Navier-Stokes equations with constrained L^2 energy of the solution

Zdzislaw Brzeźniak

Department of Mathematics

University of York

joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

LMS EPSRC Durham Symposium Stochastic Analysis Durham, July 10-20, 2017

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Caglioti *et.al* [5] studied 2D NSEs in \mathbb{R}^2 with constraints

$$E(\omega) = \int_{\mathbb{R}^2} \psi(x) \,\omega(x) \,dx = \int_{\mathbb{R}^2} |u(x)|^2 \,dx = a,$$

$$I(\omega) = \int_{\mathbb{R}^2} |x|^2 \omega(x) \,dx = b,$$

where

$$\omega = \operatorname{curl} \mathbf{u}, \qquad \psi = -(\Delta)^{-1}\omega.$$

They proved that for a certain stationary solution ω_{MF} of the Euler equation (in the vorticity form) with constraints a, b, for every initial data ω₀ "close enough" ω_{MF} with the same constraints a, b;

$$\omega(t)
ightarrow \omega_{MF}, \, {\sf as} \, t
ightarrow \infty,$$

where $\omega(t)$ is the solution of the NSEs (in the vorticity form) with inital data ω_0 and the same constraints.

イロト イヨト イヨト イヨ

• Caglioti *et.al* [5] studied 2D NSEs in \mathbb{R}^2 with constraints

$$E(\omega) = \int_{\mathbb{R}^2} \psi(x) \,\omega(x) \,dx = \int_{\mathbb{R}^2} |u(x)|^2 \,dx = a,$$

$$I(\omega) = \int_{\mathbb{R}^2} |x|^2 \omega(x) \,dx = b,$$

where

$$\omega = \operatorname{curl} \mathbf{u}, \qquad \psi = -(\Delta)^{-1}\omega.$$

They proved that for a certain stationary solution ω_{MF} of the Euler equation (in the vorticity form) with constraints a, b, for every initial data ω₀ "close enough" ω_{MF} with the same constraints a, b;

$$\omega(t) \to \omega_{MF}, \text{ as } t \to \infty,$$

where $\omega(t)$ is the solution of the NSEs (in the vorticity form) with initial data ω_0 and the same constraints.

イロト イヨト イヨト イヨト

 $\bullet\,$ Rybka [7] and Caffarelli $\&\,$ Lin [4] studied heat equation with constraint

$$|u|_{L^2} = 1. (1)$$

• The heat equation is given by

$$\frac{\partial u}{\partial t} = -A \, u,\tag{2}$$

where $A u = -\Delta u$ is a self adjoint operator on H.

• We define a Hilbert manifold

$$\mathcal{M} = \{ u \in \mathcal{H} : |u|_{\mathcal{H}} = 1 \}.$$
(3)

• Note that $A u \notin T_u \mathcal{M}$ for $u \in \mathcal{M}$ but $\prod_u (-A u) \in T_u \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$\Pi_{u} : \mathbf{H} \ni \mathbf{x} \mapsto \mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle_{\mathbf{H}} \, \mathbf{u} \in \mathbf{T}_{\mathbf{u}} \mathcal{M} = \{ \mathbf{y} \in \mathbf{H} : \langle \mathbf{u}, \mathbf{y} \rangle_{\mathbf{H}} = 0 \}$$
(4)

is the orthogonal projection.

• Since $\Pi_u(-A u) = -A u + |A^{1/2}u|_{\mathrm{H}}^2 u$, we get

$$\frac{\partial u}{\partial t} = -A u + |A^{1/2}|_{\mathrm{H}}^2 u. \tag{5}$$

 $\bullet\,$ Rybka [7] and Caffarelli $\&\,$ Lin [4] studied heat equation with constraint

$$|u|_{L^2} = 1. (1)$$

• The heat equation is given by

$$\frac{\partial u}{\partial t} = -A \, u,\tag{2}$$

where $A u = -\Delta u$ is a self adjoint operator on H.

• We define a Hilbert manifold

$$\mathcal{M} = \{ u \in \mathcal{H} : |u|_{\mathcal{H}} = 1 \}.$$
(3)

• Note that $A u \notin T_u \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_u(-A u) \in T_u \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$\Pi_{u} : \mathbf{H} \ni \mathbf{x} \mapsto \mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle_{\mathbf{H}} \, \mathbf{u} \in \mathbf{T}_{\mathbf{u}} \mathcal{M} = \{ \mathbf{y} \in \mathbf{H} : \langle \mathbf{u}, \mathbf{y} \rangle_{\mathbf{H}} = 0 \}$$
(4)

is the orthogonal projection.

• Since $\Pi_u(-A u) = -A u + |A^{1/2}u|_{\mathrm{H}}^2 u$, we get

$$\frac{\partial u}{\partial t} = -A u + |A^{1/2}|_{\mathrm{H}}^2 u. \tag{5}$$

 $\bullet\,$ Rybka [7] and Caffarelli $\&\,$ Lin [4] studied heat equation with constraint

$$|u|_{L^2} = 1. (1)$$

• The heat equation is given by

$$\frac{\partial u}{\partial t} = -A \, u,\tag{2}$$

where $A u = -\Delta u$ is a self adjoint operator on H.

• We define a Hilbert manifold

$$\mathcal{M} = \{ u \in \mathbf{H} : |u|_{\mathbf{H}} = 1 \}.$$
(3)

• Note that $A u \notin T_u \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_u(-A u) \in T_u \mathcal{M}$ for every $u \in \mathcal{M}$, where

 $I_{u}: H \ni x \mapsto x - \langle x, u \rangle_{H} u \in T_{u} \mathcal{M} = \{ y \in H : \langle u, y \rangle_{H} = 0 \}$ (4)

is the orthogonal projection.

• Since $\Pi_u(-A u) = -A u + |A^{1/2}u|_{\mathrm{H}}^2 u$, we get

$$\frac{\partial u}{\partial t} = -A u + |A^{1/2}|_{\mathrm{H}}^2 u. \tag{5}$$

 $\bullet\,$ Rybka [7] and Caffarelli $\&\,$ Lin [4] studied heat equation with constraint

$$|u|_{L^2} = 1. (1)$$

• The heat equation is given by

$$\frac{\partial u}{\partial t} = -A \, u,\tag{2}$$

where $A u = -\Delta u$ is a self adjoint operator on H.

