A limit theorem for the moments in space of Browian local time increments

Simon Campese

LMS EPSRC Durham Symposium July 18, 2017

Motivation

Theorem (Marcus, Rosen, 2006)

As
$$h o 0$$
,

$$\int_{-\infty}^{\infty} \left| \frac{L_t^{x+h} - L_t^x}{\sqrt{h}} \right|^q dx \xrightarrow{a.s.} C_q \int_{-\infty}^{\infty} (L_t^x)^{q/2} dx$$

Theorem (Chen, Li, Marcus, Rosen, 2010)

For $h \rightarrow 0$,

$$\frac{1}{h^{3/2}} \left(\int_{-\infty}^{\infty} \left(\mathcal{L}_t^{x+h} - \mathcal{L}_t^{x} \right)^2 \, \mathrm{d}x - 4ht \right) \xrightarrow{d} c_2 \sqrt{\int_{-\infty}^{\infty} (\mathcal{L}_t^{x})^2 \, \mathrm{d}x} \, \, Z,$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

Theorem (Chen, Li, Marcus, Rosen, 2010)

For $h \rightarrow 0$,

$$\frac{1}{h^{3/2}} \left(\int_{-\infty}^{\infty} \left(\mathcal{L}_t^{x+h} - \mathcal{L}_t^{x} \right)^2 \, \mathrm{d}x - 4ht \right) \xrightarrow{d} c_2 \sqrt{\int_{-\infty}^{\infty} (\mathcal{L}_t^{x})^2 \, \mathrm{d}x} \, \, Z,$$

where $\mathbf{Z} \sim \mathcal{N}(0,1)$, independent of $(\mathbf{L}_{t}^{\mathbf{x}})_{\mathbf{x} \in \mathbb{R}}$.

Proof by Method of Moments

Theorem (Chen, Li, Marcus, Rosen, 2010)

For $h \rightarrow 0$,

$$\frac{1}{h^{3/2}} \left(\int_{-\infty}^{\infty} \left(\mathcal{L}_t^{x+h} - \mathcal{L}_t^{x} \right)^2 \, \mathrm{d}x - 4ht \right) \xrightarrow{d} c_2 \sqrt{\int_{-\infty}^{\infty} (\mathcal{L}_t^{x})^2 \, \mathrm{d}x} \ \textit{\textbf{Z}},$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^{\mathsf{X}})_{\mathsf{X} \in \mathbb{R}}$.

- · Proof by Method of Moments
- Alternative proof by Hu/Nualart (2009) using Malliavin calculus

Theorem (Chen, Li, Marcus, Rosen, 2010)

For $h \rightarrow 0$,

$$\frac{1}{h^{3/2}} \left(\int_{-\infty}^{\infty} \left(\mathcal{L}_t^{x+h} - \mathcal{L}_t^{x} \right)^2 \, \mathrm{d}x - 4ht \right) \xrightarrow{d} c_2 \sqrt{\int_{-\infty}^{\infty} (\mathcal{L}_t^{x})^2 \, \mathrm{d}x} \ Z,$$

where $Z \sim \mathcal{N}(0,1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

- · Proof by Method of Moments
- Alternative proof by Hu/Nualart (2009) using Malliavin calculus
- Another proof by Rosen (2011) using self-intersection local times

CLT for third moment in space

Theorem (Rosen, 2011)

For $h \rightarrow 0$,

$$\frac{1}{h^2} \int_{-\infty}^{\infty} \left(\mathcal{L}_t^{x+h} - \mathcal{L}_t^x \right)^3 \, \mathrm{d}x \xrightarrow{d} c_3 \sqrt{\int_{-\infty}^{\infty} (\mathcal{L}_t^x)^3 \, \mathrm{d}x} \, \, Z,$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

CLT for third moment in space

Theorem (Rosen, 2011)

For $h \to 0$,

$$\frac{1}{h^2} \int_{-\infty}^{\infty} \left(L_t^{x+h} - L_t^x \right)^3 \, \mathrm{d}x \xrightarrow{d} c_3 \sqrt{\int_{-\infty}^{\infty} (L_t^x)^3 \, \mathrm{d}x} \ Z,$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

