Navier-Stokes equations with constrained L^{2} energy of the solution

Zdzislaw Brzeźniak

Department of Mathematics
University of York
joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

LMS EPSRC Durham Symposium Stochastic Analysis
Durham, July 10-20, 2017

University of Vork

Motivation

- Caglioti et.al [5] studied 2D NSEs in \mathbb{R}^{2} with constraints

$$
\begin{aligned}
& E(\omega)=\int_{\mathbb{R}^{2}} \psi(x) \omega(x) d x=\int_{\mathbb{R}^{2}}|u(x)|^{2} d x=a, \\
& I(\omega)=\int_{\mathbb{R}^{2}}|x|^{2} \omega(x) d x=b,
\end{aligned}
$$

where

$$
\omega=\operatorname{curl} u, \quad \psi=-(\Delta)^{-1} \omega .
$$

- They proved that for a certain stationary solution $\omega_{M F}$ of the Euler equation (in the vorticity form) with constraints a, b, for every initial data ω_{0} "close enough" $\omega_{M F}$ with the same constraints a, b;
\qquad
where $\omega(t)$ is the solution of the NSEs (in the vorticity form) with inital data ω_{0} and the same constraints.

Motivation

- Caglioti et.al [5] studied 2D NSEs in \mathbb{R}^{2} with constraints

$$
\begin{aligned}
& E(\omega)=\int_{\mathbb{R}^{2}} \psi(x) \omega(x) d x=\int_{\mathbb{R}^{2}}|u(x)|^{2} d x=a \\
& I(\omega)=\int_{\mathbb{R}^{2}}|x|^{2} \omega(x) d x=b
\end{aligned}
$$

where

$$
\omega=\operatorname{curl} u, \quad \psi=-(\Delta)^{-1} \omega
$$

- They proved that for a certain stationary solution $\omega_{M F}$ of the Euler equation (in the vorticity form) with constraints a, b, for every initial data ω_{0} "close enough" $\omega_{M F}$ with the same constraints a, b;

$$
\omega(t) \rightarrow \omega_{M F}, \text { as } t \rightarrow \infty
$$

where $\omega(t)$ is the solution of the NSEs (in the vorticity form) with inital data ω_{0} and the same constraints.

Motivation

- Rybka [7] and Caffarelli \& Lin [4] studied heat equation with constraint

$$
\begin{equation*}
|u|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

- The heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u \tag{2}
\end{equation*}
$$

where $A u=-\Delta u$ is a self adjoint operator on H .

- We define a Hilbert manifold

$$
\begin{equation*}
\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{\mathrm{H}}=1\right\} \tag{3}
\end{equation*}
$$

- Note that $A u \notin T_{u} \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_{u}(-A u) \in T_{u} \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$
\begin{equation*}
\Pi_{u}: \mathrm{H} \ni \mathrm{x} \mapsto \mathrm{x}-\langle\mathrm{x}, \mathrm{u}\rangle_{\mathrm{H}} u \in \mathrm{~T} . \mathrm{M}=\left\{\mathrm{v} \in \mathrm{H}:\langle\mathrm{u}, \mathrm{v}\rangle_{\mathrm{H}}=0\right\} \tag{4}
\end{equation*}
$$

is the orthogonal projection.

- Since $\Pi_{u}(-A u)=-A u+\left|A^{1 / 2} u\right|_{\mathrm{H}}^{2} u$, we get
$\frac{\partial u}{\partial t}=-A u+\left|A^{1 / 2}\right|_{H}^{2} u$.

Motivation

- Rybka [7] and Caffarelli \& Lin [4] studied heat equation with constraint

$$
\begin{equation*}
|u|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

- The heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u \tag{2}
\end{equation*}
$$

where $A u=-\Delta u$ is a self adjoint operator on H .

- We define a Hilbert manifold

$$
\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{\mathrm{H}}=1\right\} .
$$

- Note that $A u \notin T_{u} \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_{u}(-A u) \in T_{u} \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$
\Pi_{u}: \mathrm{H} \ni \mathrm{x} \mapsto \mathrm{x}-\langle\mathrm{x}, \mathrm{u}\rangle_{\mathrm{H}} \mathrm{u} \in \mathrm{~T}, \mathrm{M}=\left\{\mathrm{v} \in \mathrm{H}:\langle\mathrm{u}, \mathrm{v}\rangle_{\mathrm{H}}=0\right\}
$$

is the orthogonal projection.

- Since $\Pi_{u}(-A u)=-A u+\left|A^{1 / 2} u\right|_{\mathrm{H}}^{2} u$, we get

Motivation

- Rybka [7] and Caffarelli \& Lin [4] studied heat equation with constraint

$$
\begin{equation*}
|u|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

- The heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u \tag{2}
\end{equation*}
$$

where $A u=-\Delta u$ is a self adjoint operator on H .

- We define a Hilbert manifold

$$
\begin{equation*}
\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{\mathrm{H}}=1\right\} . \tag{3}
\end{equation*}
$$

- Note that $A u \notin T_{u} \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_{u}(-A u) \in T_{u} \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$
\Pi_{u}: \mathrm{H} \ni \mathrm{x} \mapsto \mathrm{x}-\langle\mathrm{x}, \mathrm{u}\rangle_{\mathrm{H}} u \in \mathrm{~T} . \mathrm{M}=\left\{\mathrm{v} \in \mathrm{H}:\langle\mathrm{u}, \mathrm{v}\rangle_{\mathrm{H}}=0\right\}
$$

is the orthogonal projection.

- Since $\Pi_{u}(-A u)=-A u+\left|A^{1 / 2} u\right|_{\mathrm{H}}^{2} u$, we get

$$
\frac{\partial u}{\partial t}=-A u+\left|A^{1 / 2}\right|_{\mathrm{H}}^{2} u .
$$

Motivation

- Rybka [7] and Caffarelli \& Lin [4] studied heat equation with constraint

$$
\begin{equation*}
|u|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

- The heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u \tag{2}
\end{equation*}
$$

where $A u=-\Delta u$ is a self adjoint operator on H .

- We define a Hilbert manifold

$$
\begin{equation*}
\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{\mathrm{H}}=1\right\} . \tag{3}
\end{equation*}
$$

- Note that $A u \notin T_{u} \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_{u}(-A u) \in T_{u} \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$
\begin{equation*}
\Pi_{u}: \mathrm{H} \ni \mathrm{x} \mapsto \mathrm{x}-\langle\mathrm{x}, \mathrm{u}\rangle_{\mathrm{H}} \mathrm{u} \in \mathrm{~T}_{\mathrm{u}} \mathcal{M}=\left\{\mathrm{y} \in \mathrm{H}:\langle\mathrm{u}, \mathrm{y}\rangle_{\mathrm{H}}=0\right\} \tag{4}
\end{equation*}
$$

is the orthogonal projection.

- Since $\Pi_{u}(-A u)=-A u+\left|A^{1 / 2} u\right|_{\mathrm{H}}^{2} u$, we get

$$
\frac{\partial u}{\partial t}=-A u+\left|A^{1 / 2}\right|_{\mathrm{H}}^{2} u .
$$

Motivation

- Rybka [7] and Caffarelli \& Lin [4] studied heat equation with constraint

$$
\begin{equation*}
|u|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

- The heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u \tag{2}
\end{equation*}
$$

where $A u=-\Delta u$ is a self adjoint operator on H .