• We define a Hilbert manifold

$$\mathcal{M} = \{ u \in \mathbf{H} : |u|_{\mathbf{H}} = 1 \}.$$
(3)

• Note that $A u \notin T_u \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_u(-A u) \in T_u \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$\Pi_{u}: H \ni x \mapsto x - \langle x, u \rangle_{H} u \in T_{u} \mathcal{M} = \{ y \in H : \langle u, y \rangle_{H} = 0 \}$$
(4)

is the orthogonal projection.

• Since $\Pi_u(-A u) = -A u + |A^{1/2}u|_{H}^2 u$, we get

$$\frac{\partial u}{\partial t} = -A u + |A^{1/2}|_{\mathrm{H}}^2 u. \tag{5}$$

 $\bullet\,$ Rybka [7] and Caffarelli $\&\,$ Lin [4] studied heat equation with constraint

$$|u|_{L^2} = 1. (1)$$

• The heat equation is given by

$$\frac{\partial u}{\partial t} = -A \, u,\tag{2}$$

where $A u = -\Delta u$ is a self adjoint operator on H.

• We define a Hilbert manifold

$$\mathcal{M} = \{ u \in \mathbf{H} : |u|_{\mathbf{H}} = 1 \}.$$
(3)

• Note that $A u \notin T_u \mathcal{M}$ for $u \in \mathcal{M}$ but $\Pi_u(-A u) \in T_u \mathcal{M}$ for every $u \in \mathcal{M}$, where

$$\Pi_{u}: \mathbf{H} \ni \mathbf{x} \mapsto \mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle_{\mathbf{H}} \, \mathbf{u} \in \mathbf{T}_{\mathbf{u}} \mathcal{M} = \{ \mathbf{y} \in \mathbf{H} : \langle \mathbf{u}, \mathbf{y} \rangle_{\mathbf{H}} = 0 \}$$
(4)

is the orthogonal projection.

• Since $\Pi_u(-A\,u)=-A\,u+|A^{1/2}u|_{\rm H}^2u,$ we get

$$\frac{\partial u}{\partial t} = -A u + |A^{1/2}|_{\mathrm{H}}^2 u.$$
(5)

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \end{cases}$$
(6)

• Note that the heat equation (2) can be seen as an L^2 -gradient flow of energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathcal{O}} |\nabla u(x)|^2 \, dx,\tag{7}$$

as formally

$$-\nabla_{L^2}\mathcal{E}(u) = \Delta u.$$

 Similarly, the constrained heat equation (6) can be seen as the gradient flow of *E* restricted to the manifold *M* with L²-metric on the "tangent bundle". In fact one can prove that the solution of (6) with u₀ ∈ H¹₀(*O*) ∩ *M* satisfies

$$\mathcal{E}(u(t)) + \int_0^t |\Delta u(s) + |\nabla u|_{L^2}^2 u(s)|_{L^2}^2 \, ds = \mathcal{E}(u(0)) \tag{8}$$

from which one can deduce the global existence.

● An essential step in proving the global existence is to establish the invariance of *M*.

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \end{cases}$$
(6)

• Note that the heat equation (2) can be seen as an L^2 -gradient flow of energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathcal{O}} |\nabla u(x)|^2 \, dx,\tag{7}$$

as formally

 $-\nabla_{L^2}\mathcal{E}(u) = \Delta \, u.$

 Similarly, the constrained heat equation (6) can be seen as the gradient flow of *E* restricted to the manifold *M* with L²-metric on the "tangent bundle". In fact one can prove that the solution of (6) with u₀ ∈ H¹₀(*O*) ∩ *M* satisfies

$$\mathcal{E}(u(t)) + \int_0^t |\Delta u(s) + |\nabla u|_{L^2}^2 u(s)|_{L^2}^2 \, ds = \mathcal{E}(u(0)) \tag{8}$$

from which one can deduce the global existence

● An essential step in proving the global existence is to establish the invariance of *M*.

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \end{cases}$$
(6)

• Note that the heat equation (2) can be seen as an L^2 -gradient flow of energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathcal{O}} |\nabla u(x)|^2 \, dx,\tag{7}$$

as formally

$$-\nabla_{L^2}\mathcal{E}(u) = \Delta u.$$

Similarly, the constrained heat equation (6) can be seen as the gradient flow of *E* restricted to the manifold *M* with L²-metric on the "tangent bundle".
 In fact one can prove that the solution of (6) with u₀ ∈ H¹₀(*O*) ∩ *M* satisfies

$$\mathcal{E}(u(t)) + \int_0^t |\Delta u(s) + |\nabla u|_{L^2}^2 u(s)|_{L^2}^2 \, ds = \mathcal{E}(u(0)) \tag{8}$$

from which one can deduce the global existence.

• An essential step in proving the global existence is to establish the invariance of \mathcal{M} .

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \end{cases}$$
(6)

• Note that the heat equation (2) can be seen as an L^2- gradient flow of energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathcal{O}} |\nabla u(x)|^2 \, dx,\tag{7}$$

as formally

$$-\nabla_{L^2}\mathcal{E}(u) = \Delta u.$$

Similarly, the constrained heat equation (6) can be seen as the gradient flow of *E* restricted to the manifold *M* with L²-metric on the "tangent bundle".
 In fact one can prove that the solution of (6) with u₀ ∈ H¹₀(*O*) ∩ *M* satisfies

$$\mathcal{E}(u(t)) + \int_0^t |\Delta u(s) + |\nabla u|_{L^2}^2 u(s)|_{L^2}^2 \, ds = \mathcal{E}(u(0)) \tag{8}$$

from which one can deduce the global existence.

• An essential step in proving the global existence is to establish the invariance of \mathcal{M} .