Again, proof by Method of Moments

CLT for third moment in space

Theorem (Rosen, 2011)

For $h \rightarrow 0$,

$$\frac{1}{h^2} \int_{-\infty}^{\infty} \left(L_t^{x+h} - L_t^x \right)^3 \, \mathrm{d}x \xrightarrow{d} c_3 \sqrt{\int_{-\infty}^{\infty} (L_t^x)^3 \, \mathrm{d}x} \ Z,$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

- Again, proof by Method of Moments
- Malliavin calculus proof by Hu/Nualart (2010)

Conjecture for fourth moment in space

Conjecture (Rosen, 2011)

For $h \to 0$,

$$\begin{split} \frac{1}{h^{5/2}} \Bigg(\int_{-\infty}^{\infty} \left(\Delta_h \mathcal{L}_t^x \right)^4 \, \mathrm{d}x \\ &- 24 h \int_{-\infty}^{\infty} \left(\Delta_h \mathcal{L}_t^x \right)^2 \mathcal{L}_t^x \, \mathrm{d}x + 48 h^2 \int_{-\infty}^{\infty} \left(\mathcal{L}_t^x \right)^2 \, \mathrm{d}x \Bigg) \\ & \qquad \qquad \frac{d}{\to} \, c_4 \sqrt{\int_{-\infty}^{\infty} \left(\mathcal{L}_t^x \right)^4 \, \mathrm{d}x} \, \, Z, \end{split}$$

where $Z \sim \mathcal{N}(0,1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

Main result: Limit theorem for any moment

Theorem (C., 2016)

For $h \to 0$,

$$\begin{split} \frac{1}{h^{(q+1)/2}} & \left(\int_{-\infty}^{\infty} \left(\Delta_h \mathcal{L}_t^x \right)^q \, \mathrm{d}x \right. \\ & + \sum_{k=1}^{\lfloor \frac{q}{2} \rfloor} h^k a_{q,k} \int_{-\infty}^{\infty} \left(\Delta_h \mathcal{L}_t^x \right)^{q-2k} \left(4\mathcal{L}_t^x \right)^k \, \mathrm{d}x \right) \\ & \qquad \qquad \stackrel{d}{\to} c_q \sqrt{\int_{-\infty}^{\infty} \left(\mathcal{L}_t^x \right)^q \, \mathrm{d}x} \; Z, \end{split}$$

where $Z \sim \mathcal{N}(0,1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

Key ingredient: Kailath-Segall identity

For continuous L^2 -martingale $(M_x)_{x\in\mathbb{R}}$, define iterated integrals $I_0(x)=1$,

$$I_1(x) = \int_{-\infty}^x \mathrm{d} M_u \quad \text{and} \quad I_q(x) = \int_{-\infty}^x I_{q-1}(u) \, \mathrm{d} M_u.$$

Key ingredient: Kailath-Segall identity

For continuous L^2 -martingale $(M_x)_{x\in\mathbb{R}}$, define iterated integrals $I_0(x)=1$,

$$I_1(x) = \int_{-\infty}^x \mathrm{d} M_u \qquad \text{and} \qquad I_q(x) = \int_{-\infty}^x I_{q-1}(u) \, \mathrm{d} M_u.$$

Theorem (Kailath, Segall, 1976)

$$q\,I_q(x) = I_{q-1}(x)\,M_x - I_{q-2}(x)\,\langle M,M\rangle_x$$

Key ingredient: Kailath-Segall identity

For continuous L^2 -martingale $(M_x)_{x\in\mathbb{R}}$, define iterated integrals $I_0(x)=1$,

$$I_1(x) = \int_{-\infty}^x \mathrm{d} M_u \qquad \text{and} \qquad I_q(x) = \int_{-\infty}^x I_{q-1}(u) \, \mathrm{d} M_u.$$

