

The KPZ Equation and its space-time discretization

Giuseppe Cannizzaro joint project with K. Matetski

University of Warwick

Durham Symposium, Stochastic Analysis

July 15, 2017

<u></u>		<u> </u>	-
GILISAI	nne	(:ann	izzaro
anaber	ope.	ounn	22010

Space-time discrete KPZ

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$(\partial_t - \Delta)h = (\partial_x h)^2 + \xi , \quad h(0, \cdot) = h_0(\cdot)$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$(\partial_t - \Delta)h = (\partial_x h)^2 + \xi , \quad h(0, \cdot) = h_0(\cdot)$$
$$-\frac{3}{2}^{-1}$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$\begin{array}{rcl} (\partial_t - \Delta)h &=& (\partial_x h)^2 &+& \xi \\ +2 & & -\frac{3}{2}^- \end{array} , \quad h(0, \cdot) = h_0(\cdot)$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$\begin{array}{rcl} (\partial_t - \Delta)h &=& (\partial_x h)^2 &+& \xi \\ +2 & ?? & -\frac{3}{2}^- \end{array} , \quad h(0, \cdot) = h_0(\cdot)$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$\begin{array}{rcl} (\partial_t - \Delta)h &=& (\partial_x h)^2 &+& \xi \\ +2 & ?? & -\frac{3}{2}^- \end{array} , \quad h(0, \cdot) = h_0(\cdot)$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

The Cole-Hopf transform, $h = \log w$ where w solves (SHE) (Bertini-Giacomin 1997)

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$(\partial_t - \Delta)h = (\partial_x h)^2 + \xi , \quad h(0, \cdot) = h_0(\cdot) + 2 ?? - \frac{3}{2}^-$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

- The Cole-Hopf transform, $h = \log w$ where w solves (SHE) (Bertini-Giacomin 1997)
- Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$\begin{array}{rcl} (\partial_t - \Delta)h &=& (\partial_x h)^2 &+& \xi \\ +2 & ?? & -\frac{3}{2}^- \end{array}, & h(0, \cdot) = h_0(\cdot) \end{array}$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

- The Cole-Hopf transform, $h = \log w$ where w solves (SHE) (Bertini-Giacomin 1997)
- Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)
- Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Kardar-Parisi-Zhang equation (KPZ) is formally given by

$$\begin{array}{rcl} (\partial_t - \Delta)h &=& (\partial_x h)^2 &+& \xi \\ +2 & ?? & -\frac{3}{2}^- \end{array}, & h(0, \cdot) = h_0(\cdot) \end{array}$$

where h = h(t, x) is our stochastically growing height function, h_0 the initial condition and ξ is space-time white noise.

- The Cole-Hopf transform, $h = \log w$ where w solves (SHE) (Bertini-Giacomin 1997)
- Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013, Gubinelli-Perkowski 2015)
- Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

Set $u \stackrel{\text{def}}{=} \partial_x h$, then *u* solves the Stochastic Burgers Equation (SBE)

$$(\partial_t - \Delta) u = \partial_x u^2 + \partial_x \xi$$
, $u(0, \cdot) = u_0(\cdot)$

Let $\varepsilon > 0$, $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} \varepsilon^2 \mathbb{Z} \cap (0, T]$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

for $z \in \Lambda_{\varepsilon^2, T} \times \mathbb{T}_{\varepsilon}$, where $\{\xi^{\varepsilon}(z)\}_z$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3}

Let $\varepsilon > 0$, $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} \varepsilon^2 \mathbb{Z} \cap (0, T]$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

for $z \in \Lambda_{\varepsilon^2, T} \times \mathbb{T}_{\varepsilon}$, where $\{\xi^{\varepsilon}(z)\}_z$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x + \varepsilon y_1) g(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2) ,$$

where μ is a symmetric measure supported on the integers.

Let $\varepsilon > 0$, $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} \varepsilon^2 \mathbb{Z} \cap (0, T]$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

for $z \in \Lambda_{\varepsilon^2, T} \times \mathbb{T}_{\varepsilon}$, where $\{\xi^{\varepsilon}(z)\}_z$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x + \varepsilon y_1) g(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2) ,$$

where μ is a symmetric measure supported on the integers.

