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Introduction and Motivation The SBE Space-time discrete SBE

The KPZ Equation and its Solution

The Kardar-Parisi-Zhang equation (KPZ) is formally given by(
∂t −∆

)
h = (∂x h)2 + ξ , h(0, ·) = h0(·)

+2 ?? − 3
2
−

where h = h(t , x) is our stochastically growing height function, h0 the initial condition
and ξ is space-time white noise.

The Cole-Hopf transform, h = log w where w solves (SHE) (Bertini-Giacomin
1997)

Energy Solutions, (Goncalves-Jara 2013, Gubinelli-Jara 2013,
Gubinelli-Perkowski 2015)

Rough Paths, (Hairer 2013), Regularity Structures, (Hairer 2014) and
Paracontrolled Calculus, (Gubinelli-Perkowski 2015)

Set u def
= ∂x h, then u solves the Stochastic Burgers Equation (SBE)(

∂t −∆
)
u = ∂x u2 + ∂xξ , u(0, ·) = u0(·)
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Introduction and Motivation The SBE Space-time discrete SBE

Space-Time Discretization

Let ε > 0, Λε2,T
def
= ε2Z ∩ (0,T ] and Tε

def
= εZ ∩ T. We want to consider

(D̄t,ε2 −∆ε)uε(z) = Dx,εBε(uε, uε)(z) + Dx,εξ
ε(z) , uε(0, ·) = uε0 (·)

for z ∈ Λε2,T × Tε, where {ξε(z)}z is a family of i.i.d. mean zero normal random
variables with variance ε−3

and Bε is

Bε(f , g)(x)
def
=

∫
R2

f (x + εy1)g(x + εy2)µ(dy1, dy2) ,

where µ is a symmetric measure supported on the integers.

µ = δ(0,0), the usual pointwise product

µ = 1
3 (δ(0,0) + 1

2δ(0,1) + 1
2δ(1,0) + δ(1,1)), Zabusky/Sasamoto-Spohn

AIM: Show that, in a suitable sense, uε −→ u as ε→ 0.
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Introduction and Motivation The SBE Space-time discrete SBE

The Derivative of the KPZ Equation

Let h be the solution to the KPZ equation, then formally u def
= ∂x h satisfies(

∂t − ∆
)
u = ∂xu2 + ∂xξ, u(0, ·) = u0(·)

on [0,T ]× T, where u0 is the initial condition, ξ a space-time white noise

, ξε
def
= ξ ∗ %ε,

%ε a smooth mollifier, P is the heat kernel, P′ def
= ∂x P and Xε

def
= P′ ∗ ξε.

Infer a suitable family of processes depending on ξ, that we will denote by X

Make sense of the ill-posed operations −→ Regularity Structures

Define a map on a suitable space and show it admits a unique fixed point. −→
Schauder’s estimates
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Introduction and Motivation The SBE Space-time discrete SBE

The ill-posed product

Expand uε around Xε + Xε + 2Xε :

set uε = Xε + Xε + 2Xε + vε. Then vε solves

vε = 4Xε + 2P′ ∗ (vεXε) + P′ ∗ F εvε

where Xε ∼ 1
2
− and X ∼ − 1

2
−.

IDEAS:

Look for a solution with the following structure

v(z̄) = v(z) + v ′(z)
(
X (z̄)− X (z)

)
+ R(z, z̄)

where X = P′ ∗ X has regularity 1
2
− and R has regularity > 1

2

Then, the product to be defined is R̃ (z, z̄)
def
=
(
Xε(z̄)− Xε(z)

)
Xε(z).
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Introduction and Motivation The SBE Space-time discrete SBE

Making sense of the product and Fixed Point

We want to make sense of the product vεXε

We made the ansatz δz,z̄ v = v′(z)δz,z̄ X + C
1
2

+
, where X = P′ ∗ X

We need R̃ε (x, y)
def
=
(
Xε(y)− Xε(x)

)
Xε(x)

1. The Stochastic term R̃ε :

in principle does not converge

=⇒RENORMALIZATION

2. The product vεXε:

Theorem (Hairer ’14, Gubinelli-Perkowski ’15, C.-Matetski ’16)
There exists a unique solution u to SBE. Moreover,

the map SSBE that assigns to (u0,X) ∈ Cη ×X the solution u is jointly locally
Lipschitz continuous.

for a space-time white noise ξ, X(ξε) converges to X(ξ) in X , in probability.
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Sasamoto-Spohn type models

For ε > 0, the family of discrete models we want to consider is

(D̄t,ε2 −∆ε)uε(z) = Dx,εBε(uε, uε)(z) + Dx,εξ
ε(z) , uε(0, ·) = uε0 (·)

where

z ∈ Λε2,T × Tε for Λε2,T
def
= (0,T ] ∩ (ε2Z) and Tε

def
= T ∩ (εZ)

{ξε(z)}z is a family of i.i.d. centered normal random variables with variance ε−3

Bε is a bilinear map defined by

Bε(f , g)(x)
def
=

∫
R2

f (x + εy1)g(x + εy2)µ(dy1, dy2) ,

D̄t,ε2 is the discrete forward difference and Dx,ε, ∆ε are discrete operators

We set Pε to be the space-time discrete heat kernel and X , ε def
= Dx,εPε ∗ε ξε

.
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Expanding uε

Expand uε around X , ε + X , ε + 2X , ε:

set uε def
= X , ε + X , ε + 2X , ε + vε, so that

vε satisfies

vε = 4X , ε + 2Dx,εPε ∗ε (Bε(vε,X , ε)) + Dx,εPε ∗ε F εvε

where

IDEAS

The discrete controlled structure we can expect is

δz,z̄vε = v ′, ε(z)

∫ (
X , ε(z̄ + εy2)− X , ε(z + εy2)

)
µ(dy1, dy2) + Rε(z, z̄)

where X , ε def
= Dx,εPε ∗ε X , ε.