Theorem (Kailath, Segall, 1976)

$$q I_q(x) = I_{q-1}(x) M_x - I_{q-2}(x) \langle M, M \rangle_x$$

Recursively,

$$q! I_q(x) = \sum_{k=0}^{\lfloor \frac{q}{2} \rfloor} a_{q,k} M_x^{q-2k} \langle M, M \rangle_x^k$$

• Perkins, 1981: $(L_t^x)_{x\in\mathbb{R}}$ is continuous semimartingale with quadratic variation $4\int_{-\infty}^x L_t^u \, \mathrm{d}u$

- Perkins, 1981: $(L_t^x)_{x\in\mathbb{R}}$ is continuous semimartingale with quadratic variation $4\int_{-\infty}^x L_t^u \, \mathrm{d}u$
- Write $\Delta_h L_t^x = \Delta_h M_x + \Delta_h V_x$.

- Perkins, 1981: $(L_t^x)_{x \in \mathbb{R}}$ is continuous semimartingale with quadratic variation $4 \int_{-\infty}^x L_t^u \, du$
- Write $\Delta_h L_t^x = \Delta_h M_x + \Delta_h V_x$.
- Binomial theorem and stochastic analysis:

$$\int_{-\infty}^{\infty} \left(\Delta_h L_t^x\right)^q \, \mathrm{d}x = \int_{-\infty}^{\infty} \left(\Delta_h M_x\right)^q \, \mathrm{d}x + o\left(h^{(q+1)/2}\right)$$

- Perkins, 1981: $(L_t^x)_{x\in\mathbb{R}}$ is continuous semimartingale with quadratic variation $4\int_{-\infty}^x L_t^u \, \mathrm{d}u$
- Write $\Delta_h L_t^x = \Delta_h M_x + \Delta_h V_x$.
- Binomial theorem and stochastic analysis:

$$\int_{-\infty}^{\infty} \left(\Delta_h L_t^x\right)^q \, \mathrm{d}x = \int_{-\infty}^{\infty} \left(\Delta_h M_x\right)^q \, \mathrm{d}x + o\left(h^{(q+1)/2}\right)$$

· Kailath-Segall:

$$(M_x)^q = q! \quad I_q(x) - \sum_{k=1}^{\lfloor \frac{q}{2} \rfloor} a_{q,k} (M_x)^{q-2k} (\langle M, M \rangle_x)^k$$

- Perkins, 1981: $(L_t^X)_{x\in\mathbb{R}}$ is continuous semimartingale with quadratic variation $4\int_{-\infty}^X L_t^u \, \mathrm{d}u$
- Write $\Delta_h L_t^x = \Delta_h M_x + \Delta_h V_x$.
- Binomial theorem and stochastic analysis:

$$\int_{-\infty}^{\infty} \left(\Delta_h L_t^x\right)^q \, \mathrm{d}x = \int_{-\infty}^{\infty} \left(\Delta_h M_x\right)^q \, \mathrm{d}x + o\left(h^{(q+1)/2}\right)$$

• Kailath-Segall: $\left(\text{consider martingale }\left(\int_{x}^{y}\mathrm{d}M_{u}\right)_{y\geq x}\text{ at }y=x+h\right)$

$$\left(\Delta_{h} M_{x}\right)^{q} = q! \Delta_{h} I_{q}(x) - \sum_{k=1}^{\lfloor \frac{q}{2} \rfloor} a_{q,k} \left(\Delta_{h} M_{x}\right)^{q-2k} \left(\Delta_{h} \langle M, M \rangle_{x}\right)^{k}$$

CLT for dominating term

Theorem (C., 2016)

For $h \rightarrow 0$,

$$\frac{1}{h^{(q+1)/2}} \int_{-\infty}^{\infty} q! \Delta_h I_q(x) \, \mathrm{d}x \xrightarrow{d} c_q \sqrt{\int_{-\infty}^{\infty} \left(L_t^x \right)^q \, \mathrm{d}x} \; Z,$$

where $Z \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

Key ingredient: asymptotic Ray-Knight theorem

- (M_x^h) , (N_x^h) sequences of continuous L^2 -martingales
- $(\beta_{\mathbf{x}}^h)$, $(\gamma_{\mathbf{x}}^h)$ Dambis-Dubins-Schwarz Brownian motions

Theorem (Revuz, Yor, 1999)

If

$$\sup_{\mathbf{x} \in [-\infty, a]} \left| \left\langle \mathbf{M}^h, \mathbf{N}^h \right\rangle_{\mathbf{x}} \right| \xrightarrow{prob.} 0$$

as $h \to 0$, then (β_x^h, γ_x^h) converges in distribution to a two-dimensional standard Brownian motion.