• $\mu = \delta_{(0,0)}$, the usual pointwise product

<ロ> <同> <同> < 同> < 同> < 同> = 三目

Let $\varepsilon > 0$, $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} \varepsilon^2 \mathbb{Z} \cap (0, T]$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

for $z \in \Lambda_{\varepsilon^2, T} \times \mathbb{T}_{\varepsilon}$, where $\{\xi^{\varepsilon}(z)\}_z$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x + \varepsilon y_1) g(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2) ,$$

where μ is a symmetric measure supported on the integers.

• $\mu = \delta_{(0,0)}$, the usual pointwise product

• $\mu = \frac{1}{3} (\delta_{(0,0)} + \frac{1}{2} \delta_{(0,1)} + \frac{1}{2} \delta_{(1,0)} + \delta_{(1,1)})$, Zabusky/Sasamoto-Spohn

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\varepsilon > 0$, $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} \varepsilon^2 \mathbb{Z} \cap (0, T]$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \varepsilon \mathbb{Z} \cap \mathbb{T}$. We want to consider

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon} \xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

for $z \in \Lambda_{\varepsilon^2, T} \times \mathbb{T}_{\varepsilon}$, where $\{\xi^{\varepsilon}(z)\}_z$ is a family of i.i.d. mean zero normal random variables with variance ε^{-3} and B_{ε} is

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x + \varepsilon y_1) g(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2) ,$$

where μ is a symmetric measure supported on the integers.

• $\mu = \delta_{(0,0)}$, the usual pointwise product • $\mu = \frac{1}{3} (\delta_{(0,0)} + \frac{1}{2} \delta_{(0,1)} + \frac{1}{2} \delta_{(1,0)} + \delta_{(1,1)})$, Zabusky/Sasamoto-Spohn

AIM: Show that, in a suitable sense, $u^{\varepsilon} \longrightarrow u$ as $\varepsilon \rightarrow 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$(\partial_t - \Delta) u = \partial_x u^2 + \partial_x \xi, \qquad u(0, \cdot) = u_0(\cdot)$$

on $[0, T] \times \mathbb{T}$, where u_0 is the initial condition, ξ a space-time white noise

A B > A B > A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$(\partial_t - \Delta) u = \partial_x u^2 + \partial_x \xi, \qquad u(0, \cdot) = u_0(\cdot)$$

on $[0, T] \times T$, where u_0 is the initial condition, ξ a space-time white noise

■ Infer a suitable family of processes depending on ξ, that we will denote by X

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$(\partial_t - \Delta) u = \partial_x u^2 + \partial_x \xi, \qquad u(0, \cdot) = u_0(\cdot)$$

on $[0, T] \times \mathbb{T}$, where u_0 is the initial condition, ξ a space-time white noise

- Infer a suitable family of processes depending on ξ , that we will denote by X
- Make sense of the ill-posed operations → Regularity Structures

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$(\partial_t - \Delta) u = \partial_x u^2 + \partial_x \xi, \qquad u(0, \cdot) = u_0(\cdot)$$

on $[0, T] \times \mathbb{T}$, where u_0 is the initial condition, ξ a space-time white noise

- Infer a suitable family of processes depending on ξ , that we will denote by X
- Make sense of the ill-posed operations Regularity Structures
- Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

<u> </u>		<u> </u>	-
(-11160)	nne i	l ann	177210
aluse	uue .	Garm	122410

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$u_{\varepsilon} = P_t u_0 + P' * (u_{\varepsilon}^2) + P' * \xi_{\varepsilon}$$

on $[0, T] \times \mathbb{T}$, where u_0 is the initial condition, ξ a space-time white noise, $\xi_{\varepsilon} \stackrel{\text{def}}{=} \xi * \varrho_{\varepsilon}$, ϱ_{ε} a smooth mollifier, P is the heat kernel, $P' \stackrel{\text{def}}{=} \partial_x P$

- Infer a suitable family of processes depending on ξ , that we will denote by X
- Make sense of the ill-posed operations Regularity Structures
- \blacksquare Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

Let *h* be the solution to the KPZ equation, then formally $u \stackrel{\text{def}}{=} \partial_x h$ satisfies

$$u_{\varepsilon} = P_t u_0 + P' * (\frac{u_{\varepsilon}^2}{\varepsilon}) + X_{\varepsilon}^{\bullet}$$

on $[0, T] \times \mathbb{T}$, where u_0 is the initial condition, ξ a space-time white noise, $\xi_{\varepsilon} \stackrel{\text{def}}{=} \xi * \varrho_{\varepsilon}$, ϱ_{ε} a smooth mollifier, P is the heat kernel, $P' \stackrel{\text{def}}{=} \partial_x P$ and $X_{\varepsilon}^{\bullet} \stackrel{\text{def}}{=} P' * \xi_{\varepsilon}$.