Navier-Stokes equations

We consider NSEs

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = 0\\ u(0) = u_0 \end{cases}$$
(9)

which is an abstract form of

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + u \cdot \nabla u + \nabla p = 0, \\ \operatorname{div} u = 0, \\ u(0, \cdot) = u_0(\cdot). \end{cases}$$

Here

$$B(u,u) = \Pi(u \cdot \nabla u) \tag{10}$$

・ロト ・回ト ・ヨト ・ヨト

where $\Pi: L^2(\mathcal{O}) \to H$ is the orthogonal projection.

$$H = \{ u \in L^{2}(\mathcal{O}) : \text{ div } u = 0 \\ \text{and} \quad u|_{\partial \mathcal{O}} \cdot n = 0 \quad \text{(Dirichlet b.c.)} \\ \text{or} \quad \int_{\mathcal{O}} u(x) \, dx = 0 \quad \text{(Torus)} \}$$
(11)

Navier-Stokes equations

We consider NSEs

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = 0\\ u(0) = u_0 \end{cases}$$
(9)

which is an abstract form of

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + u \cdot \nabla u + \nabla p = 0, \\ \operatorname{div} u = 0, \\ u(0, \cdot) = u_0(\cdot). \end{cases}$$

Here

$$B(u,u) = \Pi(u \cdot \nabla u) \tag{10}$$

・ロト ・回ト ・ヨト ・ヨト

where $\Pi: L^2(\mathcal{O}) \to \mathrm{H}$ is the orthogonal projection.

$$H = \{ u \in L^{2}(\mathcal{O}): \text{ div } u = 0$$

and $u|_{\partial \mathcal{O}} \cdot n = 0$ (Dirichlet b.c.)
or $\int_{\mathcal{O}} u(x) dx = 0$ (Torus) \} (11)

Constrained Navier-Stokes equations

• We put $\mathcal{M} = \{ u \in \mathcal{H} : |u|_{L^2} = 1 \}.$

• The projected version of (9) can be found in a similar way as before.

Note

$$I_u(B(u,u)) = B(u,u) - \underbrace{\langle B(u,u), u \rangle_{\rm H}}_{=0} u = B(u,u).$$
(12)

So we get

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \in \mathcal{V} \cap \mathcal{M}, \end{cases}$$
(13)

<ロト </p>

where $V = H_0^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t < \tau$ which lies on \mathcal{M} .
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$\langle A u, B(u, u) \rangle_{\mathrm{H}} = 0.$$

Constrained Navier-Stokes equations

- We put $\mathcal{M} = \{ u \in \mathcal{H} : |u|_{L^2} = 1 \}.$
- The projected version of (9) can be found in a similar way as before.
- Note

$$\Pi_u(B(u,u)) = B(u,u) - \underbrace{\langle B(u,u), u \rangle_{\rm H}}_{=0} u = B(u,u).$$
(12)

So we get

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \in \mathcal{V} \cap \mathcal{M}, \end{cases}$$
(13)

where $V = H_0^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t < \tau$ which lies on \mathcal{M} .
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$\langle A u, B(u, u) \rangle_{\mathrm{H}} = 0.$$

<ロト < 回 > < 回 > < 回 > < 回 >

- We put $\mathcal{M} = \{ u \in \mathcal{H} : |u|_{L^2} = 1 \}.$
- The projected version of (9) can be found in a similar way as before.
- Note

$$\Pi_u(B(u,u)) = B(u,u) - \underbrace{\langle B(u,u), u \rangle_{\rm H}}_{=0} u = B(u,u).$$
(12)

So we get

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = |\nabla u|_{L^2}^2 u\\ u(0) = u_0 \in \mathcal{V} \cap \mathcal{M}, \end{cases}$$
(13)

where $V = H_0^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t < \tau$ which lies on \mathcal{M} .
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$\langle A u, B(u, u) \rangle_{\mathrm{H}} = 0.$$

イロト イ団ト イヨト イヨト

- We put $\mathcal{M} = \{ u \in \mathcal{H} : |u|_{L^2} = 1 \}.$
- The projected version of (9) can be found in a similar way as before.
- Note

$$\Pi_u(B(u,u)) = B(u,u) - \underbrace{\langle B(u,u), u \rangle_{\rm H}}_{=0} u = B(u,u).$$
(12)

So we get

$$\begin{cases} \frac{\partial u}{\partial t} + A u + B(u, u) = |\nabla u|_{L^2}^2 u \\ u(0) = u_0 \in \mathcal{V} \cap \mathcal{M}, \end{cases}$$
(13)

where $V = H_0^{1,2} \cap \mathcal{M}$ or $H^{1,2} \cap \mathcal{M}$.

- We can show existence of a local maximal solution $u(t), t < \tau$ which lies on \mathcal{M} .
- However to prove the global existence one needs to assume that we deal with periodic boundary conditions (or torus), because then

$$\langle A u, B(u, u) \rangle_{\mathrm{H}} = 0.$$

イロト イ団ト イヨト イヨト

Since

$$||u||_{\mathcal{V}}^2 = |u|_{\mathcal{H}}^2 + |\nabla u|_{L^2}^2 = |u|_{\mathcal{H}}^2 + 2\mathcal{E}(u)$$

and the $L^2-\text{norm}$ of u(t) doesn't explode. In order to show that $\|u(t)\|_{\rm V}^2$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^2}$ neither does.

• Formally, we have

$$\frac{1}{2}\frac{d}{dt}|\nabla u(t)|_{L^{2}}^{2} = \langle u', A u \rangle_{L^{2}} = \langle -A u - B(u, u) + |\nabla u|_{L^{2}}^{2}u, A u \rangle_{L^{2}}$$
$$= -|A u|_{L^{2}}^{2} + |\nabla u|_{L^{2}}^{4}.$$
(14)

But recall

$$\nabla_{\mathcal{M}}\mathcal{E}(u) = \Pi_u(\nabla_u\mathcal{E}(u)) = \Pi_u(A\,u) = Au - |\nabla u|_{L^2}^2 u.$$
(15)

Thus

$$|\nabla_{\mathcal{M}}\mathcal{E}(u)|_{L^{2}}^{2} = |A u|^{2} + |\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1} - 2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A u \rangle_{L^{2}}}_{=|\nabla u|_{L^{2}}^{4}}$$
$$= |A u|_{L^{2}}^{2} - |\nabla u|_{L^{2}}^{4}.$$
(16)

イロト イヨト イヨト イヨ

Since

$$||u||_{\mathcal{V}}^2 = |u|_{\mathcal{H}}^2 + |\nabla u|_{L^2}^2 = |u|_{\mathcal{H}}^2 + 2\mathcal{E}(u)$$

and the L^2 -norm of u(t) doesn't explode. In order to show that $||u(t)||_V^2$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^2}$ neither does.