- We define a Hilbert manifold

$$
\begin{equation*}
\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{\mathrm{H}}=1\right\} . \tag{3}
\end{equation*}
$$

- Note that $A u \notin T_{u} \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_{u}(-A u) \in T_{u} \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$
\begin{equation*}
\Pi_{u}: \mathrm{H} \ni \mathrm{x} \mapsto \mathrm{x}-\langle\mathrm{x}, \mathrm{u}\rangle_{\mathrm{H}} \mathrm{u} \in \mathrm{~T}_{\mathrm{u}} \mathcal{M}=\left\{\mathrm{y} \in \mathrm{H}:\langle\mathrm{u}, \mathrm{y}\rangle_{\mathrm{H}}=0\right\} \tag{4}
\end{equation*}
$$

is the orthogonal projection.

- Since $\Pi_{u}(-A u)=-A u+\left|A^{1 / 2} u\right|_{\mathrm{H}}^{2} u$, we get

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-A u+\left|A^{1 / 2}\right|_{\mathrm{H}}^{2} u \tag{5}
\end{equation*}
$$

Constrained Heat equation

- A special case of heat equation with Dirichlet boundary condition

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u+|\nabla u|_{L^{2}}^{2} u \tag{6}\\
u(0)=u_{0}
\end{array}\right.
$$

- Note that the heat equation (2) can be seen as an L^{2}-gradient flow of energy

$$
\begin{equation*}
\mathcal{E}(u)=\frac{1}{2} \int_{0}|\nabla u(x)|^{2} d x \tag{7}
\end{equation*}
$$

as formally

- Similarly, the constrained heat equation (6) can be seen as the gradient flow of \mathcal{E} restricted to the manifold M with L^{2} - metric on the "tangent bundle" In fact one can prove that the solution of (6) with $u_{0} \in H_{0}^{1}(\mathcal{O}) \cap \mathcal{M}$ satisfies

$$
\begin{equation*}
\varepsilon(u(t))+\int_{0}^{t}\left|\Delta u(s)+|\nabla u|_{L^{2}}^{2} u(s)\right|_{L^{2}}^{2} d s=\varepsilon(u(0)) \tag{8}
\end{equation*}
$$

from which one can deduce the global existence.

- An essential step in proving the global existence is to establish the invariance of \mathcal{M}.

Constrained Heat equation

- A special case of heat equation with Dirichlet boundary condition

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u+|\nabla u|_{L^{2}}^{2} u \tag{6}\\
u(0)=u_{0}
\end{array}\right.
$$

- Note that the heat equation (2) can be seen as an L^{2}-gradient flow of energy

$$
\begin{equation*}
\mathcal{E}(u)=\frac{1}{2} \int_{\mathcal{O}}|\nabla u(x)|^{2} d x, \tag{7}
\end{equation*}
$$

as formally

$$
-\nabla_{L^{2}} \mathcal{E}(u)=\Delta u .
$$

- Similarly, the constrained heat equation (6) can be seen as the gradient flow of \mathcal{E} restricted to the manifold \mathcal{M} with L^{2}-metric on the "tangent bundle"
In fact one can prove that the solution of (6) with $u_{0} \in H_{0}^{1}(\mathcal{O}) \cap \mathcal{M}$ satisfies

$$
\mathcal{E}(u(t))+\int_{0}^{t}\left|\Delta u(s)+|\nabla u|_{L^{2}}^{2} u(s)\right|_{L^{2}}^{2} d s=\mathcal{E}(u(0))
$$

from which one can deduce the global existence.

- An essential step in proving the global existence is to establish the invariance of

Constrained Heat equation

- A special case of heat equation with Dirichlet boundary condition

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u+|\nabla u|_{L^{2}}^{2} u \tag{6}\\
u(0)=u_{0}
\end{array}\right.
$$

- Note that the heat equation (2) can be seen as an L^{2}-gradient flow of energy

$$
\begin{aligned}
& \mathcal{E}(u)=\frac{1}{2} \int_{\mathcal{O}}|\nabla u(x)|^{2} d x \\
& -\nabla_{L^{2}} \mathcal{E}(u)=\Delta u
\end{aligned}
$$

- Similarly, the constrained heat equation (6) can be seen as the gradient flow of \mathcal{E} restricted to the manifold \mathcal{M} with L^{2}-metric on the "tangent bundle".
In fact one can prove that the solution of (6) with $u_{0} \in H_{0}^{1}(\mathcal{O}) \cap \mathcal{M}$ satisfies

$$
\begin{equation*}
\mathcal{E}(u(t))+\int_{0}^{t}\left|\Delta u(s)+|\nabla u|_{L^{2}}^{2} u(s)\right|_{L^{2}}^{2} d s=\mathcal{E}(u(0)) \tag{8}
\end{equation*}
$$

from which one can deduce the global existence.

- An essential step in proving the global existence is to establish the invariance o

Constrained Heat equation

- A special case of heat equation with Dirichlet boundary condition

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u+|\nabla u|_{L^{2}}^{2} u \tag{6}\\
u(0)=u_{0}
\end{array}\right.
$$

- Note that the heat equation (2) can be seen as an L^{2}-gradient flow of energy

$$
\begin{aligned}
& \mathcal{E}(u)=\frac{1}{2} \int_{\mathcal{O}}|\nabla u(x)|^{2} d x \\
& -\nabla_{L^{2}} \mathcal{E}(u)=\Delta u
\end{aligned}
$$

- Similarly, the constrained heat equation (6) can be seen as the gradient flow of \mathcal{E} restricted to the manifold \mathcal{M} with L^{2}-metric on the "tangent bundle".
In fact one can prove that the solution of (6) with $u_{0} \in H_{0}^{1}(\mathcal{O}) \cap \mathcal{M}$ satisfies

$$
\begin{equation*}
\mathcal{E}(u(t))+\int_{0}^{t}\left|\Delta u(s)+|\nabla u|_{L^{2}}^{2} u(s)\right|_{L^{2}}^{2} d s=\mathcal{E}(u(0)) \tag{8}
\end{equation*}
$$

from which one can deduce the global existence.

- An essential step in proving the global existence is to establish the invariance of \mathcal{M}.

Navier-Stokes equations

We consider NSEs

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=0 \tag{9}\\
u(0)=u_{0}
\end{array}\right.
$$

which is an abstract form of

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+u \cdot \nabla u+\nabla p=0 \\
\operatorname{div} \mathrm{u}=0 \\
u(0, \cdot)=u_{0}(\cdot)
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{H}=\left\{u \in L^{2}(\mathcal{O}): \operatorname{div} \mathrm{u}=0\right. \\
& \text { and }\left.\quad u\right|_{\partial \mathcal{O}} \cdot n=0 \quad \text { (Dirichlet b.c.) } \\
& \text { or } \quad \int_{\mathcal{O}} u(x) d x=0 \\
& \\
&\text { (Torus) }\}
\end{aligned}
$$

Navier-Stokes equations

We consider NSEs

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=0 \tag{9}\\
u(0)=u_{0}
\end{array}\right.
$$

which is an abstract form of

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+u \cdot \nabla u+\nabla p=0 \\
\operatorname{div} \mathrm{u}=0 \\
u(0, \cdot)=u_{0}(\cdot)
\end{array}\right.
$$

