullet}(z)-\mathbf{C}_{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{*}$
- We made the ansatz $\delta_{z, \bar{z}} V=V^{\prime}(z) \delta_{z, \bar{z}} X^{\bullet}+\mathcal{C}^{\frac{1}{2}}{ }^{+}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\dagger}$:

$$
R^{\bullet \bullet} \cdot \varepsilon(z, \bar{z})=\left(X_{\varepsilon}^{\bullet}(\bar{z})-X_{\varepsilon}^{\bullet}(z)\right) X_{\varepsilon}^{\bullet}(z)-\mathbf{C}_{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{*}$:

$$
\mathcal{R}_{t}(\mathbf{V} \bullet)_{t}(x)=V_{\varepsilon}(t, x) X_{\varepsilon}^{*}(t, x)
$$

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z, \bar{z}} V=V^{\prime}(z) \delta_{z, \overline{\bar{z}}} X^{\bullet}+\mathcal{C}^{\frac{1}{2}}{ }^{+}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\bullet} \cdot(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\cdot}$:

$$
R^{\bullet \bullet} \cdot \varepsilon(z, \bar{z})=\left(X_{\varepsilon}^{\bullet}(\bar{z})-X_{\varepsilon}^{\bullet}(z)\right) X_{\varepsilon}^{\bullet}(z)-\mathbf{C}_{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{\cdot}$:

$$
\mathcal{R}_{t}(\mathbf{V} \bullet)_{t}(x)=v_{\varepsilon}(t, x) X_{\varepsilon}^{\bullet}(t, x)-\mathbf{C}_{\varepsilon} v_{\varepsilon}^{\prime}
$$

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z, \bar{z}} V=V^{\prime}(z) \delta_{z, \overline{\bar{z}}} X^{\bullet}+\mathcal{C}^{\frac{1}{2}}{ }^{+}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\bullet} \cdot(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\cdot}$:

$$
R^{\bullet \cdot} \cdot \varepsilon(z, \bar{z})=\left(X_{\varepsilon}^{\bullet}(\bar{z})-X_{\varepsilon}^{\bullet}(z)\right) X_{\varepsilon}^{\bullet}(z)-\boldsymbol{C}_{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{-}$:

$$
\mathcal{R}_{t}(\mathbf{V} \bullet)_{t}(x)=v_{\varepsilon}(t, x) X_{\varepsilon}^{*}(t, x)-\mathcal{C}_{\varepsilon}^{\varepsilon} \nabla_{\varepsilon}^{+}
$$

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z, \bar{z}} V=V^{\prime}(z) \delta_{z, \overline{\bar{z}}} X^{\bullet}+\mathcal{C}^{\frac{1}{2}}{ }^{+}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
R^{\bullet \cdot}{ }^{\varepsilon}(z, \bar{z})=\left(X_{\varepsilon}^{*}(\bar{z})-X_{\varepsilon}^{*}(z)\right) X_{\varepsilon}^{*}(z)-\boldsymbol{C}_{\varepsilon}^{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{\cdot}$:

$$
\mathcal{R}_{t}(\mathbf{V} \bullet)_{t}(x)=V_{\varepsilon}(t, x) X_{\varepsilon}^{*}(t, x)-\mathcal{C}_{\varepsilon} \mathbf{V}_{\varepsilon}^{\prime}
$$

Theorem (Hairer '14, Gubinelli-Perkowski '15, C.-Matetski '16)

There exists a unique solution u to SBE. Moreover,

- the map $\mathcal{S}_{\text {SBE }}$ that assigns to $\left(u_{0}, \mathbb{X}\right) \in \mathcal{C}^{\eta} \times \mathcal{X}$ the solution u is jointly locally Lipschitz continuous.