• Formally, we have

$$\frac{1}{2}\frac{d}{dt}|\nabla u(t)|_{L^{2}}^{2} = \langle u', A u \rangle_{L^{2}} = \langle -A u - B(u, u) + |\nabla u|_{L^{2}}^{2}u, A u \rangle_{L^{2}}$$
$$= -|A u|_{L^{2}}^{2} + |\nabla u|_{L^{2}}^{4}.$$
(14)

But recall

$$\nabla_{\mathcal{M}}\mathcal{E}(u) = \Pi_u(\nabla_u\mathcal{E}(u)) = \Pi_u(A\,u) = Au - |\nabla u|_{L^2}^2 u.$$
(15)

Thus

$$|\nabla_{\mathcal{M}}\mathcal{E}(u)|_{L^{2}}^{2} = |A u|^{2} + |\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1} - 2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A u \rangle_{L^{2}}}_{=|\nabla u|_{L^{2}}^{4}}$$
$$= |A u|_{L^{2}}^{2} - |\nabla u|_{L^{2}}^{4}.$$
(16)

・ロン ・回 と ・ ヨン・

Since

$$||u||_{\mathcal{V}}^2 = |u|_{\mathcal{H}}^2 + |\nabla u|_{L^2}^2 = |u|_{\mathcal{H}}^2 + 2\mathcal{E}(u)$$

and the L^2 -norm of u(t) doesn't explode. In order to show that $||u(t)||_V^2$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^2}$ neither does.

• Formally, we have

$$\frac{1}{2}\frac{d}{dt}|\nabla u(t)|_{L^{2}}^{2} = \langle u', A \, u \rangle_{L^{2}} = \langle -A \, u - B(u, u) + |\nabla u|_{L^{2}}^{2} u, A \, u \rangle_{L^{2}}$$
$$= -|A \, u|_{L^{2}}^{2} + |\nabla u|_{L^{2}}^{4}. \tag{14}$$

But recall

$$\nabla_{\mathcal{M}}\mathcal{E}(u) = \Pi_u(\nabla_u\mathcal{E}(u)) = \Pi_u(A\,u) = Au - |\nabla u|_{L^2}^2 u. \tag{15}$$

Thus

$$\begin{aligned} |\nabla_{\mathcal{M}}\mathcal{E}(u)|_{L^{2}}^{2} &= |A\,u|^{2} + |\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1} - 2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A\,u \rangle_{L^{2}}}_{=|\nabla\,u|_{L^{2}}^{4}} \\ &= |A\,u|_{L^{2}}^{2} - |\nabla u|_{L^{2}}^{4}. \end{aligned}$$
(16)

<ロ> <同> <同> <同> < 同> <

Since

$$||u||_{\mathcal{V}}^2 = |u|_{\mathcal{H}}^2 + |\nabla u|_{L^2}^2 = |u|_{\mathcal{H}}^2 + 2\mathcal{E}(u)$$

and the $L^2-\text{norm}$ of u(t) doesn't explode. In order to show that $\|u(t)\|_{\rm V}^2$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^2}$ neither does.

• Formally, we have

$$\frac{1}{2}\frac{d}{dt}|\nabla u(t)|_{L^{2}}^{2} = \langle u', A \, u \rangle_{L^{2}} = \langle -A \, u - B(u, u) + |\nabla u|_{L^{2}}^{2} u, A \, u \rangle_{L^{2}}$$
$$= -|A \, u|_{L^{2}}^{2} + |\nabla u|_{L^{2}}^{4}. \tag{14}$$

But recall

$$\nabla_{\mathcal{M}}\mathcal{E}(u) = \Pi_u(\nabla_u\mathcal{E}(u)) = \Pi_u(A\,u) = Au - |\nabla u|_{L^2}^2 u. \tag{15}$$

Thus

$$\begin{aligned} |\nabla_{\mathcal{M}}\mathcal{E}(u)|_{L^{2}}^{2} &= |A\,u|^{2} + |\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1} - 2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A\,u \rangle_{L^{2}}}_{=|\nabla\,u|_{L^{2}}^{4}} \\ &= |A\,u|_{L^{2}}^{2} - |\nabla u|_{L^{2}}^{4}. \end{aligned}$$
(16)

・ロト ・日下・ ・ ヨト・

Since

$$||u||_{\mathcal{V}}^2 = |u|_{\mathcal{H}}^2 + |\nabla u|_{L^2}^2 = |u|_{\mathcal{H}}^2 + 2\mathcal{E}(u)$$

and the $L^2-\text{norm}$ of u(t) doesn't explode. In order to show that $\|u(t)\|_{\rm V}^2$ doesn't explode, it suffices to show that $|\nabla u(t)|_{L^2}$ neither does.

• Formally, we have

$$\frac{1}{2}\frac{d}{dt}|\nabla u(t)|_{L^{2}}^{2} = \langle u', A \, u \rangle_{L^{2}} = \langle -A \, u - B(u, u) + |\nabla u|_{L^{2}}^{2} u, A \, u \rangle_{L^{2}}$$
$$= -|A \, u|_{L^{2}}^{2} + |\nabla u|_{L^{2}}^{4}. \tag{14}$$

But recall

$$\nabla_{\mathcal{M}}\mathcal{E}(u) = \Pi_u(\nabla_u\mathcal{E}(u)) = \Pi_u(A\,u) = Au - |\nabla u|_{L^2}^2 u. \tag{15}$$

Thus

$$\begin{aligned} |\nabla_{\mathcal{M}}\mathcal{E}(u)|_{L^{2}}^{2} &= |A\,u|^{2} + |\nabla u|_{L^{2}}^{4} \underbrace{|u|_{L^{2}}^{2}}_{=1} - 2|\nabla u|_{L^{2}}^{2} \underbrace{\langle u, A\,u \rangle_{L^{2}}}_{=|\nabla\,u|_{L^{2}}^{4}} \\ &= |A\,u|_{L^{2}}^{2} - |\nabla u|_{L^{2}}^{4}. \end{aligned}$$
(16)

・ロト ・日下・ ・ ヨト・

• Hence $|A u|_{L^2}^2 - |\nabla u|_{L^2}^4 \ge 0$ and

$$\frac{1}{2} |\nabla u(t)|_{L^2}^2 + \int_0^t |\nabla_{\mathcal{M}} \mathcal{E}(u(s))|_{L^2}^2 \, ds = \frac{1}{2} |\nabla u_0|_{L^2}^2, \qquad t \in [0, T).$$
(17)

Thus we can summarise our results in the following theorem :

Theorem 1

For every $u_0 \in V \cap M$ there exists a unique global solution u of the constrained NSEs (13) such that $u \in X_T$ for all T > 0.

