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Motivation

Theorem (Marcus, Rosen, 2006)
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CLT for second moment in space

Theorem (Chen, Li, Marcus, Rosen, 2010)
For h — 0,
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where Z ~ N'(0, 1), independent of (L¥)xcr-

+ Proof by Method of Moments
« Alternative proof by Hu/Nualart (2009) using Malliavin calculus
« Another proof by Rosen (2011) using self-intersection local times
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CLT for third moment in space

Theorem (Rosen, 2011)
Forh — 0,
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where Z ~ N(0,1), independent of (L})xcr-
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CLT for third moment in space

Theorem (Rosen, 2011)
For h — 0,
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where Z ~ N(0,1), independent of (L})xcr-

« Again, proof by Method of Moments
 Malliavin calculus proof by Hu/Nualart (2010)

4/21



Conjecture for fourth moment in space

Conjecture (Rosen, 2011)
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where Z ~ N(0, 1), independent of (L})xcr.
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Main result: Limit theorem for any moment

Theorem (C., 2016)

For h — 0,

where Z ~ N(0,1), independent of (Lf)xer.
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Key ingredient: Kailath-Segall identity

For continuous L?-martingale (My)ycr, define iterated integrals
Io(X) = 1,

I1(x):/x dM, and Iq(x):/x lg—1(u) dM,.
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Key ingredient: Kailath-Segall identity

For continuous L?-martingale (My)ycr, define iterated integrals
Io(X) = 1,

Ii(x) = / dM, and lg(x) = / lg—1(u) dM,.
Theorem (Kailath, Segall, 1976)
qlq(x) = lg—1(x) Mx — lg—2(x) (M, M),

Recursively,
12] )
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Isolation of dominating term

« Perkins, 1981: (L})xer is continuous semimartingale with quadratic
variation 4 [*__ 1¢du
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Isolation of dominating term

Perkins, 1981: (Lf)xcr is continuous semimartingale with quadratic
variation 4 [*__ 1¢du

« Write Ahl.if = ApM,y + ApVy.

+ Binomial theorem and stochastic analysis:

/ (AL dx = / (ApM)7 dx + 0 (h(q—i—l)/Z)

—00

- Kailath-Segall:  (consider martingale ( [ dMu)y>X aty =x+h)
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CLT for dominating term

Theorem (C., 2016)
Forh — 0,
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where Z ~ N(0, 1), independent of (L})xcr.
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Key ingredient: asymptotic Ray-Knight theorem

« (M), (N sequences of continuous L?-martingales
- (B, (v) Dambis-Dubins-Schwarz Brownian motions

Theorem (Revuz, Yor, 1999)

If
prob.
—

sup 0

X€[—00,q]

<Mh,Nh>
X

as h — 0, then (87,4 converges in distribution to a two-dimensional
standard Brownian motion.
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Proof of CLT for dominating term

- Iterated stochastic Fubini:
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Proof of CLT for dominating term

- Iterated stochastic Fubini:

00 00 x+h  pui Ug—1
/ Ah’q(X)dX:/ / / "'/ dMqu"' dMU2 dMuldX
/ / / ddeuq ... dMy, dMy,
uy— uy up—

—/_OOK p(ur) dMy,

- Define martingale (Mf),>_., by

' X
M= / Koup(1) My,
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Proof of CLT for dominating term

+ Use Burkholder-Davis-Gundy-type arguments to show that
sup <I\71h, M> E—) 0
X

XG(—OO,X()]

for xo > —oo and

<,;,h,;,h> Lo (Y i
, — Cq (L) du

X

forx e RU{—o00,0}.
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Proof of CLT for dominating term

+ Asymptotic Ray-Knight:

(86" (M. M")) % (B,B’, F 'm(L?)qdu) :

where 3, 8" DDS-Brownian motions of M and mh, respectively
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Proof of CLT for dominating term

+ Asymptotic Ray-Knight:

(86" (M. M")) % (B,B’, F 'w(L?)qdu) :

where 3, 8" DDS-Brownian motions of M and mh, respectively
+ Consequently:

h h d
My = Blgn jany = Bez p*_yoau-

+ Letting x — oo finishes proof
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Comparison with literature

« For g = 2 and q = 3: new proofs of CLT by Rosen et al.
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Comparison with literature

« For g = 2 and q = 3: new proofs of CLT by Rosen et al.
» For g = 4, conjecture by Rosen confirmed
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Generalizations

- Time variable t can be replaced by suitable stopping time
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Generalizations

- Time variable t can be replaced by suitable stopping time

« In principle, Brownian motion should be replaceable with more
general square-integrable martingale

- analogously, one expects to be able to prove analogous results for
more general functions than powers
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Generalizations (cont.)

Theorem (C., 2016)
[ %)qy dx
ﬁ</_m( Vh )
AL\ 972
+Zaqk/ (\/F) (4’-f)kYt,de)

Cq\// (Lis)q Yt,x dXZ7

(Ytx)xer non-negative and nice.
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Generalizations (cont.)

In particular, for n € Np:
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Question

Recursive argument should yield:

5 () ae er

with Cop, given by Marcus/Rosen (2006).
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Question

Recursive argument should yield:

5 () ae er

with Cop, given by Marcus/Rosen (2006).

Unfortunately, didn’t succeed to make this rigorous using this
approach.
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small/big blocks approach (w/ M. Podolskij)

Theorem (C., Podolskij, 2017+)
For f with polynomial growth,
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where N ~ N (0, 1), independent of (L), -
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small/big blocks approach (w/ M. Podolskij)

Theorem (C., Podolskij, 2017+)
For f with polynomial growth,

/_Zf(ﬁjg)dxs/:E[f(g )| ax,

where N ~ N (0, 1), independent of (L), -

« Heuristic for proof as before:

- small/big blocks technique to break asymptotic dependence of
increments
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small/big blocks approach (w/ M. Podolskij)

In particular:

00 x\ 9 0
[ () [ e

with C2p+1 =0.
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small/big blocks approach (w/ M. Podolskij)

Theorem (C., Podolskij, 2017+)
For f € C1(R) such that f, f' have polynomial growth,
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where Z,N ~ N'(0, 1), independent of (Lf) cp-
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small/big blocks approach (w/ M. Podolskij)

In particular:
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