Here

$$
\begin{equation*}
B(u, u)=\Pi(u \cdot \nabla u) \tag{10}
\end{equation*}
$$

where $\Pi: L^{2}(\mathcal{O}) \rightarrow \mathrm{H}$ is the orthogonal projection.

$$
\left.\begin{array}{rl}
\mathrm{H}= & \left\{u \in L^{2}(\mathcal{O}): \operatorname{div} \mathrm{u}=0\right. \\
& \text { and }\left.\quad u\right|_{\partial \mathcal{O}} \cdot n=0 \quad \text { (Dirichlet b.c.) } \\
& \text { or } \quad \int_{\mathcal{O}} u(x) d x=0
\end{array} \text { (Torus) }\right\}
$$

Constrained Navier-Stokes equations

- We put $\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{L^{2}}=1\right\}$.
- The projected version of (9) can be found in a similar way as before.
- Note

$$
\begin{equation*}
\Pi_{u}(B(u, u))=B(u, u)-\underbrace{\langle B(u, u), u\rangle_{\mathrm{H}}}_{=0} u=B(u, u) . \tag{12}
\end{equation*}
$$

So we get

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=|\nabla u|_{L^{2}}^{2} u \\
u(0)=u_{0} \in \mathrm{~V} \cap \mathcal{M}
\end{array}\right.
$$

where $\mathrm{V}=\mathrm{H}_{0}^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t<\tau$ which lies on M
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$
\langle A u, B(u, u)\rangle_{H}=0 .
$$

Constrained Navier-Stokes equations

- We put $\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{L^{2}}=1\right\}$.
- The projected version of (9) can be found in a similar way as before.
- Note

$$
\begin{equation*}
\Pi_{u}(B(u, u))=B(u, u)-\underbrace{\langle B(u, u), u\rangle_{\mathrm{H}}}_{=0} u=B(u, u) . \tag{12}
\end{equation*}
$$

So we get

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=|\nabla u|_{L^{2}}^{2} u \tag{13}\\
u(0)=u_{0} \in \mathrm{~V} \cap \mathcal{M}
\end{array}\right.
$$

where $\mathrm{V}=\mathrm{H}_{0}^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t<\tau$ which lies on \mathcal{M}
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$
\langle A u, B(u, u)\rangle_{\mathrm{H}}=0 .
$$

Constrained Navier-Stokes equations

- We put $\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{L^{2}}=1\right\}$.
- The projected version of (9) can be found in a similar way as before.
- Note

$$
\begin{equation*}
\Pi_{u}(B(u, u))=B(u, u)-\underbrace{\langle B(u, u), u\rangle_{\mathrm{H}}}_{=0} u=B(u, u) . \tag{12}
\end{equation*}
$$

So we get

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=|\nabla u|_{L^{2}}^{2} u \tag{13}\\
u(0)=u_{0} \in \mathrm{~V} \cap \mathcal{M}
\end{array}\right.
$$

where $\mathrm{V}=\mathrm{H}_{0}^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t<\tau$ which lies on \mathcal{M}.
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

Constrained Navier-Stokes equations

- We put $\mathcal{M}=\left\{u \in \mathrm{H}:|u|_{L^{2}}=1\right\}$.
- The projected version of (9) can be found in a similar way as before.
- Note

$$
\begin{equation*}
\Pi_{u}(B(u, u))=B(u, u)-\underbrace{\langle B(u, u), u\rangle_{\mathrm{H}}}_{=0} u=B(u, u) . \tag{12}
\end{equation*}
$$

So we get

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u+B(u, u)=|\nabla u|_{L^{2}}^{2} u \tag{13}\\
u(0)=u_{0} \in \mathrm{~V} \cap \mathcal{M}
\end{array}\right.
$$

where $\mathrm{V}=\mathrm{H}_{0}^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t<\tau$ which lies on \mathcal{M}.
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$
\langle A u, B(u, u)\rangle_{\mathrm{H}}=0
$$

Global existence for Constrained NSEs

- Since

$$
\|u\|_{\mathrm{V}}^{2}=|u|_{\mathrm{H}}^{2}+|\nabla u|_{L^{2}}^{2}=|u|_{\mathrm{H}}^{2}+2 \mathcal{E}(u)
$$

and the L^{2}-norm of $u(t)$ doesn't explode. In order to show that $\|u(t)\|_{\mathrm{V}}^{2}$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^{2}}$ neither does.

- Formally, we have

$$
=-|A u|_{L^{2}}^{2}+|\nabla u|_{L^{2}}^{4} .
$$

- But recall

$$
\nabla_{\mathcal{M}} \mathcal{E}(u)=\Pi_{u}\left(\nabla_{u} \mathcal{E}(u)\right)=\Pi_{u}(A u)=A u-|\nabla u|_{L^{2}}^{2} u
$$

Thus

$$
=|A u|_{L^{2}}^{2}-|\nabla u|_{L^{2}}^{4}
$$

Global existence for Constrained NSEs

- Since

$$
\|u\|_{\mathrm{V}}^{2}=|u|_{\mathrm{H}}^{2}+|\nabla u|_{L^{2}}^{2}=|u|_{\mathrm{H}}^{2}+2 \mathcal{E}(u)
$$

and the L^{2}-norm of $u(t)$ doesn't explode. In order to show that $\|u(t)\|_{\mathrm{V}}^{2}$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^{2}}$ neither does.

- Formally, we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}|\nabla u(t)|_{L^{2}}^{2} & \left.=\left\langle u^{\prime}, A u\right\rangle_{L^{2}}=\left.\langle-A u-B(u, u)+| \nabla u\right|_{L^{2}} ^{2} u, A u\right\rangle_{L^{2}} \\
& =-|A u|_{L^{2}}^{2}+|\nabla u|_{L^{2}}^{4} . \tag{14}
\end{align*}
$$

- But recall

$$
\nabla_{\mathcal{M}} \mathcal{E}(u)=\Pi_{u}\left(\nabla_{u} \mathcal{E}(u)\right)=\Pi_{u}(A u)=A u-|\nabla u|_{L^{2}}^{2} u
$$

Thus
$=|A u|_{L^{2}}^{2}-|\nabla u|_{L^{2}}^{4}$.

Global existence for Constrained NSEs

- Since

$$
\|u\|_{\mathrm{V}}^{2}=|u|_{\mathrm{H}}^{2}+|\nabla u|_{L^{2}}^{2}=|u|_{\mathrm{H}}^{2}+2 \mathcal{E}(u)
$$

and the L^{2}-norm of $u(t)$ doesn't explode. In order to show that $\|u(t)\|_{\mathrm{V}}^{2}$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^{2}}$ neither does.

- Formally, we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}|\nabla u(t)|_{L^{2}}^{2} & \left.=\left\langle u^{\prime}, A u\right\rangle_{L^{2}}=\left.\langle-A u-B(u, u)+| \nabla u\right|_{L^{2}} ^{2} u, A u\right\rangle_{L^{2}} \\
& =-|A u|_{L^{2}}^{2}+|\nabla u|_{L^{2}}^{4} \tag{14}
\end{align*}
$$

- But recall

$$
\begin{equation*}
\nabla_{\mathcal{M}} \mathcal{E}(u)=\Pi_{u}\left(\nabla_{u} \mathcal{E}(u)\right)=\Pi_{u}(A u)=A u-|\nabla u|_{L^{2}}^{2} u \tag{15}
\end{equation*}
$$

Thus

Global existence for Constrained NSEs

- Since

$$
\|u\|_{\mathrm{V}}^{2}=|u|_{\mathrm{H}}^{2}+|\nabla u|_{L^{2}}^{2}=|u|_{\mathrm{H}}^{2}+2 \mathcal{E}(u)
$$

and the L^{2}-norm of $u(t)$ doesn't explode. In order to show that $\|u(t)\|_{\mathrm{V}}^{2}$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^{2}}$ neither does.