Here $X_T = \mathcal{C}([0,T]; V) \cap L^2(0,T; D(A)).$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stochastic Constrained NSEs

• We assume that $W = (W_1, \dots, W_m)$ is \mathbb{R}^m -valued Wiener process, $c_1 \dots, c_m$ and $\hat{C}_1, \dots, \hat{C}_m$ are respectively vector fields and assosciated linear operators given by

$$\hat{C}_j u = c_j(x) \cdot \nabla u, : \quad \operatorname{div} c_j = 0, \quad j \in \{1, \cdots, m\}$$

Since

$$C_j u = \Pi \hat{C}_j u, \qquad j \in \{1, \cdots, m\},$$

is skew symmetric in H, these operators don't produce any correction term when projected on $T_u \mathcal{M}$.

• Thus the stochastic NSE

$$du + [A u + B(u, u)] dt = \sum_{j=1}^{m} C_j u \circ dW_j = \sum_{j=1}^{m} C_j u \, dW_j + \frac{1}{2} \sum_{j=1}^{m} C_j^2 u \, dt$$

Stratonovich = $It\hat{o} + correction$

イロト イヨト イヨト イヨト

under the constraint is given by

$$du + \left[A \, u + B(u, u) - |\nabla u|_{L^2}^2 \, u\right] dt = \frac{1}{2} \sum_{j=1}^m C_j^2 u \, dt + \sum_{j=1}^m C_j u \, dW_j.$$
(18)

Stochastic Constrained NSEs

• We assume that $W = (W_1, \dots, W_m)$ is \mathbb{R}^m -valued Wiener process, $c_1 \dots, c_m$ and $\hat{C}_1, \dots, \hat{C}_m$ are respectively vector fields and assosciated linear operators given by

$$\hat{C}_j u = c_j(x) \cdot \nabla u$$
, : div $c_j = 0$, $j \in \{1, \cdots, m\}$

Since

$$C_j u = \Pi \hat{C}_j u, \qquad j \in \{1, \cdots, m\},$$

is skew symmetric in H, these operators don't produce any correction term when projected on $T_u \mathcal{M}$.

• Thus the stochastic NSE

$$du + [A u + B(u, u)] dt = \sum_{j=1}^{m} C_j u \circ dW_j = \sum_{j=1}^{m} C_j u \, dW_j + \frac{1}{2} \sum_{j=1}^{m} C_j^2 u \, dt$$

Stratonovich = $It\hat{o} + correction$

<ロト </p>

under the constraint is given by

$$du + \left[A \, u + B(u, u) - |\nabla u|_{L^2}^2 \, u\right] dt = \frac{1}{2} \sum_{j=1}^m C_j^2 u \, dt + \sum_{j=1}^m C_j u \, dW_j.$$
(18)

• We assume that $W = (W_1, \dots, W_m)$ is \mathbb{R}^m -valued Wiener process, $c_1 \dots, c_m$ and $\hat{C}_1, \dots, \hat{C}_m$ are respectively vector fields and assosciated linear operators given by

$$\hat{C}_j u = c_j(x) \cdot \nabla u$$
, : div $c_j = 0$, $j \in \{1, \cdots, m\}$

Since

$$C_j u = \Pi \hat{C}_j u, \qquad j \in \{1, \cdots, m\},$$

is skew symmetric in H, these operators don't produce any correction term when projected on $T_u \mathcal{M}$.

Thus the stochastic NSE

$$du + [A u + B(u, u)] dt = \sum_{j=1}^{m} C_j u \circ dW_j = \sum_{j=1}^{m} C_j u \, dW_j + \frac{1}{2} \sum_{j=1}^{m} C_j^2 u \, dt$$

 $\mathsf{Stratonovich} = \mathsf{It} \hat{\mathsf{o}} + \mathsf{correction}$

under the constraint is given by

$$du + \left[A \, u + B(u, u) - |\nabla u|_{L^2}^2 \, u\right] dt = \frac{1}{2} \sum_{j=1}^m C_j^2 u \, dt + \sum_{j=1}^m C_j u \, dW_j. \tag{18}$$

Definition 2

We say that there exists a martingale solution of (18) iff there exist

- a stochastic basis $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{F}}, \hat{\mathbb{P}})$ with filtration $\hat{\mathbb{F}} = \left\{\hat{\mathcal{F}}_t\right\}_{t \geq 0}$
- an \mathbb{R}^m -valued $\hat{\mathbb{F}}$ -Wiener process \hat{W} ,
- and an $\hat{\mathbb{F}}$ -progressively measurable process $u:[0,T] \times \hat{\Omega} \to \mathcal{V} \cap \mathcal{M}$ with $\hat{\mathbb{P}}$ -a.e. paths

$$u(\cdot,\omega) \in \mathcal{C}([0,T]; \mathbf{V}_{\mathbf{w}}) \cap \mathbf{L}^2(0,T; \mathbf{D}(\mathbf{A})),$$

such that for all $t \in [0,T]$ and all $v \in D(A)$:

$$\begin{aligned} \langle u(t), \mathbf{v} \rangle &+ \int_{0}^{t} \langle \mathrm{Au}(\mathbf{s}), \mathbf{v} \rangle \, \mathrm{ds} + \int_{0}^{t} \langle \mathrm{B}(\mathbf{u}(\mathbf{s})), \mathbf{v} \rangle \, \mathrm{ds} = \langle \mathbf{u}_{0}, \mathbf{v} \rangle \\ &+ \int_{0}^{t} |\nabla u(s)|_{L^{2}}^{2} \langle u(s), \mathbf{v} \rangle \, \mathrm{ds} + \frac{1}{2} \int_{0}^{t} \sum_{j=1}^{m} \langle \mathrm{C}_{j}^{2} \mathbf{u}(\mathbf{s}), \mathbf{v} \rangle \, \mathrm{ds} + \int_{0}^{t} \sum_{j=1}^{m} \langle \mathrm{C}_{j} \mathbf{u}(\mathbf{s}), \mathbf{v} \rangle \, \mathrm{dW}_{j}, \end{aligned}$$

$$(10)$$

the identity hold $\hat{\mathbb{P}}$ -a.s.

