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Motivation

Caglioti et.al [5] studied 2D NSEs in R2 with constraints

E(ω) =

∫
R2

ψ(x)ω(x) dx =

∫
R2

|u(x)|2 dx = a,

I(ω) =

∫
R2

|x|2ω(x) dx = b,

where
ω = curl u, ψ = −(∆)−1ω.

They proved that for a certain stationary solution ωMF of the Euler equation (in the
vorticity form) with constraints a, b, for every initial data ω0 ”close enough” ωMF

with the same constraints a, b;

ω(t)→ ωMF , as t→∞,

where ω(t) is the solution of the NSEs (in the vorticity form) with inital data ω0 and
the same constraints.
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Motivation

Rybka [7] and Caffarelli & Lin [4] studied heat equation with constraint

|u|L2 = 1. (1)

The heat equation is given by
∂ u

∂ t
= −Au, (2)

where Au = −∆u is a self adjoint operator on H.

We define a Hilbert manifold

M = {u ∈ H : |u|H = 1}. (3)

Note that Au /∈ TuM for u ∈M but Πu(−Au) ∈ TuM for every u ∈M, where

Πu : H 3 x 7→ x− 〈x, u〉H u ∈ TuM = {y ∈ H : 〈u, y〉H = 0} (4)

is the orthogonal projection.

Since Πu(−Au) = −Au+ |A1/2u|2Hu, we get

∂ u

∂ t
= −Au+ |A1/2|2Hu. (5)

Zdzislaw Brzeźniak (York) Constrained NSEs July 10, 2017 3 / 19



Motivation

Rybka [7] and Caffarelli & Lin [4] studied heat equation with constraint

|u|L2 = 1. (1)

The heat equation is given by
∂ u

∂ t
= −Au, (2)

where Au = −∆u is a self adjoint operator on H.

We define a Hilbert manifold

M = {u ∈ H : |u|H = 1}. (3)

Note that Au /∈ TuM for u ∈M but Πu(−Au) ∈ TuM for every u ∈M, where

Πu : H 3 x 7→ x− 〈x, u〉H u ∈ TuM = {y ∈ H : 〈u, y〉H = 0} (4)

is the orthogonal projection.

Since Πu(−Au) = −Au+ |A1/2u|2Hu, we get

∂ u

∂ t
= −Au+ |A1/2|2Hu. (5)
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Constrained Heat equation

A special case of heat equation with Dirichlet boundary condition
∂ u

∂ t
= ∆u+ |∇u|2L2u

u(0) = u0

(6)

Note that the heat equation (2) can be seen as an L2−gradient flow of energy

E(u) =
1

2

∫
O
|∇u(x)|2 dx, (7)

as formally −∇L2E(u) = ∆u.

Similarly, the constrained heat equation (6) can be seen as the gradient flow of E
restricted to the manifold M with L2−metric on the ”tangent bundle”.
In fact one can prove that the solution of (6) with u0 ∈ H1

0 (O) ∩M satisfies

E(u(t)) +

∫ t

0

|∆u(s) + |∇u|2L2u(s)|2L2 ds = E(u(0)) (8)

from which one can deduce the global existence.

An essential step in proving the global existence is to establish the invariance of M.
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Navier-Stokes equations

We consider NSEs 
∂ u

∂ t
+Au+B(u, u) = 0

u(0) = u0

(9)

which is an abstract form of
∂ u

∂ t
− ν∆u+ u · ∇u+∇p = 0,

div u = 0,

u(0, ·) = u0(·).

Here
B(u, u) = Π(u · ∇u) (10)

where Π : L2(O)→ H is the orthogonal projection.

H = {u ∈ L2(O) : div u = 0

and u|∂O · n = 0 (Dirichlet b.c.)

or

∫
O
u(x) dx = 0 (Torus)} (11)

Zdzislaw Brzeźniak (York) Constrained NSEs July 10, 2017 5 / 19



Navier-Stokes equations

We consider NSEs 
∂ u

∂ t
+Au+B(u, u) = 0

u(0) = u0

(9)

which is an abstract form of
∂ u

∂ t
− ν∆u+ u · ∇u+∇p = 0,

div u = 0,

u(0, ·) = u0(·).

Here
B(u, u) = Π(u · ∇u) (10)

where Π : L2(O)→ H is the orthogonal projection.