- Formally, we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}|\nabla u(t)|_{L^{2}}^{2} & \left.=\left\langle u^{\prime}, A u\right\rangle_{L^{2}}=\left.\langle-A u-B(u, u)+| \nabla u\right|_{L^{2}} ^{2} u, A u\right\rangle_{L^{2}} \\
& =-|A u|_{L^{2}}^{2}+|\nabla u|_{L^{2}}^{4} . \tag{14}
\end{align*}
$$

- But recall

$$
\begin{equation*}
\nabla_{\mathcal{M}} \mathcal{E}(u)=\Pi_{u}\left(\nabla_{u} \mathcal{E}(u)\right)=\Pi_{u}(A u)=A u-|\nabla u|_{L^{2}}^{2} u \tag{15}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|\nabla_{\mathcal{M}} \mathcal{E}(u)\right|_{L^{2}}^{2} & =|A u|^{2}+|\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1}-2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A u\rangle_{L^{2}}^{2}}_{=|\nabla u|_{L^{2}}^{2}} \\
& =|A u|_{L^{2}}^{2}-|\nabla u|_{L^{2}}^{4} . \tag{16}
\end{align*}
$$

Global existence for Constrained NSEs

- Since

$$
\|u\|_{\mathrm{V}}^{2}=|u|_{\mathrm{H}}^{2}+|\nabla u|_{L^{2}}^{2}=|u|_{\mathrm{H}}^{2}+2 \mathcal{E}(u)
$$

and the L^{2}-norm of $u(t)$ doesn't explode. In order to show that $\|u(t)\|_{\mathrm{V}}^{2}$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^{2}}$ neither does.

- Formally, we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}|\nabla u(t)|_{L^{2}}^{2} & \left.=\left\langle u^{\prime}, A u\right\rangle_{L^{2}}=\left.\langle-A u-B(u, u)+| \nabla u\right|_{L^{2}} ^{2} u, A u\right\rangle_{L^{2}} \\
& =-|A u|_{L^{2}}^{2}+|\nabla u|_{L^{2}}^{4} . \tag{14}
\end{align*}
$$

- But recall

$$
\begin{equation*}
\nabla_{\mathcal{M}} \mathcal{E}(u)=\Pi_{u}\left(\nabla_{u} \mathcal{E}(u)\right)=\Pi_{u}(A u)=A u-|\nabla u|_{L^{2}}^{2} u \tag{15}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|\nabla_{\mathcal{M}} \mathcal{E}(u)\right|_{L^{2}}^{2} & =|A u|^{2}+|\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1}-2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A u\rangle_{L^{2}}^{2}}_{=|\nabla u|_{L^{2}}^{2}} \\
& =|A u|_{L^{2}}^{2}-|\nabla u|_{L^{2}}^{4} . \tag{16}
\end{align*}
$$

Deterministic constrained NSEs - Main Theorem

- Hence $|A u|_{L^{2}}^{2}-|\nabla u|_{L^{2}}^{4} \geq 0$ and

$$
\begin{equation*}
\frac{1}{2}|\nabla u(t)|_{L^{2}}^{2}+\int_{0}^{t}|\nabla \mathcal{M} \mathcal{E}(u(s))|_{L^{2}}^{2} d s=\frac{1}{2}\left|\nabla u_{0}\right|_{L^{2}}^{2}, \quad t \in[0, T) . \tag{17}
\end{equation*}
$$

Thus we can summarise our results in the following theorem :

Theorem 1

For every $u_{0} \in \mathrm{~V} \cap \mathcal{M}$ there exists a unique global solution u of the constrained NSEs (13) such that $u \in X_{T}$ for all $T>0$.

Here $X_{T}=\mathcal{C}([0, T] ; \mathrm{V}) \cap \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{D}(\mathrm{A}))$.

Stochastic Constrained NSEs

- We assume that $W=\left(W_{1}, \cdots, W_{m}\right)$ is \mathbb{R}^{m}-valued Wiener process, $c_{1} \cdots, c_{m}$ and $\hat{C}_{1}, \cdots, \hat{C}_{m}$ are respectively vector fields and assosciated linear operators given by

$$
\hat{C}_{j} u=c_{j}(x) \cdot \nabla u,: \quad \operatorname{div} c_{\mathrm{j}}=0, \quad \mathrm{j} \in\{1, \cdots, \mathrm{~m}\}
$$

- Since
is skew symmetric in H, these operators don't produce any correction term when projected on $T_{u} \mathcal{M}$.
- Thus the stochastic NSE

under the constraint is given by
$d u+\left[A u+B(u, u)-|\nabla u|_{L^{2}}^{2} u\right] d t=\frac{1}{2} \sum_{j=1}^{m} C_{j}^{2} u d t+\sum_{j=1}^{m} C_{j} u d W_{j}$

Stochastic Constrained NSEs

- We assume that $W=\left(W_{1}, \cdots, W_{m}\right)$ is \mathbb{R}^{m}-valued Wiener process, $c_{1} \cdots, c_{m}$ and $\hat{C}_{1}, \cdots, \hat{C}_{m}$ are respectively vector fields and assosciated linear operators given by

$$
\hat{C}_{j} u=c_{j}(x) \cdot \nabla u,: \quad \operatorname{div} c_{\mathrm{j}}=0, \quad \mathrm{j} \in\{1, \cdots, \mathrm{~m}\}
$$

- Since

$$
C_{j} u=\Pi \hat{C}_{j} u, \quad j \in\{1, \cdots, m\}
$$

is skew symmetric in H, these operators don't produce any correction term when projected on $T_{u} \mathcal{M}$.

- Thus the stochastic NSE

Stratonovich $=1$ tô + correction
under the constraint is given by

Stochastic Constrained NSEs

- We assume that $W=\left(W_{1}, \cdots, W_{m}\right)$ is \mathbb{R}^{m}-valued Wiener process, $c_{1} \cdots, c_{m}$ and $\hat{C}_{1}, \cdots, \hat{C}_{m}$ are respectively vector fields and assosciated linear operators given by

$$
\hat{C}_{j} u=c_{j}(x) \cdot \nabla u,: \quad \operatorname{div} c_{\mathrm{j}}=0, \quad \mathrm{j} \in\{1, \cdots, \mathrm{~m}\}
$$

- Since

$$
C_{j} u=\Pi \hat{C}_{j} u, \quad j \in\{1, \cdots, m\}
$$

is skew symmetric in H, these operators don't produce any correction term when projected on $T_{u} \mathcal{M}$.