- Infer a suitable family of processes depending on ξ , that we will denote by X
- Make sense of the ill-posed operations → Regularity Structures
- \blacksquare Define a map on a suitable space and show it admits a unique fixed point. \longrightarrow Schauder's estimates

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expand u_{ε} around $X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\vee} + 2X_{\varepsilon}^{\vee}$:

Expand u_{ε} around $X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\lor} + 2X_{\varepsilon}^{\lor}$: set $u^{\varepsilon} = X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\lor} + 2X_{\varepsilon}^{\lor} + v_{\varepsilon}$. Then v_{ε} solves

$$v_{\varepsilon} = 4X_{\varepsilon}^{\checkmark} + 2P' * (\underline{v_{\varepsilon}}X_{\varepsilon}^{\bullet}) + P' * F_{v_{\varepsilon}}^{\varepsilon}$$

where $X_{\varepsilon}^{*} \sim \frac{1}{2}^{-}$ and $X^{*} \sim -\frac{1}{2}^{-}$.

イロト イポト イヨト イヨト

Expand u_{ε} around $X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\bullet} + 2X_{\varepsilon}^{\bullet}$: set $u^{\varepsilon} = X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\bullet} + 2X_{\varepsilon}^{\bullet} + v_{\varepsilon}$. Then v_{ε} solves

$$v_{\varepsilon} = 4X_{\varepsilon}^{\checkmark} + 2P' * (\underline{v_{\varepsilon}X_{\varepsilon}}) + P' * F_{v_{\varepsilon}}^{\varepsilon}$$

where $X_{\varepsilon}^{\bullet} \sim \frac{1}{2}^{-}$ and $X^{\bullet} \sim -\frac{1}{2}^{-}$.

IDEAS:

Look for a solution with the following structure

$$v(\bar{z}) = v(z) + v'(z) (X^{\dagger}(\bar{z}) - X^{\dagger}(z)) + R(z,\bar{z})$$

where $X^{\dagger} = P' * X^{\bullet}$ has regularity $\frac{1}{2}^{-}$ and *R* has regularity $> \frac{1}{2}$

(日)

Expand u_{ε} around $X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\lor} + 2X_{\varepsilon}^{\lor}$: set $u^{\varepsilon} = X_{\varepsilon}^{\bullet} + X_{\varepsilon}^{\lor} + 2X_{\varepsilon}^{\lor} + v_{\varepsilon}$. Then v_{ε} solves

$$v_{\varepsilon} = 4X_{\varepsilon}^{\checkmark} + 2P' * (\underline{v_{\varepsilon}X_{\varepsilon}}) + P' * F_{v_{\varepsilon}}^{\varepsilon}$$

where $X_{\varepsilon}^{\checkmark} \sim \frac{1}{2}^{-}$ and $X^{\bullet} \sim -\frac{1}{2}^{-}$.

IDEAS:

Look for a solution with the following structure

$$v(\bar{z}) = v(z) + v'(z) (X^{\dagger}(\bar{z}) - X^{\dagger}(z)) + R(z, \bar{z})$$

where $X^{\dagger} = P' * X^{\bullet}$ has regularity $\frac{1}{2}^{-}$ and *R* has regularity $> \frac{1}{2}$

Then, the product to be defined is $\tilde{R}^{!}(z, \bar{z}) \stackrel{\text{def}}{=} (X_{\varepsilon}^{!}(\bar{z}) - X_{\varepsilon}^{!}(z)) X_{\varepsilon}^{!}(z).$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{\dagger}$:

$$\tilde{R}^{\dagger,\varepsilon}(z,\bar{z}) = \big(X^{\dagger}_{\varepsilon}(\bar{z}) - X^{\dagger}_{\varepsilon}(z)\big)X^{\bullet}_{\varepsilon}(z)$$

in principle does not converge

< ロ > < 同 > < 三 > < 三

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{\dagger}$:

 $R^{{}^{\boldsymbol{\mathfrak{t}},\,\varepsilon}}(z,\bar{z})=\big(X_{\varepsilon}^{\boldsymbol{\mathfrak{t}}}(\bar{z})-X_{\varepsilon}^{\boldsymbol{\mathfrak{t}}}(z)\big)X_{\varepsilon}^{\boldsymbol{\boldsymbol{\mathfrak{t}}}}(z)-\boldsymbol{\mathsf{C}}_{\varepsilon}$

in principle does not converge \Longrightarrow **RENORMALIZATION**

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{\dagger}$:

 $R^{{}^{\boldsymbol{\mathfrak{t}},\,\varepsilon}}(z,\bar{z})=\big(X_{\varepsilon}^{\boldsymbol{\mathfrak{t}}}(\bar{z})-X_{\varepsilon}^{\boldsymbol{\mathfrak{t}}}(z)\big)X_{\varepsilon}^{\boldsymbol{\mathfrak{t}}}(z)-\boldsymbol{\mathsf{C}}_{\varepsilon}$

in principle does not converge \Longrightarrow **RENORMALIZATION**

2. The product $v_{\varepsilon} X_{\varepsilon}$:

 $\mathcal{R}_t(\mathbf{V}\bullet)_t(x) = \mathbf{v}_\varepsilon(t,x) \mathbf{X}_\varepsilon^{\bullet}(t,x)$

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

 $R^{{}^{\bullet}\!\!\!,\,\varepsilon}(z,\bar{z})=\big(X_{\varepsilon}^{\dagger}(\bar{z})-X_{\varepsilon}^{\dagger}(z)\big)X_{\varepsilon}^{\bullet}(z)-{\bm{\mathsf{C}}}_{\varepsilon}$

in principle does not converge \implies **RENORMALIZATION**

2. The product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$:

 $\mathcal{R}_t(\mathbf{V}ullet)_t(x) = v_{\varepsilon}(t,x)X^{ullet}_{\varepsilon}(t,x) - \mathbf{C}_{\varepsilon}v'_{\varepsilon}$

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

$$R^{\mathbf{i}_{ullet},\,arepsilon}(z,ar{z}) = ig(X^{\mathbf{i}}_{arepsilon}(ar{z}) - X^{\mathbf{i}}_{arepsilon}(z)ig)X^{\mathbf{i}}_{arepsilon}(z) - \mathcal{G}_{arepsilon}$$

in principle does not converge \implies **RENORMALIZATION**

2. The product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$:

$$\mathcal{R}_t(\mathbf{V}\bullet)_t(x) = v_{\varepsilon}(t,x) X_{\varepsilon}^{\bullet}(t,x) - \mathbf{C}_{\varepsilon} v_{\varepsilon}^{\mathsf{r}}$$

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

$$R^{\mathbf{i}_{\bullet},\,arepsilon}(z,ar{z}) = ig(X^{\mathbf{i}}_{arepsilon}(ar{z}) - X^{\mathbf{i}}_{arepsilon}(z)ig)X^{ullet}_{arepsilon}(z) - \mathbf{G}^{ullet}_{arepsilon}$$

in principle does not converge \implies **RENORMALIZATION**

2. The product $v_{\varepsilon}X_{\varepsilon}^{\bullet}$:

$$\mathcal{R}_t(\mathbf{V}\bullet)_t(x) = \mathbf{v}_{\varepsilon}(t,x) X_{\varepsilon}^{\bullet}(t,x) - \mathbf{C}_{\varepsilon} \overline{\mathbf{v}_{\varepsilon}}$$

Theorem (Hairer '14, Gubinelli-Perkowski '15, C.-Matetski '16)

There exists a unique solution u to SBE. Moreover,

• the map S_{SBE} that assigns to $(u_0, \mathbb{X}) \in C^{\eta} \times \mathcal{X}$ the solution u is jointly locally Lipschitz continuous.