Making sense of the product and Fixed Point

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z, \bar{z}} V=V^{\prime}(z) \delta_{z, \bar{z}} X^{\boldsymbol{\varphi}}+\mathcal{C}^{\frac{1}{2}^{+}}$, where $X^{\boldsymbol{\varphi}}=P^{\prime} * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\boldsymbol{\bullet}}(x, y) \stackrel{\text { def }}{=}\left(X_{\varepsilon}^{\boldsymbol{\varphi}}(y)-X_{\varepsilon}^{\boldsymbol{\varphi}}(x)\right) X_{\varepsilon}^{\bullet}(x)$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
R^{\bullet \cdot}{ }^{\varepsilon}(z, \bar{z})=\left(X_{\varepsilon}^{*}(\bar{z})-X_{\varepsilon}^{*}(z)\right) X_{\varepsilon}^{*}(z)-\boldsymbol{C}_{\varepsilon}^{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{*}$:

$$
\mathcal{R}_{t}(\mathbf{V} \bullet)_{t}(x)=V_{\varepsilon}(t, x) X_{\varepsilon}^{*}(t, x)-\mathcal{C}_{\varepsilon} \mathbf{V}_{\varepsilon}^{\prime}
$$

Theorem (Hairer '14, Gubinelli-Perkowski '15, C.-Matetski '16)

There exists a unique solution u to SBE. Moreover,

- the map $\mathcal{S}_{\text {SBE }}$ that assigns to $\left(u_{0}, \mathbb{X}\right) \in \mathcal{C}^{\eta} \times \mathcal{X}$ the solution u is jointly locally Lipschitz continuous.
- for a space-time white noise $\xi, \mathbb{X}\left(\xi_{\varepsilon}\right)$ converges to $\mathbb{X}(\xi)$ in \mathcal{X}, in probability.

Sasamoto-Spohn type models

For $\varepsilon>0$, the family of discrete models we want to consider is

$$
\left(\bar{D}_{t, \varepsilon^{2}}-\Delta_{\varepsilon}\right) u^{\varepsilon}(z)=D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

where
■ $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^{2}, T} \stackrel{\text { def }}{=}(0, T] \cap\left(\varepsilon^{2} \mathbb{Z}\right)$ and $\mathbb{T}_{\varepsilon} \xlongequal{\text { def }} \mathbb{T} \cap(\varepsilon \mathbb{Z})$

- $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. centered normal random variables with variance ε^{-3}
- B_{ε} is a bilinear map defined by

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

■ $\bar{D}_{t, \varepsilon^{2}}$ is the discrete forward difference and $D_{x, \varepsilon}, \Delta_{\varepsilon}$ are discrete operators

Sasamoto-Spohn type models

For $\varepsilon>0$, the family of discrete models we want to consider is

$$
u^{\varepsilon}=P^{\varepsilon} u_{0}^{\varepsilon}+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} B^{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} \xi^{\varepsilon}
$$

where
■ $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^{2}, T} \stackrel{\text { def }}{=}(0, T] \cap\left(\varepsilon^{2} \mathbb{Z}\right)$ and $\mathbb{T}_{\varepsilon} \stackrel{\text { def }}{=} \mathbb{T} \cap(\varepsilon \mathbb{Z})$

- $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. centered normal random variables with variance ε^{-3}
- B_{ε} is a bilinear map defined by

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

■ $\bar{D}_{t, \varepsilon^{2}}$ is the discrete forward difference and $D_{x, \varepsilon}, \Delta_{\varepsilon}$ are discrete operators
We set P^{ε} to be the space-time discrete heat kernel

Sasamoto-Spohn type models

For $\varepsilon>0$, the family of discrete models we want to consider is

$$
u^{\varepsilon}=P^{\varepsilon} u_{0}^{\varepsilon}+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} B^{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)+X^{\bullet}, \varepsilon
$$

where
■ $z \in \Lambda_{\varepsilon^{2}, T} \times \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^{2}, T} \stackrel{\text { def }}{=}(0, T] \cap\left(\varepsilon^{2} \mathbb{Z}\right)$ and $\mathbb{T}_{\varepsilon} \stackrel{\text { def }}{=} \mathbb{T} \cap(\varepsilon \mathbb{Z})$