- Thus the stochastic NSE

$$
d u+[A u+B(u, u)] d t=\sum_{j=1}^{m} C_{j} u \circ d W_{j}=\underbrace{\sum_{j=1}^{m} C_{j} u d W_{j}+\frac{1}{2} \sum_{j=1}^{m} C_{j}^{2} u d t}_{\text {Stratonovich }=\text { Itô }+ \text { correction }}
$$

under the constraint is given by

$$
\begin{equation*}
d u+\left[A u+B(u, u)-|\nabla u|_{L^{2}}^{2} u\right] d t=\frac{1}{2} \sum_{j=1}^{m} C_{j}^{2} u d t+\sum_{j=1}^{m} C_{j} u d W_{j} \tag{18}
\end{equation*}
$$

Martingale solution

Definition 2

We say that there exists a martingale solution of (18) iff there exist

- a stochastic basis $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{F}}, \hat{\mathbb{P}})$ with filtration $\hat{\mathbb{F}}=\left\{\hat{\mathcal{F}}_{t}\right\}_{t \geq 0}$,
- an \mathbb{R}^{m}-valued $\hat{\mathbb{F}}$-Wiener process \hat{W},
- and an $\hat{\mathbb{F}}$-progressively measurable process $u:[0, T] \times \hat{\Omega} \rightarrow \mathrm{V} \cap \mathcal{M}$ with $\hat{\mathbb{P}}$-a.e. paths

$$
u(\cdot, \omega) \in \mathcal{C}\left([0, T] ; \mathrm{V}_{\mathrm{w}}\right) \cap \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{D}(\mathrm{~A})),
$$

such that for all $t \in[0, T]$ and all $\mathrm{v} \in \mathrm{D}(\mathrm{A})$:

$$
\begin{align*}
& \langle u(t), \mathrm{v}\rangle+\int_{0}^{\mathrm{t}}\langle\mathrm{Au}(\mathrm{~s}), \mathrm{v}\rangle \mathrm{ds}+\int_{0}^{\mathrm{t}}\langle\mathrm{~B}(\mathrm{u}(\mathrm{~s})), \mathrm{v}\rangle \mathrm{ds}=\left\langle\mathrm{u}_{0}, \mathrm{v}\right\rangle \\
& \quad+\int_{0}^{t}|\nabla u(s)|_{L^{2}}^{2}\langle u(s), \mathrm{v}\rangle \mathrm{ds}+\frac{1}{2} \int_{0}^{\mathrm{t}} \sum_{\mathrm{j}=1}^{\mathrm{m}}\left\langle\mathrm{C}_{\mathrm{j}}^{2} \mathrm{u}(\mathrm{~s}), \mathrm{v}\right\rangle \mathrm{ds}+\int_{0}^{\mathrm{t}} \sum_{\mathrm{j}=1}^{\mathrm{m}}\left\langle\mathrm{C}_{\mathrm{j}} \mathrm{u}(\mathrm{~s}), \mathrm{v}\right\rangle \mathrm{dW}_{\mathrm{j}}, \tag{19}
\end{align*}
$$

the identity hold $\hat{\mathbb{P}}$-a.s.

Existence of a martingale solution

Theorem 3 (Assume that our domain is the 2-d torus)

Then for every $u_{0} \in \mathrm{~V} \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof: Galerkin approximation
Let $\left\{e_{j}\right\}$ be ONB of H and eigenvectors of A
$H_{n}:=\operatorname{lin}\left\{e_{1}, \cdots, e_{n}\right\}$ is the finite dimensional Hilbert space

We consider the following "projection" of onto H_{n}

Existence of a martingale solution

Theorem 3 (Assume that our domain is the 2-d torus)

Then for every $u_{0} \in \mathrm{~V} \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation :
Let $\left\{e_{j}\right\}$ be ONB of H and eigenvectors of A.
$\mathrm{H}_{n}:=\operatorname{lin}\left\{\mathrm{e}_{1}, \cdots, \mathrm{e}_{\mathrm{n}}\right\}$ is the finite dimensional Hilbert space
$P_{n}: \mathrm{H} \rightarrow \mathrm{H}_{n}$ be the orthogonal projection operator given by $P_{n} u=\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}$.
We consider the following "projection" of onto H_{n} :

$$
\left\{\begin{array}{l}
d u_{n}=-\left[P_{n} A u_{n}+P_{n} B\left(u_{n}\right)-\left|\nabla u_{n}\right|_{L^{2}}^{2} u_{n}\right] d t+\sum_{j=1}^{m} P_{n} C_{j} u_{n} \circ d W_{j}, \quad t \geq 0 \tag{20}\\
u_{n}(0)=\frac{P_{n} u_{0}}{\mid P_{n} u_{0} L_{L^{2}}}, \quad \text { for } n \text { large enough }
\end{array}\right.
$$

We fix $T>0$. Equation (20) is a stochastic ODE on a finite dimensional compact manifold $\mathcal{M}_{n}=\left\{u \in \mathrm{H}_{n}:|u|_{L^{2}}=1\right\}$
Hence it has a unique \mathcal{M}-valued solution (with continuous paths). Moreover, $\forall q \geq 2$

Existence of a martingale solution

Theorem 3 (Assume that our domain is the 2-d torus)

Then for every $u_{0} \in \mathrm{~V} \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation :
Let $\left\{e_{j}\right\}$ be ONB of H and eigenvectors of A.
$\mathrm{H}_{n}:=\operatorname{lin}\left\{\mathrm{e}_{1}, \cdots, \mathrm{e}_{\mathrm{n}}\right\}$ is the finite dimensional Hilbert space
$P_{n}: \mathrm{H} \rightarrow \mathrm{H}_{n}$ be the orthogonal projection operator given by $P_{n} u=\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}$.
We consider the following "projection" of onto H_{n} :

$$
\left\{\begin{array}{l}
d u_{n}=-\left[P_{n} A u_{n}+P_{n} B\left(u_{n}\right)-\left|\nabla u_{n}\right|_{L^{2}}^{2} u_{n}\right] d t+\sum_{j=1}^{m} P_{n} C_{j} u_{n} \circ d W_{j}, \quad t \geq 0 \tag{20}\\
u_{n}(0)=\frac{P_{n} u_{0}}{\mid P_{n} u_{0} L_{L^{2}}}, \quad \text { for } n \text { large enough }
\end{array}\right.
$$

We fix $T>0$. Equation (20) is a stochastic ODE on a finite dimensional compact
Hence it has a unique \mathcal{M}-valued solution (with continuous paths). Moreover, $\forall q \geq 2$

Existence of a martingale solution

Theorem 3 (Assume that our domain is the 2-d torus)

Then for every $u_{0} \in \mathrm{~V} \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation :
Let $\left\{e_{j}\right\}$ be ONB of H and eigenvectors of A.
$\mathrm{H}_{n}:=\operatorname{lin}\left\{\mathrm{e}_{1}, \cdots, \mathrm{e}_{\mathrm{n}}\right\}$ is the finite dimensional Hilbert space
$P_{n}: \mathrm{H} \rightarrow \mathrm{H}_{n}$ be the orthogonal projection operator given by $P_{n} u=\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}$.
We consider the following "projection" of onto H_{n} :

$$
\left\{\begin{array}{l}
d u_{n}=-\left[P_{n} A u_{n}+P_{n} B\left(u_{n}\right)-\left|\nabla u_{n}\right|_{L^{2}}^{2} u_{n}\right] d t+\sum_{j=1}^{m} P_{n} C_{j} u_{n} \circ d W_{j}, \quad t \geq 0 \\
u_{n}(0)=\frac{P_{n} u_{0}}{\left|P_{n} u_{0}\right|_{L^{2}}}, \quad \text { for } n \text { large enough } \tag{20}
\end{array}\right.
$$

We fix $T>0$. Equation (20) is a stochastic ODE on a finite dimensional compact manifold $\mathcal{M}_{n}=\left\{u \in \mathrm{H}_{n}:|u|_{L^{2}}=1\right\}$.
Hence it has a unique \mathcal{M}-valued solution (with continuous paths). Moreover, $\forall q \geq 2$

$$
\mathbb{E} \int_{0}^{T}\left|u_{n}(t)\right|_{\mathrm{H}}^{q} d t<\infty
$$

A'priori estimates

These depend deeply on the property that

$$
\langle B(u), A u\rangle_{\mathrm{H}}=0, \quad u \in \mathrm{D}(\mathrm{~A})
$$

and a very specific assumption

- We assume $c_{1} \cdots, c_{m}$ are constant vector fields.