Iterated stochastic Fubini:

$$\int_{-\infty}^{\infty} \Delta_h I_q(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \int_x^{x+h} \int_{-\infty}^{u_1} \cdots \int_{-\infty}^{u_{q-1}} \, \mathrm{d}M_{u_q} \cdots \, \mathrm{d}M_{u_2} \, \mathrm{d}M_{u_1} \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \int_{u_1-h}^{u_1} \int_{u_1-h}^{u_2} \cdots \int_{u_1-h}^{u_q} \, \mathrm{d}x \, \mathrm{d}M_{u_q} \cdots \, \mathrm{d}M_{u_2} \, \mathrm{d}M_{u_1}$$

$$= \int_{-\infty}^{\infty} K_{q,h}(u_1) \, \mathrm{d}M_{u_1}$$

• Iterated stochastic Fubini:

$$\int_{-\infty}^{\infty} \Delta_h I_q(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \int_x^{x+h} \int_{-\infty}^{u_1} \cdots \int_{-\infty}^{u_{q-1}} \, \mathrm{d}M_{u_q} \cdots \, \mathrm{d}M_{u_2} \, \mathrm{d}M_{u_1} \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \int_{u_1-h}^{u_1} \int_{u_1-h}^{u_2} \cdots \int_{u_1-h}^{u_q} \, \mathrm{d}x \, \mathrm{d}M_{u_q} \cdots \, \mathrm{d}M_{u_2} \, \mathrm{d}M_{u_1}$$

$$= \int_{-\infty}^{\infty} K_{q,h}(u_1) \, \mathrm{d}M_{u_1}$$

• Define martingale $(\widetilde{M}_x^h)_{x \ge -\infty}$ by

$$\widetilde{M}_{x}^{h} = \frac{q!}{h^{(q+1)/2}} \int_{-\infty}^{x} K_{q,h}(u_1) dM_{u_1}$$

· Use Burkholder-Davis-Gundy-type arguments to show that

$$\sup_{\mathbf{x} \in (-\infty, \mathbf{x}_0]} \left| \left\langle \widetilde{\mathbf{M}}^h, \mathbf{M} \right\rangle_{\mathbf{x}} \right| \xrightarrow{L^1} 0$$

for $x_0 \ge -\infty$ and

$$\left\langle \widetilde{M}^h, \widetilde{M}^h \right\rangle_{x} \xrightarrow{L^1} c_q^2 \int_{-\infty}^{x} \left(L_t^u \right)^q du$$

for $x \in \mathbb{R} \cup \{-\infty, \infty\}$.

· Asymptotic Ray-Knight:

$$\left(\beta, \beta^h, \left\langle \widetilde{\mathbf{M}}^h, \widetilde{\mathbf{M}}^h \right\rangle \right) \stackrel{d}{\to} \left(\beta, \widetilde{\beta}, c_q^2 \int_{-\infty}^{\cdot} (\mathcal{L}_t^u)^q \, \mathrm{d}u \right),$$

where β , β^h DDS-Brownian motions of M and \widetilde{M}^h , respectively

· Asymptotic Ray-Knight:

$$\left(\beta,\beta^h,\left\langle\widetilde{M}^h,\widetilde{M}^h\right\rangle\right)\overset{d}{\to}\left(\beta,\widetilde{\beta},c_q^2\int_{-\infty}^{\cdot}(L_t^u)^q\,\mathrm{d}u\right),$$

where β , β^h DDS-Brownian motions of M and \widetilde{M}^h , respectively

· Consequently:

$$\widetilde{M}^h_x = \beta^h_{\left\langle \widetilde{M}^h, \widetilde{M}^h \right\rangle_x} \xrightarrow{d} \widetilde{\beta}_{c_q^2 \int_{-\infty}^x (L_t^u)^q \, \mathrm{d}u}.$$