- $\left\{\xi^{\varepsilon}(z)\right\}_{z}$ is a family of i.i.d. centered normal random variables with variance ε^{-3}
- B_{ε} is a bilinear map defined by

$$
B_{\varepsilon}(f, g)(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{2}} f\left(x+\varepsilon y_{1}\right) g\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right),
$$

- $\bar{D}_{t, \varepsilon^{2}}$ is the discrete forward difference and $D_{x, \varepsilon}, \Delta_{\varepsilon}$ are discrete operators We set P^{ε} to be the space-time discrete heat kernel and $X^{\bullet}, \varepsilon \stackrel{\text { def }}{=} D_{x, \varepsilon} P^{\varepsilon}{ }_{\varepsilon \varepsilon} \xi^{\varepsilon}$.

Expanding u^{ε}

Expand u^{ε} around $X^{\bullet \cdot \varepsilon}+X^{\vee, \varepsilon}+2 X^{\vee}, \varepsilon$:

Expanding u^{ε}

Expand u^{ε} around $X^{\bullet}, \varepsilon+X^{\vee, \varepsilon}+2 X^{\vee}, \varepsilon$:set $u^{\varepsilon} \stackrel{\text { def }}{=} X^{\bullet}, \varepsilon+X^{\vee}, \varepsilon+2 X^{\vee}, \varepsilon+V^{\varepsilon}$, so that v^{ε} satisfies

$$
v_{\varepsilon}=4 X^{\dot{\Downarrow}, \varepsilon}+2 D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon}\left(B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)\right)+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} F_{v^{\varepsilon}}^{\varepsilon}
$$

where

$$
B_{\varepsilon}\left(V^{\varepsilon}, X^{\cdot,}\right)(x)=\int V^{\varepsilon}\left(x+\varepsilon y_{1}\right) X^{\cdot, \varepsilon}\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

Expanding u^{ε}

Expand u^{ε} around $X^{\bullet}, \varepsilon+X^{\bullet, \varepsilon}+2 X^{\bullet}, \varepsilon$: set $u^{\varepsilon} \stackrel{\text { def }}{=} X^{\bullet}, \varepsilon+X^{\vee}, \varepsilon+2 X^{\bullet, ~}, \varepsilon+V^{\varepsilon}$, so that v^{ε} satisfies

$$
v_{\varepsilon}=4 X^{\ddot{\Downarrow}, \varepsilon}+2 D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon}\left(B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)\right)+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} F_{V^{\varepsilon}}^{\varepsilon}
$$

where

$$
B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)=\int V^{\varepsilon}\left(x+\varepsilon y_{1}\right) X^{\bullet}, \varepsilon\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

IDEAS

- The discrete controlled structure we can expect is

$$
\delta_{z, \bar{z}} V^{\varepsilon}=V^{\prime, \varepsilon}(z) \int\left(X^{\phi_{,}, \varepsilon}\left(\bar{z}+\varepsilon y_{2}\right)-X^{\dagger, \varepsilon}\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+R^{\varepsilon}(z, \bar{z})
$$

where $X^{\dagger}, \varepsilon \stackrel{\text { def }}{=} D_{X, \varepsilon} P^{\varepsilon}{ }_{*_{\varepsilon}} X^{*}, \varepsilon$.

Expanding u^{ε}

Expand u^{ε} around $X^{\bullet}, \varepsilon+X^{\vee, \varepsilon}+2 X^{\bullet}, \varepsilon$:set $u^{\varepsilon} \stackrel{\text { def }}{=} X^{\bullet}, \varepsilon+X^{\vee}, \varepsilon+2 X^{\vee}, \varepsilon+V^{\varepsilon}$, so that v^{ε} satisfies

$$
v_{\varepsilon}=4 X^{\ddot{\Downarrow}, \varepsilon}+2 D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon}\left(B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)\right)+D_{x, \varepsilon} P^{\varepsilon} *_{\varepsilon} F_{V^{\varepsilon}}^{\varepsilon}
$$

where

$$
B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)=\int V^{\varepsilon}\left(x+\varepsilon y_{1}\right) X^{\bullet}, \varepsilon\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

IDEAS

- The discrete controlled structure we can expect is

$$
\delta_{z, \bar{z}} V^{\varepsilon}=V^{\prime, \varepsilon}(z) \int\left(X^{\dagger, \varepsilon}\left(\bar{z}+\varepsilon y_{2}\right)-X^{\bullet}, \varepsilon\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+R^{\varepsilon}(z, \bar{z})
$$

where $X^{\phi}, \varepsilon \stackrel{\text { def }}{=} D_{X, \varepsilon} P^{\varepsilon}{ }_{{ }_{\varepsilon}} X^{*}, \varepsilon$.