- We want to make sense of the product $v_{\varepsilon} X_{\varepsilon}^{\bullet}$
- We made the ansatz $\delta_{z,\bar{z}}v = v'(z)\delta_{z,\bar{z}}X^{\dagger} + C^{\frac{1}{2}^+}$, where $X^{\dagger} = P' * X^{\bullet}$
- We need $\tilde{R}_{\varepsilon}^{\dagger}(x, y) \stackrel{\text{def}}{=} (X_{\varepsilon}^{\dagger}(y) X_{\varepsilon}^{\dagger}(x)) X_{\varepsilon}^{\bullet}(x)$
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

$$R^{\dagger_{ullet,\,arepsilon}}(z,ar{z}) = ig(X^{\dagger}_{arepsilon}(ar{z}) - X^{\dagger}_{arepsilon}(z)ig)X^{ullet}_{arepsilon}(z) - \mathcal{G}_{arepsilon}$$

in principle does not converge \Longrightarrow **RENORMALIZATION**

2. The product $v_{\varepsilon}X_{\varepsilon}^{\bullet}$:

$$\mathcal{R}_t(\mathbf{V}\bullet)_t(x) = \mathbf{v}_{\varepsilon}(t,x) X_{\varepsilon}^{\bullet}(t,x) - \mathbf{C}_{\varepsilon} \overline{\mathbf{v}_{\varepsilon}}$$

Theorem (Hairer '14, Gubinelli-Perkowski '15, C.-Matetski '16)

There exists a unique solution u to SBE. Moreover,

- the map S_{SBE} that assigns to $(u_0, \mathbb{X}) \in C^{\eta} \times \mathcal{X}$ the solution u is jointly locally Lipschitz continuous.
- for a space-time white noise ξ , $\mathbb{X}(\xi_{\varepsilon})$ converges to $\mathbb{X}(\xi)$ in \mathcal{X} , in probability.

Sasamoto-Spohn type models

For $\varepsilon > 0$, the family of discrete models we want to consider is

$$(\bar{D}_{t,\varepsilon^2} - \Delta_{\varepsilon})u^{\varepsilon}(z) = D_{x,\varepsilon} \frac{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)}{B_{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})(z)} + D_{x,\varepsilon}\xi^{\varepsilon}(z), \quad u^{\varepsilon}(0, \cdot) = u_0^{\varepsilon}(\cdot)$$

where

• $z \in \Lambda_{\varepsilon^2,T} imes \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^2,T} \stackrel{\text{def}}{=} (0,T] \cap (\varepsilon^2 \mathbb{Z})$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \mathbb{T} \cap (\varepsilon \mathbb{Z})$

{ξ^ε(z)}_z is a family of i.i.d. centered normal random variables with variance ε⁻³
B_ε is a bilinear map defined by

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x+\varepsilon y_1) g(x+\varepsilon y_2) \mu(\mathrm{d} y_1,\mathrm{d} y_2) ,$$

D $_{t,\varepsilon^2}$ is the discrete *forward* difference and $D_{x,\varepsilon}$, Δ_{ε} are discrete operators

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sasamoto-Spohn type models

For $\varepsilon > 0$, the family of discrete models we want to consider is

$$u^{\varepsilon} = P^{\varepsilon}u_0^{\varepsilon} + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} \frac{B^{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})}{B^{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})} + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} \xi^{\varepsilon}$$

where

• $z \in \Lambda_{\varepsilon^2,T} imes \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^2,T} \stackrel{\text{def}}{=} (0,T] \cap (\varepsilon^2 \mathbb{Z})$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \mathbb{T} \cap (\varepsilon \mathbb{Z})$

{ξ^ε(z)}_z is a family of i.i.d. centered normal random variables with variance ε⁻³
B_ε is a bilinear map defined by

$$\mathbf{B}_{\varepsilon}(f,g)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(x+\varepsilon y_1) g(x+\varepsilon y_2) \mu(\mathrm{d} y_1,\mathrm{d} y_2) ,$$

• $\overline{D}_{t,\varepsilon^2}$ is the discrete *forward* difference and $D_{x,\varepsilon}$, Δ_{ε} are discrete operators We set P^{ε} to be the space-time discrete heat kernel