H = {u ∈ L2(O) : div u = 0

and u|∂O · n = 0 (Dirichlet b.c.)

or

∫
O
u(x) dx = 0 (Torus)} (11)
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Constrained Navier-Stokes equations

We put M = {u ∈ H : |u|L2 = 1}.
The projected version of (9) can be found in a similar way as before.

Note
Πu(B(u, u)) = B(u, u)− 〈B(u, u), u〉H︸ ︷︷ ︸

=0

u = B(u, u). (12)

So we get 
∂ u

∂ t
+Au+B(u, u) = |∇u|2L2u

u(0) = u0 ∈ V ∩M,
(13)

where V = H1,2
0 ∩M or H1,2 ∩M.

We can show existence of a local maximal solution u(t), t < τ which lies on M.

However to prove the global existence one needs to assume that we deal with
periodic boundary conditions (or torus), because then

〈Au,B(u, u)〉H = 0.
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Global existence for Constrained NSEs

Since
‖u‖2V = |u|2H + |∇u|2L2 = |u|2H + 2E(u)

and the L2−norm of u(t) doesn’t explode. In order to show that ‖u(t)‖2V doesn’t
explode, it suffices to show that |∇u(t)|L2 neither does.

Formally, we have

1

2

d

dt
|∇u(t)|2L2 = 〈u′, A u〉L2 = 〈−Au−B(u, u) + |∇u|2L2u,Au〉L2

= −|Au|2L2 + |∇u|4L2 . (14)

But recall

∇ME(u) = Πu(∇uE(u)) = Πu(Au) = Au− |∇u|2L2u. (15)

Thus

|∇ME(u)|2L2 = |Au|2 + |∇u|4L2 |u|2L2︸ ︷︷ ︸
=1

−2|∇u|2L2 〈u,Au〉L2︸ ︷︷ ︸
= |∇u|2

L2

= |Au|2L2 − |∇u|4L2 . (16)
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Zdzislaw Brzeźniak (York) Constrained NSEs July 10, 2017 7 / 19



Global existence for Constrained NSEs

Since
‖u‖2V = |u|2H + |∇u|2L2 = |u|2H + 2E(u)

and the L2−norm of u(t) doesn’t explode. In order to show that ‖u(t)‖2V doesn’t
explode, it suffices to show that |∇u(t)|L2 neither does.

Formally, we have

1

2

d

dt
|∇u(t)|2L2 = 〈u′, A u〉L2 = 〈−Au−B(u, u) + |∇u|2L2u,Au〉L2

= −|Au|2L2 + |∇u|4L2 . (14)

But recall

∇ME(u) = Πu(∇uE(u)) = Πu(Au) = Au− |∇u|2L2u. (15)

Thus

|∇ME(u)|2L2 = |Au|2 + |∇u|4L2 |u|2L2︸ ︷︷ ︸
=1

−2|∇u|2L2 〈u,Au〉L2︸ ︷︷ ︸
= |∇u|2

L2

= |Au|2L2 − |∇u|4L2 . (16)
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Deterministic constrained NSEs - Main Theorem

Hence |Au|2L2 − |∇u|4L2 ≥ 0 and

1

2
|∇u(t)|2L2 +

∫ t

0

|∇ME(u(s))|2L2 ds =
1

2
|∇u0|2L2 , t ∈ [0, T ). (17)

Thus we can summarise our results in the following theorem :

Theorem 1

For every u0 ∈ V ∩M there exists a unique global solution u of the constrained NSEs
(13) such that u ∈ XT for all T > 0.

Here XT = C([0, T ]; V) ∩ L2(0,T; D(A)).
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Stochastic Constrained NSEs

We assume that W = (W1, · · · ,Wm) is Rm−valued Wiener process , c1 · · · , cm and
Ĉ1, · · · , Ĉm are respectively vector fields and assosciated linear operators given by

Ĉju = cj(x) · ∇u, : div cj = 0, j ∈ {1, · · · ,m}.

Since
Cju = ΠĈju, j ∈ {1, · · · ,m},

is skew symmetric in H, these operators don’t produce any correction term when
projected on TuM.