- The term to define is then

$$
\tilde{R}^{\bullet \cdot,}(x, y)=\int\left(X^{\bullet, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\bullet, \varepsilon}\left(X+\varepsilon y_{1}\right)\right) X^{\bullet, \varepsilon}\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$

■ the ansatz $\delta_{z, \bar{z}} v^{\varepsilon}=v^{\prime}, \varepsilon(z) \int\left(X^{\boldsymbol{\varphi}}, \varepsilon\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}}, \varepsilon\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+\ldots$

- the "ill-posed" term $\tilde{R}^{\boldsymbol{\dagger}}{ }^{\bullet}, \varepsilon$

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$
- the ansatz $\delta_{z, \bar{z}} V^{\varepsilon}=v^{\prime}, \varepsilon(z) \int\left(X^{\boldsymbol{\top}}, \varepsilon\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}}, \varepsilon\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+$
- the "ill-posed" term $\tilde{R}^{\top}, \varepsilon$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{*}$:

$$
\tilde{R}^{\boldsymbol{\bullet}} \cdot \varepsilon(x, y)=\int\left(X^{\boldsymbol{\beta}, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\bullet, \varepsilon}\left(X+\varepsilon y_{1}\right)\right) X^{\bullet, \varepsilon}\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

in principle does not converge

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$
- the ansatz $\delta_{z, \bar{z}} \nu^{\varepsilon}=v^{\prime}, \varepsilon(z) \int\left(X^{\boldsymbol{\top}, \varepsilon}\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}}{ }^{\varepsilon}\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+$
- the "ill-posed" term $\tilde{R}^{\boldsymbol{p}}, \varepsilon$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
R^{\boldsymbol{\bullet} \cdot \varepsilon}(X, y)=\int\left(X^{\boldsymbol{\wedge}, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\boldsymbol{\bullet}, \varepsilon}\left(X+\varepsilon y_{1}\right)\right) X^{\bullet, \varepsilon}\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)-\mathbf{C}^{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$
- the ansatz $\delta_{z, \bar{z}} v^{\varepsilon}=v^{\prime},{ }^{\varepsilon}(z) \int\left(X^{\boldsymbol{\varphi}}, \varepsilon\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}},{ }^{\varepsilon}\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+\ldots$
- the "ill-posed" term $\tilde{R}^{\boldsymbol{p}}, \varepsilon$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
R^{\boldsymbol{\bullet} \cdot \varepsilon}(X, y)=\int\left(X^{\boldsymbol{\wedge}, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\boldsymbol{\bullet}, \varepsilon}\left(X+\varepsilon y_{1}\right)\right) X^{\bullet, \varepsilon}\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)-\mathbf{C}^{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{*}$:

$$
\mathcal{R}_{t}^{\varepsilon}\left(\mathbf{V}_{\bullet}\right)^{\varepsilon}(x)=B^{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)
$$

where $B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)=\int V^{\varepsilon}\left(X+\varepsilon y_{1}\right) X^{\bullet, \varepsilon}\left(X+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)$.