Lemma 4

Let $p \in\left[1,1+\frac{1}{K_{c}^{2}}\right)$ and $\rho>0$. Then there exist positive constants $C_{1}(p, \rho), C_{2}(p, \rho)$ and $C_{3}(\rho)$ such that if $\left\|u_{0}\right\|_{\mathrm{v}} \leq \rho$, then
$\sup _{n \geq 1} \mathbb{E}\left(\sup _{r \in[0, T]}\left\|u_{n}(r)\right\|_{\mathrm{V}}^{2 p}\right) \leq C_{1}(p, \rho)$,
$\sup _{n \geq 1} \mathbb{E} \int_{0}^{T}\left\|u_{n}(s)\right\|_{\mathrm{V}}^{2(p-1)}\left|A u_{n}(s)-\left|\nabla u_{n}(s)\right|_{L^{2}}^{2} u_{n}(s)\right|_{\mathrm{H}}^{2} d s \leq C_{2}(p, \rho)$,
and
$\left|u_{n}(s)\right|_{\mathrm{D}(\mathrm{A})}^{2} d s \leq C_{2}(1)+C_{1}(2) T=: C_{3}(\rho)$.

A'priori estimates

These depend deeply on the property that

$$
\langle B(u), A u\rangle_{\mathrm{H}}=0, \quad u \in \mathrm{D}(\mathrm{~A})
$$

and a very specific assumption

- We assume $c_{1} \cdots, c_{m}$ are constant vector fields.

Let $K_{c}=\max _{j \in 1, \cdots, m}\left|c_{j}\right|_{\mathbb{R}^{2}}$.

Lemma 4

Let $p \in\left[1,1+\frac{1}{K_{c}^{2}}\right)$ and $\rho>0$. Then there exist positive constants $C_{1}(p, \rho), C_{2}(p, \rho)$ and $C_{3}(\rho)$ such that if $\left\|u_{0}\right\|_{\mathrm{v}} \leq \rho$, then

$$
\begin{align*}
& \sup _{n \geq 1} \mathbb{E}\left(\sup _{r \in[0, T]}\left\|u_{n}(r)\right\|_{\mathrm{V}}^{2 p}\right) \leq C_{1}(p, \rho), \tag{21}\\
& \sup _{n \geq 1} \mathbb{E} \int_{0}^{T}\left\|u_{n}(s)\right\|_{\mathrm{V}}^{2(p-1)}\left|A u_{n}(s)-\left|\nabla u_{n}(s)\right|_{L^{2}}^{2} u_{n}(s)\right|_{\mathrm{H}}^{2} d s \leq C_{2}(p, \rho), \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{n \geq 1} \mathbb{E} \int_{0}^{T}\left|u_{n}(s)\right|_{\mathrm{D}(\mathrm{~A})}^{2} d s \leq C_{2}(1)+C_{1}(2) T=: C_{3}(\rho) . \tag{23}
\end{equation*}
$$

Aldous condition

We put

$$
\mathcal{Z}_{T}=\mathcal{C}([0, T] ; \mathrm{H}) \cap \mathrm{L}_{\mathrm{w}}^{2}(0, \mathrm{~T} ; \mathrm{D}(\mathrm{~A})) \cap \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \cap \mathcal{C}\left([0, \mathrm{~T}] ; \mathrm{V}_{\mathrm{w}}\right),
$$

and \mathcal{T}_{T} the corresponding topology.
In order to prove that the laws of u_{n} are tight on \mathcal{Z}_{T}. Apart from a'priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in It)

\square
Lemma 5 can be proved by applying Lemma 4 to equations (20)

Corollary 6

The laws of (u_{n}) are tight on \mathbb{Z}_{T}, i.e. $\forall \varepsilon>0 \exists K_{\varepsilon} \subset \mathbb{Z}_{T}$ compact, such that

Aldous condition

We put

$$
\mathcal{Z}_{T}=\mathcal{C}([0, T] ; \mathrm{H}) \cap \mathrm{L}_{\mathrm{w}}^{2}(0, \mathrm{~T} ; \mathrm{D}(\mathrm{~A})) \cap \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \cap \mathcal{C}\left([0, \mathrm{~T}] ; \mathrm{V}_{\mathrm{w}}\right)
$$

and \mathcal{T}_{T} the corresponding topology.
In order to prove that the laws of u_{n} are tight on \mathcal{Z}_{T}. Apart from a'priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H)

$\forall \varepsilon>0, \forall \eta>0 \exists \delta>0$: for every stopping time $\tau_{n}: \Omega \rightarrow[0, T]$

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sup _{0 \leq \theta \leq \delta} \mathbb{P}\left(\left|u_{n}\left(\tau_{n}+\theta\right)-u_{n}\left(\tau_{n}\right)\right|_{\mathrm{H}} \geq \eta\right)<\varepsilon \tag{24}
\end{equation*}
$$

Lemma 5 can be proved by applying Lemma 4 to equations (20).
\square
Corollary 6
The laws of $\left(u_{n}\right)$ are tight on \mathcal{Z}_{T}, i.e. $\forall \varepsilon>0 \exists K_{\varepsilon} \subset \mathcal{Z}_{T}$ compact, such that

Aldous condition

We put

$$
\mathcal{Z}_{T}=\mathcal{C}([0, T] ; \mathrm{H}) \cap \mathrm{L}_{\mathrm{w}}^{2}(0, \mathrm{~T} ; \mathrm{D}(\mathrm{~A})) \cap \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \cap \mathcal{C}\left([0, \mathrm{~T}] ; \mathrm{V}_{\mathrm{w}}\right)
$$

and \mathcal{T}_{T} the corresponding topology.
In order to prove that the laws of u_{n} are tight on \mathcal{Z}_{T}. Apart from a'priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H)

$\forall \varepsilon>0, \forall \eta>0 \exists \delta>0$: for every stopping time $\tau_{n}: \Omega \rightarrow[0, T]$

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sup _{0 \leq \theta \leq \delta} \mathbb{P}\left(\left|u_{n}\left(\tau_{n}+\theta\right)-u_{n}\left(\tau_{n}\right)\right|_{\mathrm{H}} \geq \eta\right)<\varepsilon \tag{24}
\end{equation*}
$$

Lemma 5 can be proved by applying Lemma 4 to equations (20).