· Asymptotic Ray-Knight:

$$\left(\beta,\beta^h,\left\langle\widetilde{\mathbf{M}}^h,\widetilde{\mathbf{M}}^h\right\rangle\right)\overset{d}{\to}\left(\beta,\widetilde{\beta},\mathbf{c}_q^2\int_{-\infty}^{\cdot}(L_t^u)^q\,\mathrm{d}u\right),$$

where β , β^h DDS-Brownian motions of M and \widetilde{M}^h , respectively

· Consequently:

$$\widetilde{M}^h_x = \beta^h_{\left\langle \widetilde{M}^h, \widetilde{M}^h \right\rangle_x} \xrightarrow{d} \widetilde{\beta}_{c_q^2 \int_{-\infty}^x (L_t^u)^q \, \mathrm{d}u}.$$

• Letting $x \to \infty$ finishes proof

Comparison with literature

• For q=2 and q=3: new proofs of CLT by Rosen et al.

Comparison with literature

- For q = 2 and q = 3: new proofs of CLT by Rosen et al.
- For q = 4, conjecture by Rosen confirmed

Generalizations

Time variable t can be replaced by suitable stopping time

Generalizations

- Time variable t can be replaced by suitable stopping time
- In principle, Brownian motion should be replaceable with more general square-integrable martingale

Generalizations

- Time variable t can be replaced by suitable stopping time
- In principle, Brownian motion should be replaceable with more general square-integrable martingale
- analogously, one expects to be able to prove analogous results for more general functions than powers

Generalizations (cont.)

Theorem (C., 2016)

$$\frac{1}{\sqrt{h}} \left(\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^q Y_{t,x} dx + \sum_{k=1}^{\lfloor \frac{q}{2} \rfloor} a_{q,k} \int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^{q-2k} (4 L_t^x)^k Y_{t,x} dx \right) \\
\stackrel{d}{\longrightarrow} c_q \sqrt{\int_{-\infty}^{\infty} (L_t^x)^q Y_{t,x} dx} Z,$$

 $(Y_{t,x})_{x\in\mathbb{R}}$ non-negative and nice.

Generalizations (cont.)

In particular, for $n \in \mathbb{N}_0$:

$$\begin{split} \frac{1}{\sqrt{h}} \Bigg(\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^q \frac{\left(L_t^x \right)^n}{\left(L_t^x \right)^n} \, \mathrm{d}x \\ + \sum_{k=1}^{\lfloor \frac{q}{2} \rfloor} a_{q,k} \int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^{q-2k} \left(4 L_t^x \right)^k \frac{\left(L_t^x \right)^n}{\mathrm{d}x} \, \mathrm{d}x \Bigg) \\ & \stackrel{d}{\to} c_q \sqrt{\int_{-\infty}^{\infty} \left(L_t^x \right)^{q+n} \, \mathrm{d}x} \, Z, \end{split}$$

Question

Recursive argument should yield:

$$\begin{split} \frac{1}{\sqrt{h}} \left(\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^q \, \mathrm{d}x - C_q \int_{-\infty}^{\infty} \left(L_t^x \right)^{q/2} \, \mathrm{d}x \right) \\ \xrightarrow{d} \widetilde{C}_q \sqrt{\int_{-\infty}^{\infty} \left(L_t^x \right)^q \, \mathrm{d}x} \, Z, \end{split}$$

with C_{2p} given by Marcus/Rosen (2006).

Question

Recursive argument should yield:

$$\begin{split} \frac{1}{\sqrt{h}} \left(\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^q \, \mathrm{d}x - C_q \int_{-\infty}^{\infty} \left(L_t^x \right)^{q/2} \, \mathrm{d}x \right) \\ \xrightarrow{d} \widetilde{C}_q \sqrt{\int_{-\infty}^{\infty} \left(L_t^x \right)^q \, \mathrm{d}x} \, Z, \end{split}$$

with C_{2p} given by Marcus/Rosen (2006).