・ロト ・回ト ・目下

Then for every $u_0 \in V \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

 $\mathbb{E}\int^{T} |u_n(t)|_{\mathrm{H}}^{q} dt < \infty.$

Then for every $u_0 \in V \cap \mathcal{M}$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation : Let $\{e_i\}$ be ONB of H and eigenvectors of A.

 $H_n := lin\{e_1, \cdots, e_n\}$ is the finite dimensional Hilbert space

 $P_n \colon \mathrm{H} \to \mathrm{H}_n$ be the orthogonal projection operator given by $P_n u = \sum \langle u, e_i \rangle e_i$.

We consider the following "projection" of onto H_n :

 $\begin{cases} du_n &= -\left[P_nAu_n + P_nB(u_n) - |\nabla u_n|_{L^2}^2 u_n\right] dt + \sum_{j=1}^m P_nC_j u_n \circ dW_j, \quad t \ge 0, \\ u_n(0) &= \frac{P_n u_0}{|P_n u_0|_{L^2}}, \quad \text{ for } n \text{ large enough} \end{cases}$ (20)

 $\mathbb{E}\int^{T} |u_n(t)|_{\mathrm{H}}^{q} dt < \infty.$

Then for every $u_0 \in V \cap M$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation : Let $\{e_j\}$ be ONB of H and eigenvectors of A.

 $H_n := lin\{e_1, \cdots, e_n\}$ is the finite dimensional Hilbert space

 $P_n \colon \mathrm{H} \to \mathrm{H}_n$ be the orthogonal projection operator given by $P_n u = \sum_{i=1}^n \langle u, e_i \rangle e_i$.

We consider the following "projection" of onto H_n :

$$\begin{cases} du_n &= -\left[P_n A u_n + P_n B(u_n) - |\nabla u_n|_{L^2}^2 u_n\right] dt + \sum_{j=1}^m P_n C_j u_n \circ dW_j, \quad t \ge 0, \\ u_n(0) &= \frac{P_n u_0}{|P_n u_0|_{L^2}}, \quad \text{for } n \text{ large enough} \end{cases}$$
(20)

We fix T > 0. Equation (20) is a stochastic ODE on a finite dimensional compact manifold $\mathcal{M}_n = \{u \in \mathcal{H}_n : |u|_{L^2} = 1\}$. Hence it has a unique \mathcal{M} -valued solution (with continuous paths). Moreover, $\forall q \geq 2$ $\mathbb{E} \int_{0}^{T} |u_n(t)|_{\mathcal{H}}^q dt < \infty$.

Then for every $u_0 \in V \cap M$, there exists a martingale solution to the stochastic constrained NSEs (18).

Sketch of the proof : Galerkin approximation : Let $\{e_j\}$ be ONB of H and eigenvectors of A.

 $H_n := lin\{e_1, \cdots, e_n\}$ is the finite dimensional Hilbert space

 $P_n \colon \mathrm{H} \to \mathrm{H}_n$ be the orthogonal projection operator given by $P_n u = \sum_{i=1}^n \langle u, e_i \rangle e_i$.

We consider the following "projection" of onto H_n :

$$\begin{cases} du_n &= -\left[P_n A u_n + P_n B(u_n) - |\nabla u_n|_{L^2}^2 u_n\right] dt + \sum_{j=1}^m P_n C_j u_n \circ dW_j, \quad t \ge 0, \\ u_n(0) &= \frac{P_n u_0}{|P_n u_0|_{L^2}}, \quad \text{for } n \text{ large enough} \end{cases}$$
(20)

We fix T > 0. Equation (20) is a stochastic ODE on a finite dimensional compact manifold $\mathcal{M}_n = \{u \in \mathcal{H}_n : |u|_{L^2} = 1\}$. Hence it has a unique \mathcal{M} -valued solution (with continuous paths). Moreover, $\forall q \ge 2$ $\mathbb{E} \int_0^T |u_n(t)|_{\mathcal{H}}^q dt < \infty$. These depend deeply on the property that

$$\langle B(u), Au \rangle_{\mathrm{H}} = 0, \quad u \in \mathrm{D}(\mathrm{A}).$$

and a very specific assumption

• We assume $c_1 \cdots, c_m$ are constant vector fields.

Let $K_c = \max_{j \in 1, ..., m} |c_j|_{\mathbb{R}^2}$.

Lemma 4

Let $p \in \left[1, 1 + \frac{1}{K_c^2}\right)$ and $\rho > 0$. Then there exist positive constants $C_1(p, \rho)$, $C_2(p, \rho)$ and $C_3(\rho)$ such that if $||u_0||_V \leq \rho$, then

$$\sup_{n \ge 1} \mathbb{E} \left(\sup_{r \in [0,T]} \|u_n(r)\|_{\mathcal{V}}^{2p} \right) \le C_1(p,\rho),$$

$$\sup_{n \ge 1} \mathbb{E} \int_0^T \|u_n(s)\|_{\mathcal{V}}^{2(p-1)} |Au_n(s) - |\nabla u_n(s)|_{L^2}^2 u_n(s)|_{\mathcal{H}}^2 \, ds \le C_2(p,\rho) \,,$$
(21)

and

$$\sup_{n \ge 1} \mathbb{E} \int_0^T |u_n(s)|^2_{\mathcal{D}(\Lambda)} \, ds \le C_2(1) + C_1(2)T =: C_3(\rho).$$
(23)

Zdzislaw Brzeźniak (York)

These depend deeply on the property that

$$\langle B(u), Au \rangle_{\mathrm{H}} = 0, \quad u \in \mathrm{D}(\mathrm{A}).$$

and a very specific assumption

• We assume $c_1 \cdots, c_m$ are constant vector fields.

Let $K_c = \max_{j \in 1, \cdots, m} |c_j|_{\mathbb{R}^2}$.