Sasamoto-Spohn type models

For $\varepsilon > 0$, the family of discrete models we want to consider is

$$u^{\varepsilon} = P^{\varepsilon}u_0^{\varepsilon} + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} \frac{B^{\varepsilon}(u^{\varepsilon}, u^{\varepsilon})}{A^{\bullet}} + X^{\bullet,\varepsilon}$$

where

• $z \in \Lambda_{\varepsilon^2, T} imes \mathbb{T}_{\varepsilon}$ for $\Lambda_{\varepsilon^2, T} \stackrel{\text{def}}{=} (0, T] \cap (\varepsilon^2 \mathbb{Z})$ and $\mathbb{T}_{\varepsilon} \stackrel{\text{def}}{=} \mathbb{T} \cap (\varepsilon \mathbb{Z})$

{ξ^ε(z)}_z is a family of i.i.d. centered normal random variables with variance ε⁻³
B_ε is a bilinear map defined by

$$\mathbf{B}_{\varepsilon}(\mathbf{f}, \mathbf{g})(\mathbf{x}) \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} f(\mathbf{x} + \varepsilon \mathbf{y}_1) \mathbf{g}(\mathbf{x} + \varepsilon \mathbf{y}_2) \mu(\mathrm{d}\mathbf{y}_1, \mathrm{d}\mathbf{y}_2) \; ,$$

• $\overline{D}_{t,\varepsilon^2}$ is the discrete *forward* difference and $D_{x,\varepsilon}$, Δ_{ε} are discrete operators We set P^{ε} to be the space-time discrete heat kernel and $X^{\bullet,\varepsilon} \stackrel{\text{def}}{=} D_{x,\varepsilon} P^{\varepsilon} *_{\varepsilon} \xi^{\varepsilon}$.

Giuseppe Cannizzaro

Space-time discrete KPZ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expand u^{ε} around $X^{\bullet, \varepsilon} + X^{\vee, \varepsilon} + 2X^{\vee, \varepsilon}$:

・ロ・・ (日・・ モ・・ (日・)

Expand u^{ε} around $X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon}$:set $u^{\varepsilon} \stackrel{\text{def}}{=} X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon} + v^{\varepsilon}$, so that v^{ε} satisfies

$$v_{\varepsilon} = 4X^{\check{V}, \varepsilon} + 2D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} (B_{\varepsilon}(v^{\varepsilon}, X^{\check{,} \varepsilon})) + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} F_{v^{\varepsilon}}^{\varepsilon}$$

where

$$B_{\varepsilon}(v^{\varepsilon},X^{\bullet,\varepsilon})(x) = \int v^{\varepsilon}(x+\varepsilon y_1)X^{\bullet,\varepsilon}(x+\varepsilon y_2)\mu(\mathrm{d} y_1,\mathrm{d} y_2)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expand u^{ε} around $X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon}$:set $u^{\varepsilon} \stackrel{\text{def}}{=} X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon} + v^{\varepsilon}$, so that v^{ε} satisfies

$$\mathcal{V}_{\varepsilon} = 4X^{\bigvee, \varepsilon} + 2D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} (B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})) + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} F_{v^{\varepsilon}}^{\varepsilon}$$

where

$$B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) = \int v^{\varepsilon}(x + \varepsilon y_1) X^{\bullet, \varepsilon}(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2)$$

IDEAS

The discrete controlled structure we can expect is

 $\delta_{z,\bar{z}} v^{\varepsilon} = v^{\prime,\,\varepsilon}(z) \int \left(X^{\dagger,\,\varepsilon} (\bar{z} + \varepsilon y_2) - X^{\dagger,\,\varepsilon} (z + \varepsilon y_2) \right) \mu(\mathrm{d}y_1,\mathrm{d}y_2) + R^{\varepsilon}(z,\bar{z})$ where $X^{\dagger,\,\varepsilon} \stackrel{\text{def}}{=} D_{\mathbf{y},\,\varepsilon} P^{\varepsilon} *_{\varepsilon} X^{\bullet,\,\varepsilon}$.