Corollary 6

The laws of $\left(u_{n}\right)$ are tight on \mathcal{Z}_{T}, i.e. $\forall \varepsilon>0 \exists K_{\varepsilon} \subset \mathcal{Z}_{T}$ compact, such that

$$
\mathbb{P}\left(u_{n} \in K_{\varepsilon}\right) \geq 1-\varepsilon, \quad \forall n \in \mathbb{N} .
$$

Skorokhod theorem

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since \mathcal{Z}_{T} is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}), \mathcal{Z}_{T}$-valued random variables \tilde{u}_{n} such that

$$
\operatorname{Law}\left(\tilde{u}_{\mathrm{n}}\right)=\operatorname{Law}\left(\mathrm{u}_{\mathrm{n}}\right)
$$

and there exists $\tilde{u}: \hat{\Omega} \rightarrow \mathcal{Z}_{T}$ random variable such that

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_{n} satisfies the same a'priori estimates as u_{n}. In particular $\forall p \in\left[1,1+\frac{1}{K_{r}^{2}}\right)$

Skorokhod theorem

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since \mathcal{Z}_{T} is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}), \mathcal{Z}_{T}$-valued random variables \tilde{u}_{n} such that

$$
\operatorname{Law}\left(\tilde{\mathrm{u}}_{\mathrm{n}}\right)=\operatorname{Law}\left(\mathrm{u}_{\mathrm{n}}\right)
$$

and there exists $\tilde{u}: \hat{\Omega} \rightarrow \mathcal{Z}_{T}$ random variable such that

$$
\tilde{u}_{n} \rightarrow \tilde{u} \quad \text { in, } \hat{\mathbb{P}}-\text { a.s. }
$$

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_{n} satisfies the same a'priori estimates as u_{n}. In particular $\forall p \in\left[1,1+\frac{1}{K_{c}^{2}}\right)$

Skorokhod theorem

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since \mathcal{Z}_{T} is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}), \mathcal{Z}_{T}$-valued random variables \tilde{u}_{n} such that

$$
\operatorname{Law}\left(\tilde{u}_{\mathrm{n}}\right)=\operatorname{Law}\left(\mathrm{u}_{\mathrm{n}}\right)
$$

and there exists $\tilde{u}: \hat{\Omega} \rightarrow \mathcal{Z}_{T}$ random variable such that

$$
\tilde{u}_{n} \rightarrow \tilde{u} \quad \text { in, } \hat{\mathbb{P}}-\text { a.s. }
$$

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_{n} satisfies the same a'priori estimates as u_{n}. In particular $\forall p \in\left[1,1+\frac{1}{K_{c}^{2}}\right)$

$$
\begin{align*}
& \sup _{n \geq 1} \mathbb{E}\left(\sup _{r \in[0, T]}\left\|\tilde{u}_{n}(r)\right\|_{\mathrm{V}}^{2 p}\right) \leq C_{1}(p) \tag{25}\\
& \quad \sup _{n \geq 1} \mathbb{E} \int_{0}^{T}\left|\tilde{u}_{n}(s)\right|_{\mathrm{D}(\mathrm{~A})}^{2} d s \leq C_{3} \tag{26}
\end{align*}
$$

Convergence

The choice of \mathcal{Z}_{T} allows to deduce that $\forall \psi \in \mathrm{H}(o r \mathrm{~V})$ and $s, t \in[0, T]$:
(a) $\lim _{n \rightarrow \infty}\left\langle\tilde{u}_{n}(t), P_{n} \psi\right\rangle=\langle\tilde{u}(t), \psi\rangle, \tilde{\mathbb{P}}$-a.s.,
(b) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle A \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle A \tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.,
(c) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle B\left(\tilde{u}_{n}(\sigma), \tilde{u}_{n}(\sigma)\right), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.,
(d) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left|\nabla \tilde{u}_{n}(\sigma)\right|_{L^{2}}^{2}\left\langle\tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}|\nabla \tilde{u}(\sigma)|_{L^{2}}^{2}\langle\tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.
(e) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}(\sigma), \psi\right\rangle d \sigma, \tilde{\mathbb{P}}$-a.s.

Since $\tilde{u}_{n} \rightarrow \tilde{u}$ in $C([0, T] ; H)$ and $u_{n}(t) \in \mathcal{M}$ for every $t \in[0, T]$, we infer that
$\tilde{u}(t) \in \mathcal{M}, \quad t \in[0, T]$.
We are close to conclude the proof of Theorem 3. W/e are just left to deal with the It \hat{o} integral.

Convergence

The choice of \mathcal{Z}_{T} allows to deduce that $\forall \psi \in \mathrm{H}(o r \mathrm{~V})$ and $s, t \in[0, T]$:
(a) $\lim _{n \rightarrow \infty}\left\langle\tilde{u}_{n}(t), P_{n} \psi\right\rangle=\langle\tilde{u}(t), \psi\rangle, \tilde{\mathbb{P}}$-a.s.,
(b) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle A \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle A \tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.,
(c) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle B\left(\tilde{u}_{n}(\sigma), \tilde{u}_{n}(\sigma)\right), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi\rangle d \sigma, \quad \tilde{\mathbb{P}}$-a.s.,
(d) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left|\nabla \tilde{u}_{n}(\sigma)\right|_{L^{2}}^{2}\left\langle\tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}|\nabla \tilde{u}(\sigma)|_{L^{2}}^{2}\langle\tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.
(e) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}(\sigma), \psi\right\rangle d \sigma, \quad \tilde{\mathbb{P}}$-a.s.

Since $\tilde{u}_{n} \rightarrow \tilde{u}$ in $C([0, T] ; \mathrm{H})$ and $u_{n}(t) \in \mathcal{M}$ for every $t \in[0, T]$, we infer that

$$
\begin{equation*}
\tilde{u}(t) \in \mathcal{M}, \quad t \in[0, T] . \tag{27}
\end{equation*}
$$

We are close to conclude the proof of Theorem 3. We are just left to deal with the Itô integral.

Convergence

The choice of \mathcal{Z}_{T} allows to deduce that $\forall \psi \in \mathrm{H}(o r \mathrm{~V})$ and $s, t \in[0, T]$:
(a) $\lim _{n \rightarrow \infty}\left\langle\tilde{u}_{n}(t), P_{n} \psi\right\rangle=\langle\tilde{u}(t), \psi\rangle, \tilde{\mathbb{P}}$-a.s.,
(b) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle A \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle A \tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.,
(c) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle B\left(\tilde{u}_{n}(\sigma), \tilde{u}_{n}(\sigma)\right), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi\rangle d \sigma, \quad \tilde{\mathbb{P}}$-a.s.,
(d) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left|\nabla \tilde{u}_{n}(\sigma)\right|_{L^{2}}^{2}\left\langle\tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}|\nabla \tilde{u}(\sigma)|_{L^{2}}^{2}\langle\tilde{u}(\sigma), \psi\rangle d \sigma$, $\tilde{\mathbb{P}}$-a.s.
(e) $\lim _{n \rightarrow \infty} \int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}_{n}(\sigma), P_{n} \psi\right\rangle d \sigma=\int_{s}^{t}\left\langle C_{j}^{2} \tilde{u}(\sigma), \psi\right\rangle d \sigma, \quad \tilde{\mathbb{P}}$-a.s.

Since $\tilde{u}_{n} \rightarrow \tilde{u}$ in $C([0, T] ; \mathrm{H})$ and $u_{n}(t) \in \mathcal{M}$ for every $t \in[0, T]$, we infer that

$$
\begin{equation*}
\tilde{u}(t) \in \mathcal{M}, \quad t \in[0, T] . \tag{27}
\end{equation*}
$$

We are close to conclude the proof of Theorem 3 . We are just left to deal with the Itô integral.