Lemma 4

Let $p \in \left[1, 1 + \frac{1}{K_c^2}\right)$ and $\rho > 0$. Then there exist positive constants $C_1(p, \rho)$, $C_2(p, \rho)$ and $C_3(\rho)$ such that if $||u_0||_V \leq \rho$, then

$$\sup_{n \ge 1} \mathbb{E} \left(\sup_{r \in [0,T]} \|u_n(r)\|_{\mathcal{V}}^{2p} \right) \le C_1(p,\rho),$$
(21)

$$\sup_{n\geq 1} \mathbb{E} \int_0^T \|u_n(s)\|_{\mathcal{V}}^{2(p-1)} |Au_n(s) - |\nabla u_n(s)|_{L^2}^2 u_n(s)|_{\mathcal{H}}^2 \, ds \le C_2(p,\rho) \,, \tag{22}$$

and

$$\sup_{n\geq 1} \mathbb{E} \int_0^T |u_n(s)|^2_{D(A)} \, ds \le C_2(1) + C_1(2)T =: C_3(\rho).$$
(23)

We put

 $\mathcal{Z}_T = \mathcal{C}([0,T]; \mathrm{H}) \cap \mathrm{L}^2_{\mathrm{w}}(0,\mathrm{T};\mathrm{D}(\mathrm{A})) \cap \mathrm{L}^2(0,\mathrm{T};\mathrm{V}) \cap \mathcal{C}([0,\mathrm{T}];\mathrm{V}_{\mathrm{w}}),$

and \mathcal{T}_T the corresponding topology.

In order to prove that the laws of u_n are tight on Z_T . Apart from a priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H) $\forall \varepsilon > 0, \forall \eta > 0 \exists \delta > 0$: for every stopping time $\tau_n \colon \Omega \to [0, T]$ $\sup_{n \in \mathbb{N}} \sup_{0 \le \theta \le \delta} \mathbb{P}\left(|u_n(\tau_n + \theta) - u_n(\tau_n)|_{H} \ge \eta\right) < \varepsilon.$ (24)

Lemma 5 can be proved by applying Lemma 4 to equations (20).

Corollary 6

The laws of (u_n) are tight on Z_T , i.e. $\forall \varepsilon > 0 \exists K_{\varepsilon} \subset Z_T$ compact, such that

 $\mathbb{P}\left(u_n \in K_{\varepsilon}\right) \ge 1 - \varepsilon, \quad \forall n \in \mathbb{N}.$

イロト イヨト イヨト イヨ

We put

$$\mathcal{Z}_T = \mathcal{C}([0,T]; \mathrm{H}) \cap \mathrm{L}^2_\mathrm{w}(0,T; \mathrm{D}(\mathrm{A})) \cap \mathrm{L}^2(0,T; \mathrm{V}) \cap \mathcal{C}([0,T]; \mathrm{V}_\mathrm{w}),$$

and \mathcal{T}_T the corresponding topology.

In order to prove that the laws of u_n are tight on Z_T . Apart from a priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H)

 $\forall \varepsilon > 0, \forall \eta > 0 \exists \delta > 0$: for every stopping time $\tau_n \colon \Omega \to [0,T]$

$$\sup_{n \in \mathbb{N}} \sup_{0 \le \theta \le \delta} \mathbb{P}\left(|u_n(\tau_n + \theta) - u_n(\tau_n)|_{\mathcal{H}} \ge \eta \right) < \varepsilon.$$
(24)

Lemma 5 can be proved by applying Lemma 4 to equations (20).

Corollary 6

The laws of (u_n) are tight on Z_T , i.e. $\forall \varepsilon > 0 \exists K_{\varepsilon} \subset Z_T$ compact, such that

 $\mathbb{P}\left(u_n \in K_{\varepsilon}\right) \ge 1 - \varepsilon, \quad \forall n \in \mathbb{N}.$

イロト イヨト イヨト イヨト

We put

$$\mathcal{Z}_T = \mathcal{C}([0,T]; \mathrm{H}) \cap \mathrm{L}^2_\mathrm{w}(0,T; \mathrm{D}(\mathrm{A})) \cap \mathrm{L}^2(0,T; \mathrm{V}) \cap \mathcal{C}([0,T]; \mathrm{V}_\mathrm{w}),$$

and \mathcal{T}_T the corresponding topology.

In order to prove that the laws of u_n are tight on Z_T . Apart from a priori estimates we also need one additional property to be satisfied :

Lemma 5 (Aldous condition in H)

 $\forall \varepsilon > 0, \forall \eta > 0 \exists \delta > 0$: for every stopping time $\tau_n \colon \Omega \to [0,T]$

$$\sup_{n \in \mathbb{N}} \sup_{0 \le \theta \le \delta} \mathbb{P}\left(|u_n(\tau_n + \theta) - u_n(\tau_n)|_{\mathrm{H}} \ge \eta \right) < \varepsilon.$$
(24)

Lemma 5 can be proved by applying Lemma 4 to equations (20).

Corollary 6

The laws of (u_n) are tight on Z_T , i.e. $\forall \varepsilon > 0 \exists K_{\varepsilon} \subset Z_T$ compact, such that

$$\mathbb{P}\left(u_n \in K_{\varepsilon}\right) \ge 1 - \varepsilon, \quad \forall n \in \mathbb{N}.$$

・ロト ・日下・ ・ ヨト・

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since Z_T is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}})$, Z_T -valued random variables \tilde{u}_n such that

 $Law(\tilde{u}_n)=Law(u_n),$

and there exists $\tilde{u} \colon \tilde{\Omega} \to \mathcal{Z}_T$ random variable such that

$$\tilde{u}_n \to \tilde{u} \quad \text{in}, \, \hat{\mathbb{P}} - a.s.$$

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_n satisfies the same a'priori estimates as u_n . In particular $\forall p \in [1, 1 + \frac{1}{K^2})$

$$\sup_{n\geq 1} \mathbb{E} \left(\sup_{r\in[0,T]} \|\tilde{u}_n(r)\|_{\mathcal{V}}^{2p} \right) \leq C_1(p),$$

$$\sup_{n\geq 1} \mathbb{E} \int_0^T |\tilde{u}_n(s)|_{\mathcal{D}(\mathcal{A})}^2 ds \leq C_3.$$
(26)

イロト イヨト イヨト イヨ

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since Z_T is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}})$, Z_T -valued random variables \tilde{u}_n such that