The term to define is then

R̃ , ε(x , y) =

∫ (
X , ε(y + εy1)− X , ε(x + εy1)

)
X , ε(y + εy2)µ(dy1, dy2)

Giuseppe Cannizzaro Space-time discrete KPZ July 15, 2017 8 / 12



Introduction and Motivation The SBE Space-time discrete SBE

Expanding uε

Expand uε around X , ε + X , ε + 2X , ε:set uε def
= X , ε + X , ε + 2X , ε + vε, so that

vε satisfies

vε = 4X , ε + 2Dx,εPε ∗ε (Bε(vε,X , ε)) + Dx,εPε ∗ε F εvε

where
Bε(vε,X , ε)(x) =

∫
vε(x + εy1)X , ε(x + εy2)µ(dy1, dy2)

IDEAS

The discrete controlled structure we can expect is

δz,z̄vε = v ′, ε(z)

∫ (
X , ε(z̄ + εy2)− X , ε(z + εy2)

)
µ(dy1, dy2) + Rε(z, z̄)

where X , ε def
= Dx,εPε ∗ε X , ε.

The term to define is then

R̃ , ε(x , y) =

∫ (
X , ε(y + εy1)− X , ε(x + εy1)

)
X , ε(y + εy2)µ(dy1, dy2)

Giuseppe Cannizzaro Space-time discrete KPZ July 15, 2017 8 / 12



Introduction and Motivation The SBE Space-time discrete SBE

Expanding uε

Expand uε around X , ε + X , ε + 2X , ε:set uε def
= X , ε + X , ε + 2X , ε + vε, so that

vε satisfies

vε = 4X , ε + 2Dx,εPε ∗ε (Bε(vε,X , ε)) + Dx,εPε ∗ε F εvε

where
Bε(vε,X , ε)(x) =

∫
vε(x + εy1)X , ε(x + εy2)µ(dy1, dy2)

IDEAS

The discrete controlled structure we can expect is

δz,z̄vε = v ′, ε(z)

∫ (
X , ε(z̄ + εy2)− X , ε(z + εy2)

)
µ(dy1, dy2) + Rε(z, z̄)

where X , ε def
= Dx,εPε ∗ε X , ε.

The term to define is then

R̃ , ε(x , y) =

∫ (
X , ε(y + εy1)− X , ε(x + εy1)

)
X , ε(y + εy2)µ(dy1, dy2)

Giuseppe Cannizzaro Space-time discrete KPZ July 15, 2017 8 / 12



Introduction and Motivation The SBE Space-time discrete SBE

Expanding uε

Expand uε around X , ε + X , ε + 2X , ε:set uε def
= X , ε + X , ε + 2X , ε + vε, so that

vε satisfies

vε = 4X , ε + 2Dx,εPε ∗ε (Bε(vε,X , ε)) + Dx,εPε ∗ε F εvε

where
Bε(vε,X , ε)(x) =

∫
vε(x + εy1)X , ε(x + εy2)µ(dy1, dy2)

IDEAS

The discrete controlled structure we can expect is

δz,z̄vε = v ′, ε(z)

∫ (
X , ε(z̄ + εy2)− X , ε(z + εy2)

)
µ(dy1, dy2) + Rε(z, z̄)

where X , ε def
= Dx,εPε ∗ε X , ε.

The term to define is then

R̃ , ε(x , y) =

∫ (
X , ε(y + εy1)− X , ε(x + εy1)

)
X , ε(y + εy2)µ(dy1, dy2)

Giuseppe Cannizzaro Space-time discrete KPZ July 15, 2017 8 / 12



Introduction and Motivation The SBE Space-time discrete SBE

Discrete Product and Renormalization

the product is Bε(vε, X , ε)(x)

the ansatz δz,z̄ vε = v′, ε(z)
∫ (

X , ε(z̄ + εy2)− X , ε(z + εy2)
)
µ(dy1, dy2) + . . .

the “ill-posed” term R̃ , ε

1. The Stochastic term R̃ε :

in principle does not converge

=⇒RENORMALIZATION

2. The product vεXε:

where Bε(vε,X , ε)(x) =
∫

vε(x + εy1)X , ε(x + εy2)µ(dy1, dy2).
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Convergence

Theorem (C.-Matetski ’16)
Let ξ be a space-white noise and {ξε(z)}z be a family of independent rescaled normal
random variable converging to ξ. Let uε be the solution to

D̄t,ε2 uε(z) = ∆εuε(z) + Dx,εBε(uε, uε)(z)− CDx,εuε + Dx,εξ
ε(z) , uε(0, ·) = uε0 (·)

and u be the solution to

∂tu = ∆u + ∂x u2 − C∂x u + ∂xξ , u(0, ·) = u0(·)

then if uε0 converges to u0 a.s. in Cη, then uε converges to u in probability in Cα?−1.
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Thank you for the attention!
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