Expand u^{ε} around $X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon}$:set $u^{\varepsilon} \stackrel{\text{def}}{=} X^{\bullet, \varepsilon} + X^{\bullet, \varepsilon} + 2X^{\bullet, \varepsilon} + v^{\varepsilon}$, so that v^{ε} satisfies

$$\mathcal{V}_{\varepsilon} = 4X^{\bigvee, \varepsilon} + 2D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} (B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})) + D_{x,\varepsilon}P^{\varepsilon} *_{\varepsilon} F_{v^{\varepsilon}}^{\varepsilon}$$

where

$$B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) = \int v^{\varepsilon}(x + \varepsilon y_1) X^{\bullet, \varepsilon}(x + \varepsilon y_2) \mu(\mathrm{d} y_1, \mathrm{d} y_2)$$

IDEAS

The discrete controlled structure we can expect is

. .

$$\delta_{z,\bar{z}}v^{\varepsilon} = v^{\prime,\,\varepsilon}(z)\,\int \big(X^{\dagger,\,\varepsilon}(\bar{z}+\varepsilon y_2) - X^{\dagger,\,\varepsilon}(z+\varepsilon y_2)\big)\mu(\mathrm{d}y_1,\mathrm{d}y_2) + R^{\varepsilon}(z,\bar{z})$$

where
$$X^{\bullet, \varepsilon} \stackrel{\text{def}}{=} D_{x,\varepsilon} P^{\varepsilon} *_{\varepsilon} X^{\bullet, \varepsilon}$$
.

The term to define is then

$$\tilde{R}^{\dagger,\varepsilon}(x,y) = \int \left(X^{\dagger,\varepsilon}(y+\varepsilon y_1) - X^{\dagger,\varepsilon}(x+\varepsilon y_1) \right) X^{\bullet,\varepsilon}(y+\varepsilon y_2) \mu(\mathrm{d} y_1,\,\mathrm{d} y_2)$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger}, \varepsilon(\bar{z} + \varepsilon y_2) X^{\dagger}, \varepsilon(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term Ã[†]•, ε

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger, \varepsilon}(\bar{z} + \varepsilon y_2) X^{\dagger, \varepsilon}(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term [˜]R¹•, ε
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{t}$:

$$\tilde{R}^{\dagger,\varepsilon}(x,y) = \int \left(X^{\dagger,\varepsilon}(y+\varepsilon y_1) - X^{\dagger,\varepsilon}(x+\varepsilon y_1) \right) X^{\bullet,\varepsilon}(y+\varepsilon y_2) \mu(\mathrm{d} y_1,\,\mathrm{d} y_2)$$

in principle does not converge

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger, \varepsilon}(\bar{z} + \varepsilon y_2) X^{\dagger, \varepsilon}(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term [˜]R¹•, ε</sup>
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

$$R^{\dagger_{ullet,\,arepsilon}}(x,y) = \int ig(X^{\dagger,\,arepsilon}(y+arepsilon y_1) - X^{\dagger,\,arepsilon}(x+arepsilon y_1)ig)X^{ullet,\,arepsilon}(y+arepsilon y_2)\mu(\mathrm{d} y_1,\,\mathrm{d} y_2) - \mathbf{C}^arepsilon$$

in principle does not converge \Longrightarrow **RENORMALIZATION**

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger, \varepsilon}(\bar{z} + \varepsilon y_2) X^{\dagger, \varepsilon}(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term [˜]R¹•, ε
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{t}$:

$$R^{\mathbf{i}_{\bullet},\,\varepsilon}(x,y) = \int \left(X^{\mathbf{i},\,\varepsilon}(y+\varepsilon y_1) - X^{\mathbf{i},\,\varepsilon}(x+\varepsilon y_1)\right) X^{\mathbf{i},\,\varepsilon}(y+\varepsilon y_2) \mu(\mathrm{d} y_1,\,\mathrm{d} y_2) - \mathbf{C}^{\varepsilon}$$

in principle does not converge \Longrightarrow **RENORMALIZATION**

2. The product $v_{\varepsilon}X_{\varepsilon}$:

 $\mathcal{R}^{\varepsilon}_{t}(\mathbf{V}^{\bullet})^{\varepsilon}(x) = B^{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$ where $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) = \int v^{\varepsilon}(x + \varepsilon y_{1})X^{\bullet, \varepsilon}(x + \varepsilon y_{2})\mu(\mathrm{d}y_{1}, \mathrm{d}y_{2}).$