Thus the stochastic NSE

du+ [Au+B(u, u)] dt =
m∑
j=1

Cju ◦ dWj =
m∑
j=1

Cju dWj +
1

2

m∑
j=1

C2
j u dt︸ ︷︷ ︸

Stratonovich = Itô + correction

under the constraint is given by

du+
[
Au+B(u, u)− |∇u|2L2 u

]
dt =

1

2

m∑
j=1

C2
j u dt+

m∑
j=1

Cju dWj . (18)
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Zdzislaw Brzeźniak (York) Constrained NSEs July 10, 2017 9 / 19



Martingale solution

Definition 2

We say that there exists a martingale solution of (18) iff there exist

a stochastic basis (Ω̂, F̂ , F̂, P̂) with filtration F̂ =
{
F̂t
}
t≥0

,

an Rm-valued F̂-Wiener process Ŵ ,

and an F̂-progressively measurable process u : [0, T ]× Ω̂→ V∩M with P̂-a.e. paths

u(·, ω) ∈ C([0, T ]; Vw) ∩ L2(0,T; D(A)),

such that for all t ∈ [0, T ] and all v ∈ D(A):

〈u(t), v〉+

∫ t

0

〈Au(s), v〉 ds +

∫ t

0

〈B(u(s)), v〉 ds = 〈u0, v〉

+

∫ t

0

|∇u(s)|2L2〈u(s), v〉ds +
1

2

∫ t

0

m∑
j=1

〈C2
j u(s), v〉 ds +

∫ t

0

m∑
j=1

〈Cju(s), v〉dWj,

(19)

the identity hold P̂-a.s.
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Existence of a martingale solution

Theorem 3 (Assume that our domain is the 2-d torus)

Then for every u0 ∈ V ∩M, there exists a martingale solution to the stochastic
constrained NSEs (18).

Sketch of the proof : Galerkin approximation :
Let {ej} be ONB of H and eigenvectors of A.

Hn := lin{e1, · · · , en} is the finite dimensional Hilbert space

Pn : H→ Hn be the orthogonal projection operator given by Pnu =

n∑
i=1

〈u, ei〉 ei.

We consider the following ”projection” of onto Hn:{
dun = −

[
PnAun + PnB(un)− |∇un|2L2un

]
dt+

∑m
j=1 PnCjun ◦ dWj , t ≥ 0,

un(0) = Pnu0
|Pnu0|L2

, for n large enough

(20)
We fix T > 0. Equation (20) is a stochastic ODE on a finite dimensional compact
manifold Mn = {u ∈ Hn : |u|L2 = 1}.
Hence it has a unique M-valued solution (with continuous paths). Moreover, ∀q ≥ 2

E
∫ T

0

|un(t)|qH dt <∞.
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A’priori estimates

These depend deeply on the property that

〈B(u), Au〉H = 0, u ∈ D(A).

and a very specific assumption

We assume c1 · · · , cm are constant vector fields.

Let Kc = maxj∈1,··· ,m |cj |R2 .

Lemma 4

Let p ∈
[
1, 1 + 1

K2
c

)
and ρ > 0. Then there exist positive constants C1(p, ρ), C2(p, ρ)

and C3(ρ) such that if ‖u0‖V ≤ ρ, then

sup
n≥1

E

(
sup

r∈[0,T ]

‖un(r)‖2pV

)
≤ C1(p, ρ), (21)

sup
n≥1

E
∫ T

0

‖un(s)‖2(p−1)
V |Aun(s)− |∇un(s)|2L2un(s)|2H ds ≤ C2(p, ρ) , (22)

and

sup
n≥1

E
∫ T

0

|un(s)|2D(A) ds ≤ C2(1) + C1(2)T =: C3(ρ). (23)
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Aldous condition

We put

ZT = C([0, T ]; H) ∩ L2
w(0,T; D(A)) ∩ L2(0,T; V) ∩ C([0,T]; Vw),

and TT the corresponding topology.
In order to prove that the laws of un are tight on ZT . Apart from a’priori estimates we
also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H)

∀ ε > 0, ∀ η > 0 ∃ δ > 0 : for every stopping time τn : Ω→ [0, T ]

sup
n∈N

sup
0≤θ≤δ

P (|un(τn + θ)− un(τn)|H ≥ η) < ε. (24)

Lemma 5 can be proved by applying Lemma 4 to equations (20).

Corollary 6

The laws of (un) are tight on ZT , i.e. ∀ ε > 0 ∃Kε ⊂ ZT compact, such that

P (un ∈ Kε) ≥ 1− ε, ∀n ∈ N.
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Skorokhod theorem

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since ZT
is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a
probability space (Ω̂, F̂ , P̂), ZT−valued random variables ũn such that

Law(ũn) = Law(un),

and there exists ũ : Ω̂→ ZT random variable such that

ũn → ũ in, P̂− a.s.

