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The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by
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where h = h(t, x) is our stochastically growing height function, hy the initial condition
and ¢ is space-time white noise.
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Introduction and Motivation

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

(0r—AD)h = (0xh?> + & , h(0,:)=ho()
+2 7? -3
where h = h(t, x) is our stochastically growing height function, hy the initial condition

and ¢ is space-time white noise.

m The Cole-Hopf transform, h = log w where w solves (SHE) (Bertini-Giacomin
1997)

m Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013,
Gubinelli-Perkowski 2015)

m Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and
Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

Set u% 9, h, then u solves the Stochastic Burgers Equation (SBE)

(O —D)u = 0P + €& , u(0,:)=uo()
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Introduction and Motivation

Space-Time Discretization
Lete >0,Az 7 27,1 (0, T] and T. &' <Z N T. We want to consider
(Dy .2 — AU (2) = DyeB- (U7, U°)(2) + Dxc&°(2),  U°(0,-) = ug (")

for z € A2 + x Te, where {£°(2)} is a family of i.i.d. mean zero normal random
variables with variance £~
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Introduction and Motivation

Space-Time Discretization

Lete >0,Az 7 27,1 (0, T] and T. &' <Z N T. We want to consider

(D2 = D)™ (2) = Do Be (U7, u7)(2) + Dee€™(2),  u7(0,7) = uo(")

for z € A2 + x Te, where {£°(2)} is a family of i.i.d. mean zero normal random
variables with variance ¢ ~° and B is

B(L9)(0% [+ ey)ale-+ cyautan,ane)

where p is a symmetric measure supported on the integers.

m 1 = (0,0), the usual pointwise product
m = 3(80,0) + 560,1) + 20(1.,0) + 6(1,1)), Zabusky/Sasamoto-Spohn

AIM: Show that, in a suitable sense, t* — uvas e — 0.
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The SBE

The Derivative of the KPZ Equation
Let h be the solution to the KPZ equation, then formally u Oy h satisfies

(O —D)u= 00" +0x&  u(0,-) = wo(")

on [0, T] x T, where u is the initial condition, ¢ a space-time white noise
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The SBE

The ill-posed product

Expand u. around X_ + X~ + 2X§y:
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The SBE

The ill-posed product

Expand u. around X. + X + 2X§y: setuf =X + XV + 2X§y + V.. Then v. solves

v

Ve =4X) +2P % (v.X))+ P x F;.

where XQ}YN% and X"~ —1

IDEAS:
m Look for a solution with the following structure

v(2) = v(z) + V' (2)(X'(2) - X'(2)) + R(z, 2)
where X" = P’ x X" has regularity ;~ and R has regularity > 1

m Then, the product to be defined is A"(z,2) < (X!(2) — X!(2)) X.(2).
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The SBE

Making sense of the product and Fixed Point

m  We want to make sense of the product v, X:
1+ .
® We made the ansatz 5, >v = v/ (2)6, :X' + CZ ,where X! = P/ « X

m We need A(x, ) (X (v) — X1 0)X (%)
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There exists a unique solution u to SBE. Moreover,

B the map Sspe that assigns to (U, X) € C" x X the solution u is jointly locally
Lipschitz continuous.
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Making sense of the product and Fixed Point

= We want to make sense of the product v. X_
m We made the ansatz 5, sv — v/(2)5, 3X' + C 2 " where X' = P 4 X
m We need Al(x, )% (X (v) — X1 ()X (%)
1. The Stochastic term &":
A"<(2,2) = (X\(2) - X!(2))X.(2) - B¢
in principle does not converge =—-RENORMALIZATION
2. The product v. X:

Re(Ve)e(x) = ve(t, X)X (t, x) — CVL

Theorem (Hairer 14, Gubinelli-Perkowski 15, C.-Matetski ’16)

There exists a unique solution u to SBE. Moreover,

B the map Sspe that assigns to (U, X) € C" x X the solution u is jointly locally
Lipschitz continuous.

m for a space-time white noise &, X(&.) converges to X(&) in X, in probability.
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Space-time discrete SBE

Sasamoto-Spohn type models

For e > 0, the family of discrete models we want to consider is
(Dt,ag — AU (2) = Dy, B-(u°, U°)(2) + Dx,c£°(2), u®(0,-) = up(-)

where

def

Bz A27xTefor Az 2 (0, T]N (c2Z) and T. &

=TnN(eZ)

{¢°(2)}, is a family of i.i.d. centered normal random variables with variance e~
m B. is a bilinear map defined by

B(1.9)00 2 [ fx+ ey)ax + epeli(dyr.ae)

] Dt752 is the discrete forward difference and Dy ., A. are discrete operators
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Space-time discrete SBE

Expanding u*

Expand v around X" ¢ + XVo° + oxVe
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Expand v around X" ¢ + XV>° + oxVoeset i X 4 XV e x4 v¢, so that
v© satisfies
Ve = 4X‘}y’5 + 2Dy P % (B-(v", X" %)) 4 Dx . P* %. Fi-

where
B.(v:. X"%)(x) = / VA + ey XS (x + ey)u(dyn, dys)
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Space-time discrete SBE

Expanding u*

Expand v around X" ¢ + XV>° + oxVoeset i X 4 XV e x4 v¢, so that
v© satisfies

Ve = 4X\>Y76 +2Dx,aP£ *e (BE(VS-,X:S)) + DX,EPE *e F\ff

where
B-(v5,X"%)(x) = / VE(X + ey) X7 (X + eye)uldys, dye)

IDEAS
m The discrete controlled structure we can expect is

522vF = V'5(2) / (X2 + ey2) — X"5(2 + ey2)) uldyn, dye) + R¥(2,2)

def .
where X" = D, . P° x. X <.
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where
B-(v5,X"%)(x) = / VE(X + ey) X7 (X + eye)uldys, dye)

IDEAS
m The discrete controlled structure we can expect is

522vF = V'5(2) / (X2 + ey2) — X"5(2 + ey2)) uldyn, dye) + R¥(2,2)

where X" &' D, P« X"¢.
m The term to define is then

f?’"s(xyy):/(X*'E(y+ey1)fX*'E(X+sy1))X"E(y+syz)u(dy1, dyz)

Giuseppe Cannizzaro July 15, 2017 8/12



Space-time discrete SBE

Discrete Product and Renormalization

= the product is B. (v, X" ©)(x)
m theansatz 6, 5v5 = v/ 5(2) [ (X152 + o) — XN (2 + eya)) mldy, dy) + -

m the “ill-posed” term A's: €
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Space-time discrete SBE

Discrete Product and Renormalization

m the productis B (v, X" )(x)
m theansatz 5, ;v" = v (2) [ (XT' Z+ey) - X0z + eyp)) pldy, dyz) + . . .

m the “ill-posed” term A= ©
1. The Stochastic term 7":

B (x,y) = / XM eyn) — X (x o ey)) XSy ey, dye)

in principle does not converge
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Space-time discrete SBE

Convergence

Theorem (C.-Matetski '16)

Let ¢ be a space-white noise and {¢°(z)}, be a family of independent rescaled normal
random variable converging to €. Let u® be the solution to

D; 2u°(2) = Acu®(2) + DxeB-(u%,u)(2) — CDx,c U + Dy c£°(2), u(0,-) = ug(-)

and u be the solution to

Ol = AU+ O UP — COu+ €,  u(0,-) = to(-)

then if us converges to Uy a.s. in C", then u® converges to u in probability in C*+~".
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Thank you for the attention!
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