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$

■ the ansatz $\delta_{z, \bar{z}} v^{\varepsilon}=v^{\prime}, \varepsilon(z) \int\left(X^{\boldsymbol{\varphi}}, \varepsilon\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}}, \varepsilon\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+\ldots$

- the "ill-posed" term $\tilde{R}^{\boldsymbol{p}}, \varepsilon$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
R^{\bullet \bullet}, \varepsilon(x, y)=\int\left(X^{\boldsymbol{\bullet}, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\bullet}, \varepsilon\left(x+\varepsilon y_{1}\right)\right) X^{\bullet}, \varepsilon\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)-\mathbf{C}^{\varepsilon}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{*}$:

$$
\mathcal{R}_{t}^{\varepsilon}(\mathbf{V} \bullet)^{\varepsilon}(x)=B^{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)-\mathbf{C}^{\varepsilon} v^{\prime, \varepsilon}(t, x)
$$

where $B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)=\int V^{\varepsilon}\left(x+\varepsilon y_{1}\right) X^{\bullet}, \varepsilon\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)$.

Discrete Product and Renormalization

- the product is $B_{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)$
- the ansatz $\delta_{z, \bar{z}} v^{\varepsilon}=v^{\prime},{ }^{\varepsilon}(z) \int\left(X^{\boldsymbol{\varphi}}, \varepsilon\left(\bar{z}+\varepsilon y_{2}\right)-X^{\boldsymbol{\varphi}},{ }^{\varepsilon}\left(z+\varepsilon y_{2}\right)\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)+\ldots$
- the "ill-posed" term $\tilde{R}^{\boldsymbol{p}}, \varepsilon$

1. The Stochastic term $\tilde{R}_{\varepsilon}^{\bullet}$:

$$
\tilde{R}^{\bullet \cdot \varepsilon}(X, y)=\int\left(X^{\boldsymbol{\top}, \varepsilon}\left(y+\varepsilon y_{1}\right)-X^{\boldsymbol{\bullet}, \varepsilon}\left(x+\varepsilon y_{1}\right)\right) X^{\bullet \cdot \varepsilon}\left(y+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)-\mathbf{C}
$$

in principle does not converge \Longrightarrow RENORMALIZATION
2. The product $v_{\varepsilon} X_{\varepsilon}^{*}$:

$$
\mathcal{R}_{t}^{\varepsilon}\left(\mathbf{V}_{\bullet}\right)^{\varepsilon}(x)=B^{\varepsilon}\left(v^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)-\mathbf{C} v^{\prime}, \varepsilon(t, x)
$$

where $B_{\varepsilon}\left(V^{\varepsilon}, X^{\bullet}, \varepsilon\right)(x)=\int V^{\varepsilon}\left(x+\varepsilon y_{1}\right) X^{\bullet}, \varepsilon\left(x+\varepsilon y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)$.

Convergence

Theorem (C.-Matetski '16)

Let ξ be a space-white noise and $\left\{\xi^{\varepsilon}(z)\right\} z$ be a family of independent rescaled normal random variable converging to ξ. Let u^{ε} be the solution to

$$
\bar{D}_{t, \varepsilon^{2}} u^{\varepsilon}(z)=\Delta_{\varepsilon} u^{\varepsilon}(z)+D_{x, \varepsilon} B_{\varepsilon}\left(u^{\varepsilon}, u^{\varepsilon}\right)(z)-\mathbf{C} D_{x, \varepsilon} u^{\varepsilon}+D_{x, \varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot)=u_{0}^{\varepsilon}(\cdot)
$$

and u be the solution to

$$
\partial_{t} u=\Delta u+\partial_{x} u^{2}-\mathbf{C} \partial_{x} u+\partial_{x} \xi, \quad u(0, \cdot)=u_{0}(\cdot)
$$

then if u_{0}^{ε} converges to u_{0} a.s. in \mathcal{C}^{η}, then u^{ε} converges to u in probability in $\mathcal{C}^{\alpha_{\star}-1}$.

References

- G. Cannizzaro, K. Matetski, Space-time discrete KPZ equation, arXiv preprint (2016).

■ M. Gubinelli, N. Perkowski, KPZ Reloaded, Communications in Mathematical Physics (2017).

■ M. Hairer, A theory of Regularity Structures, Inventiones Mathematicae (2014).
■ M. Hairer, K. Matetski, Discretizations of Rough Stochastic PDEs, to appear in Annals of probability.

Thank you for the attention!