Unfortunately, didn't succeed to make this rigorous using this approach.

Theorem (C., Podolskij, 2017+)

For f with polynomial growth,

$$\int_{-\infty}^{\infty} \! f\!\left(\frac{\Delta_h \mathcal{L}_t^{\mathsf{X}}}{\sqrt{h}}\right) \, \mathrm{d} x \xrightarrow{P} \int_{-\infty}^{\infty} \mathrm{E}\left[\! f\!\left(2\sqrt{\mathcal{L}_t^{\mathsf{X}}} \, N\right) \right] \, \mathrm{d} x,$$

where N $\sim \mathcal{N}(0,1)$, independent of $(L_t^{\mathbf{X}})_{\mathbf{X} \in \mathbb{R}}$.

Theorem (C., Podolskij, 2017+)

For f with polynomial growth,

$$\int_{-\infty}^{\infty} \! f\!\left(\frac{\Delta_h \mathcal{L}_t^{x}}{\sqrt{h}}\right) \,\mathrm{d}x \xrightarrow{P} \int_{-\infty}^{\infty} \mathrm{E}\left[\! f\!\left(2\sqrt{\mathcal{L}_t^{x}}\,N\right)\right] \,\mathrm{d}x,$$

where N $\sim \mathcal{N}(0,1)$, independent of $(L_t^{\mathbf{X}})_{\mathbf{X} \in \mathbb{R}}$.

· Heuristic for proof as before:

$$\frac{\Delta_h L_t^x}{\sqrt{h}} \approx 2 L_t^x \frac{\Delta_h B_t^x}{\sqrt{h}}$$

Theorem (C., Podolskij, 2017+)

For f with polynomial growth,

$$\int_{-\infty}^{\infty} f\left(\frac{\Delta_h L_t^x}{\sqrt{h}}\right) \, \mathrm{d}x \overset{P}{\to} \int_{-\infty}^{\infty} \mathrm{E}\left[f\left(2\sqrt{L_t^x}\,N\right)\right] \, \mathrm{d}x,$$

where $N \sim \mathcal{N}(0,1)$, independent of $(L_t^{\mathsf{X}})_{\mathsf{X} \in \mathbb{R}}$.

· Heuristic for proof as before:

$$\frac{\Delta_h L_t^x}{\sqrt{h}} \approx 2L_t^x \frac{\Delta_h B_t^x}{\sqrt{h}}$$

small/big blocks technique to break asymptotic dependence of increments

In particular:

$$\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}}\right)^q \, \mathrm{d}x \overset{P}{\to} C_q \int_{-\infty}^{\infty} \left(L_t^x\right)^{q/2} \, \mathrm{d}x,$$

with $C_{2p+1} = 0$.

Theorem (C., Podolskij, 2017+)

For $f \in C^1(\mathbb{R})$ such that f, f' have polynomial growth,

$$\frac{1}{\sqrt{h}} \left(\int_{-\infty}^{\infty} f\left(\frac{\Delta_h L_t^x}{\sqrt{h}}\right) dx - \int_{-\infty}^{\infty} \operatorname{E}\left[f\left(2\sqrt{L_t^x} \, N\right) \, \middle| \, L_t^x \right] dx \right)$$

$$\xrightarrow{d} \sqrt{\int_{-\infty}^{\infty} U_f\left(2\sqrt{L_t^x}\right) dx} \, Z$$

where $Z, N \sim \mathcal{N}(0, 1)$, independent of $(L_t^x)_{x \in \mathbb{R}}$.

In particular:

$$\frac{1}{\sqrt{h}} \left(\int_{-\infty}^{\infty} \left(\frac{\Delta_h L_t^x}{\sqrt{h}} \right)^q \, \mathrm{d}x - C_q \int_{-\infty}^{\infty} \left(L_t^x \right)^{q/2} \, \mathrm{d}x \right) \xrightarrow{d} \widetilde{C}_q \sqrt{\int_{-\infty}^{\infty} \left(L_t^x \right)^q \, \mathrm{d}x} \, Z.$$