Then, using Kuratowski Theorem, we can deduce that the sequence ũn satisfies the same
a’priori estimates as un. In particular ∀ p ∈ [1, 1 + 1

K2
c

)

sup
n≥1

E

(
sup

r∈[0,T ]

‖ũn(r)‖2pV

)
≤ C1(p), (25)

sup
n≥1

E
∫ T

0

|ũn(s)|2D(A) ds ≤ C3. (26)
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Convergence

The choice of ZT allows to deduce that ∀ψ ∈ H(orV) and s, t ∈ [0, T ] :

(a) limn→∞〈ũn(t), Pnψ〉 = 〈ũ(t), ψ〉, P̃-a.s.,

(b) limn→∞
∫ t
s
〈Aũn(σ), Pnψ〉 dσ =

∫ t
s
〈Aũ(σ), ψ〉 dσ, P̃-a.s.,

(c) limn→∞
∫ t
s
〈B(ũn(σ), ũn(σ)), Pnψ〉 dσ =

∫ t
s
〈B(ũ(σ), ũ(σ)), ψ〉 dσ, P̃-a.s.,

(d) limn→∞
∫ t
s
|∇ũn(σ)|2L2〈ũn(σ), Pnψ〉 dσ =

∫ t
s
|∇ũ(σ)|2L2〈ũ(σ), ψ〉 dσ, P̃-a.s.

(e) limn→∞
∫ t
s
〈C2

j ũn(σ), Pnψ〉 dσ =
∫ t
s
〈C2

j ũ(σ), ψ〉 dσ, P̃-a.s.

Since ũn → ũ in C([0, T ]; H) and un(t) ∈M for every t ∈ [0, T ], we infer that

ũ(t) ∈M, t ∈ [0, T ]. (27)

We are close to conclude the proof of Theorem 3. We are just left to deal with the Itô
integral.
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〈Aũn(σ), Pnψ〉 dσ =

∫ t
s
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Itô integral

Define

Mn(t) =
m∑
j=1

∫ t

0

PnCjun(s) dWj(s).

Mn is a martingale on (Ω,F ,P). Moreover

Mn(t) = un(t)− Pnun(0) +

∫ t

0

PnAun(s) ds+

∫ t

0

PnB(un(s)) ds

−
∫ t

0

|∇un(s)|2L2un(s) ds− 1

2

m∑
j=1

∫ t

0

(PnCj)
2un(s) ds

(28)

The equation (28) can also be used on (Ω̂, F̂ , F̂, P̂) to define a process M̃n, i.e.

M̃n(t) = ũn(t)− Pnũn(0) +

∫ t

0

PnAũn(s) ds+

∫ t

0

PnB(ũn(s)) ds

−
∫ t

0

|∇ũn(s)|2L2 ũn(s) ds− 1

2

m∑
j=1

∫ t

0

(PnCj)
2ũn(s) ds

(29)
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Martingale representation theorem

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

M̃n(t)→ M̃(t) := ũ(t)− ũ(0) +

∫ t

0

Aũ(s) ds+

∫ t

0

B(ũ(s)) ds

−
∫ t

0

|∇ũ(s)|2L2 ũ(s) ds− 1

2

m∑
j=1

∫ t

0

C2
j ũ(s) ds. (30)

From equality (30) one can deduce that

(i) M̃ is F̃−martingale.

(ii) Cov(M̃n)→ Cov(M̃) =
∑m

j=1

∫ t

0
Cjũ(s) (Cjũ(s))∗ ds.

This allows to use the martingale representation theorem to deduce that there exists a
bigger probability space (Ω̄, F̄ , F̄, P̄) and a Wiener process W̄ on the same probability
space such that

M̄(t) =

∫ t

0

m∑
j=1

Cj ū(s) dW̄j(s).

Hence we proved Theorem 3.
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Pathwise Uniqueness

Theorem 7

Pathwise Uniqueness holds for the the stochastic constrained NSEs (18).

Theorem 8

The stochastic constrained NSEs (18) have a unique strong solution for each
u0 ∈ V ∩M. Moreover, the paths of this solution belong to the space XT for all T > 0.
In particular, the paths are V-valued continuous (strongly and not only weakly).
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