Itô integral

Define

$$
M_{n}(t)=\sum_{j=1}^{m} \int_{0}^{t} P_{n} C_{j} u_{n}(s) d W_{j}(s)
$$

M_{n} is a martingale on $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover

$$
\begin{align*}
M_{n}(t)= & u_{n}(t)-P_{n} u_{n}(0)+\int_{0}^{t} P_{n} A u_{n}(s) d s+\int_{0}^{t} P_{n} B\left(u_{n}(s)\right) d s \\
& -\int_{0}^{t}\left|\nabla u_{n}(s)\right|_{L^{2}}^{2} u_{n}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t}\left(P_{n} C_{j}\right)^{2} u_{n}(s) d s \tag{28}
\end{align*}
$$

The equation (28) can also be used on $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{F}}, \hat{\mathbb{P}})$ to define a process \tilde{M}_{n}, i.e.

Itô integral

Define

$$
M_{n}(t)=\sum_{j=1}^{m} \int_{0}^{t} P_{n} C_{j} u_{n}(s) d W_{j}(s)
$$

M_{n} is a martingale on $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover

$$
\begin{align*}
M_{n}(t)= & u_{n}(t)-P_{n} u_{n}(0)+\int_{0}^{t} P_{n} A u_{n}(s) d s+\int_{0}^{t} P_{n} B\left(u_{n}(s)\right) d s \\
& -\int_{0}^{t}\left|\nabla u_{n}(s)\right|_{L^{2}}^{2} u_{n}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t}\left(P_{n} C_{j}\right)^{2} u_{n}(s) d s \tag{28}
\end{align*}
$$

The equation (28) can also be used on $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{F}}, \hat{\mathbb{P}})$ to define a process \tilde{M}_{n}, i.e.

$$
\begin{align*}
\tilde{M}_{n}(t)= & \tilde{u}_{n}(t)-P_{n} \tilde{u}_{n}(0)+\int_{0}^{t} P_{n} A \tilde{u}_{n}(s) d s+\int_{0}^{t} P_{n} B\left(\tilde{u}_{n}(s)\right) d s \\
& -\int_{0}^{t}\left|\nabla \tilde{u}_{n}(s)\right|_{L^{2}}^{2} \tilde{u}_{n}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t}\left(P_{n} C_{j}\right)^{2} \tilde{u}_{n}(s) d s \tag{29}
\end{align*}
$$

Martingale representation theorem

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$
\begin{align*}
\tilde{M}_{n}(t) & \rightarrow \tilde{M}(t):=\tilde{u}(t)-\tilde{u}(0)+\int_{0}^{t} A \tilde{u}(s) d s+\int_{0}^{t} B(\tilde{u}(s)) d s \\
& -\int_{0}^{t}|\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) d s \tag{30}
\end{align*}
$$

From equality (30) one can deduce that
(i) \tilde{M} is $\tilde{\mathbb{F}}$-martingale.
(ii) $\operatorname{Cov}\left(\tilde{\mathrm{M}}_{\mathrm{n}}\right) \rightarrow \operatorname{Cov}(\tilde{\mathrm{M}})=\sum_{\mathrm{j}=1}^{\mathrm{m}} \int_{0}^{\mathrm{t}} \mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\left(\mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\right)^{*} \mathrm{ds}$.

> This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{F}}, \overline{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

Martingale representation theorem

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$
\begin{align*}
\tilde{M}_{n}(t) & \rightarrow \tilde{M}(t):=\tilde{u}(t)-\tilde{u}(0)+\int_{0}^{t} A \tilde{u}(s) d s+\int_{0}^{t} B(\tilde{u}(s)) d s \\
& -\int_{0}^{t}|\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) d s \tag{30}
\end{align*}
$$

From equality (30) one can deduce that
(i) \tilde{M} is $\tilde{\mathbb{F}}$-martingale.
(ii) $\operatorname{Cov}\left(\tilde{\mathrm{M}}_{\mathrm{n}}\right) \rightarrow \operatorname{Cov}(\tilde{\mathrm{M}})=\sum_{\mathrm{j}=1}^{\mathrm{m}} \int_{0}^{\mathrm{t}} \mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\left(\mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\right)^{*} \mathrm{ds}$.

This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{F}}, \overline{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

$$
\bar{M}(t)=\int_{0}^{t} \sum_{j=1}^{m} C_{j} \bar{u}(s) d \bar{W}_{j}(s)
$$

Hence we proved Theorem 3.

Martingale representation theorem

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$
\begin{align*}
\tilde{M}_{n}(t) & \rightarrow \tilde{M}(t):=\tilde{u}(t)-\tilde{u}(0)+\int_{0}^{t} A \tilde{u}(s) d s+\int_{0}^{t} B(\tilde{u}(s)) d s \\
& -\int_{0}^{t}|\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) d s-\frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) d s \tag{30}
\end{align*}
$$

From equality (30) one can deduce that
(i) \tilde{M} is $\tilde{\mathbb{F}}$-martingale.
(ii) $\operatorname{Cov}\left(\tilde{\mathrm{M}}_{\mathrm{n}}\right) \rightarrow \operatorname{Cov}(\tilde{\mathrm{M}})=\sum_{\mathrm{j}=1}^{\mathrm{m}} \int_{0}^{\mathrm{t}} \mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\left(\mathrm{C}_{\mathrm{j}} \tilde{\mathrm{u}}(\mathrm{s})\right)^{*} \mathrm{ds}$.

This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{F}}, \overline{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

$$
\bar{M}(t)=\int_{0}^{t} \sum_{j=1}^{m} C_{j} \bar{u}(s) d \bar{W}_{j}(s)
$$

Hence we proved Theorem 3.

Pathwise Uniqueness

Theorem 7

Pathwise Uniqueness holds for the the stochastic constrained NSEs (18).

Theorem 8

The stochastic constrained NSEs (18) have a unique strong solution for each $u_{0} \in \mathrm{~V} \cap \mathcal{M}$. Moreover, the paths of this solution belong to the space X_{T} for all $T>0$. In particular, the paths are V-valued continuous (strongly and not only weakly).

References

Z. Brzeźniak, G. Dhariwal and M. Mariani, 2D Constrained Navier-Stokes equations, arXiv:1606.08360v2 (2016) (Submitted).
Z. Brzeźniak and G. Dhariwal, Stochastic Constrained Navier-Stokes equations on \mathbb{T}^{2}, arXiv:1701.01385 (2017)
R Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains, J. Differential Equations, 254(4), 1627-1685 (2013).
L. Caffarelli and F. Lin, Nonlocal heat flows preserving the L^{2} energy, Discrete and Continuous Dynamical Systems, 23(1\&2), 49-64 (2009).
E. Caglioti, M. Pulvirenti and F. Rousset, On a constrained 2D Navier-Stokes Equation, Communications in Mathematical Physics, 290, 651-677 (2009).
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatn. Primen. 42(1), 209-216 (1997); translation in Theory Probab. Appl. 42(1), 167-174 (1998).
R- Rybka, Convergence of a heat flow on a Hilbert manifold, Proceedings of the Royal Society of Edinburgh, 136A, 851-862 (2006).