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger, \varepsilon}(\bar{z} + \varepsilon y_2) X^{\dagger, \varepsilon}(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term [˜]R¹•, ε
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{t}$:

$$R^{\mathbf{i}_{\bullet},\,\varepsilon}(x,y) = \int \left(X^{\mathbf{i},\,\varepsilon}(y+\varepsilon y_1) - X^{\mathbf{i},\,\varepsilon}(x+\varepsilon y_1)\right) X^{\mathbf{i},\,\varepsilon}(y+\varepsilon y_2) \mu(\mathrm{d} y_1,\,\mathrm{d} y_2) - \mathbf{C}^{\varepsilon}$$

in principle does not converge \Longrightarrow **RENORMALIZATION**

2. The product $v_{\varepsilon}X_{\varepsilon}$:

$$\mathcal{R}_t^{\varepsilon}(\mathbf{V}^{\bullet})^{\varepsilon}(x) = B^{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) - \mathbf{C}^{\varepsilon} v'^{, \varepsilon}(t, x)$$

where $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) = \int v^{\varepsilon}(x + \varepsilon y_1) X^{\bullet, \varepsilon}(x + \varepsilon y_2) \mu(\mathrm{d}y_1, \mathrm{d}y_2).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- the product is $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x)$
- the ansatz $\delta_{z,\bar{z}}v^{\varepsilon} = v', \varepsilon(z) \int (X^{\dagger, \varepsilon}(\bar{z} + \varepsilon y_2) X^{\dagger, \varepsilon}(z + \varepsilon y_2)) \mu(\mathrm{d}y_1, \mathrm{d}y_2) + \dots$
- the "ill-posed" term [˜]R¹•, ε
- 1. The Stochastic term $\tilde{R}_{\varepsilon}^{!}$:

$$\tilde{R}^{\dagger,\varepsilon}(x,y) = \int \left(X^{\dagger,\varepsilon}(y+\varepsilon y_1) - X^{\dagger,\varepsilon}(x+\varepsilon y_1) \right) X^{\bullet,\varepsilon}(y+\varepsilon y_2) \mu(\mathrm{d} y_1,\,\mathrm{d} y_2) - \mathbf{C}$$

in principle does not converge \Longrightarrow **RENORMALIZATION**

2. The product $v_{\varepsilon}X_{\varepsilon}$:

$$\mathcal{R}_{t}^{\varepsilon}(\mathbf{V}^{\bullet})^{\varepsilon}(x) = B^{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) - \mathbf{C} v^{\prime, \varepsilon}(t, x)$$

where $B_{\varepsilon}(v^{\varepsilon}, X^{\bullet, \varepsilon})(x) = \int v^{\varepsilon}(x + \varepsilon y_{1})X^{\bullet, \varepsilon}(x + \varepsilon y_{2})\mu(\mathrm{d}y_{1}, \mathrm{d}y_{2}).$

Convergence

Theorem (C.-Matetski '16)

Let ξ be a space-white noise and $\{\xi^{\varepsilon}(z)\}_{z}$ be a family of independent rescaled normal random variable converging to ξ . Let u^{ε} be the solution to

$$\bar{D}_{t,\varepsilon^2}u^{\varepsilon}(z) = \Delta_{\varepsilon}u^{\varepsilon}(z) + D_{x,\varepsilon}B_{\varepsilon}(u^{\varepsilon},u^{\varepsilon})(z) - \mathbf{C}D_{x,\varepsilon}u^{\varepsilon} + D_{x,\varepsilon}\xi^{\varepsilon}(z), \quad u^{\varepsilon}(0,\cdot) = u^{\varepsilon}_{0}(\cdot)$$

and u be the solution to

$$\partial_t u = \Delta u + \partial_x u^2 - \mathbf{C} \partial_x u + \partial_x \xi, \qquad u(0, \cdot) = u_0(\cdot)$$

then if u_0^{ε} converges to u_0 a.s. in C^{η} , then u^{ε} converges to u in probability in $C^{\alpha_{\star}-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

References

- G. Cannizzaro, K. Matetski, *Space-time discrete KPZ equation*, arXiv preprint (2016).
- M. Gubinelli, N. Perkowski, *KPZ Reloaded*, Communications in Mathematical Physics (2017).
- M. Hairer, A theory of Regularity Structures, Inventiones Mathematicae (2014).
- M. Hairer, K. Matetski, *Discretizations of Rough Stochastic PDEs*, to appear in Annals of probability.

Thank you for the attention!

• • • • • • • • • • • • •