 $Law(\tilde{u}_n) = Law(u_n),$

and there exists $\tilde{u} \colon \hat{\Omega} \to \mathcal{Z}_T$ random variable such that

$$\tilde{u}_n \to \tilde{u} \quad \text{in, } \hat{\mathbb{P}} - a.s.$$

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_n satisfies the same a priori estimates as u_n . In particular $\forall p \in [1, 1 + \frac{1}{K^2})$

$$\sup_{n\geq 1} \mathbb{E} \left(\sup_{r\in[0,T]} \|\tilde{u}_n(r)\|_{\mathcal{V}}^{2p} \right) \leq C_1(p),$$

$$\sup_{n\geq 1} \mathbb{E} \int_0^T |\tilde{u}_n(s)|_{\mathcal{D}(\mathcal{A})}^2 ds \leq C_3.$$
(26)

イロン イ部ン イヨン イヨ

By the application of the Prokhorov and the Jakubowski-Skorokhod Theorems (since Z_T is not a Polish space, we need Jakubowski) we deduce that there exists a subsequence, a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}})$, Z_T -valued random variables \tilde{u}_n such that

 $Law(\tilde{u}_n) = Law(u_n),$

and there exists $\tilde{u} \colon \hat{\Omega} \to \mathcal{Z}_T$ random variable such that

$$\tilde{u}_n \to \tilde{u} \quad \text{in, } \hat{\mathbb{P}} - a.s.$$

Then, using Kuratowski Theorem, we can deduce that the sequence \tilde{u}_n satisfies the same a priori estimates as u_n . In particular $\forall p \in [1, 1 + \frac{1}{K^2})$

$$\sup_{n\geq 1} \mathbb{E}\left(\sup_{r\in[0,T]} \|\tilde{u}_n(r)\|_{\mathcal{V}}^{2p}\right) \leq C_1(p),$$

$$\sup_{n\geq 1} \mathbb{E}\int_0^T |\tilde{u}_n(s)|_{\mathcal{D}(\mathcal{A})}^2 ds \leq C_3.$$
(26)

< ロ > < 回 > < 回 > < 回 > < 回</p>

The choice of \mathcal{Z}_T allows to deduce that $\forall \psi \in \mathrm{H}(or\mathrm{V})$ and $s, t \in [0, T]$: (a) $\lim_{n \to \infty} \langle \tilde{u}_n(t), P_n \psi \rangle = \langle \tilde{u}(t), \psi \rangle$, $\tilde{\mathbb{P}}$ -a.s., (b) $\lim_{n \to \infty} \int_s^t \langle A \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle A \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s., (c) $\lim_{n \to \infty} \int_s^t \langle B(\tilde{u}_n(\sigma), \tilde{u}_n(\sigma)), P_n \psi \rangle \, d\sigma = \int_s^t \langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s., (d) $\lim_{n \to \infty} \int_s^t |\nabla \tilde{u}_n(\sigma)|_{L^2}^2 \langle \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t |\nabla \tilde{u}(\sigma)|_{L^2}^2 \langle \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s. (e) $\lim_{n \to \infty} \int_s^t \langle C_j^2 \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle C_j^2 \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s. Since $\tilde{u}_n \to \tilde{u}$ in $C([0,T];\mathrm{H})$ and $u_n(t) \in \mathcal{M}$ for every $t \in [0,T]$, we infer that $\tilde{u}(t) \in \mathcal{M}, \quad t \in [0,T].$ (2)

We are close to conclude the proof of Theorem 3. We are just left to deal with the ltô integral.

<ロト <回ト < 回ト < 回ト

The choice of \mathcal{Z}_T allows to deduce that $\forall \psi \in \mathrm{H}(or\mathrm{V})$ and $s, t \in [0, T]$: (a) $\lim_{n \to \infty} \langle \tilde{u}_n(t), P_n \psi \rangle = \langle \tilde{u}(t), \psi \rangle$, \mathbb{P} -a.s., (b) $\lim_{n \to \infty} \int_s^t \langle A \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle A \tilde{u}(\sigma), \psi \rangle \, d\sigma$, \mathbb{P} -a.s., (c) $\lim_{n \to \infty} \int_s^t \langle B(\tilde{u}_n(\sigma), \tilde{u}_n(\sigma)), P_n \psi \rangle \, d\sigma = \int_s^t \langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi \rangle \, d\sigma$, \mathbb{P} -a.s., (d) $\lim_{n \to \infty} \int_s^t |\nabla \tilde{u}_n(\sigma)|_{L^2}^2 \langle \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t |\nabla \tilde{u}(\sigma)|_{L^2}^2 \langle \tilde{u}(\sigma), \psi \rangle \, d\sigma$, \mathbb{P} -a.s. (e) $\lim_{n \to \infty} \int_s^t \langle C_j^2 \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle C_j^2 \tilde{u}(\sigma), \psi \rangle \, d\sigma$, \mathbb{P} -a.s. Since $\tilde{u}_n \to \tilde{u}$ in $C([0, T]; \mathrm{H})$ and $u_n(t) \in \mathcal{M}$ for every $t \in [0, T]$, we infer that $\tilde{u}(t) \in \mathcal{M}, \quad t \in [0, T].$ (27)

We are close to conclude the proof of Theorem 3. We are just left to deal with the Itô integral.

The choice of \mathcal{Z}_T allows to deduce that $\forall \psi \in \mathrm{H}(or\mathrm{V})$ and $s, t \in [0, T]$: (a) $\lim_{n \to \infty} \langle \tilde{u}_n(t), P_n \psi \rangle = \langle \tilde{u}(t), \psi \rangle$, $\tilde{\mathbb{P}}$ -a.s., (b) $\lim_{n \to \infty} \int_s^t \langle A \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle A \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s., (c) $\lim_{n \to \infty} \int_s^t \langle B(\tilde{u}_n(\sigma), \tilde{u}_n(\sigma)), P_n \psi \rangle \, d\sigma = \int_s^t \langle B(\tilde{u}(\sigma), \tilde{u}(\sigma)), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s., (d) $\lim_{n \to \infty} \int_s^t |\nabla \tilde{u}_n(\sigma)|_{L^2}^2 \langle \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t |\nabla \tilde{u}(\sigma)|_{L^2}^2 \langle \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s. (e) $\lim_{n \to \infty} \int_s^t \langle C_j^2 \tilde{u}_n(\sigma), P_n \psi \rangle \, d\sigma = \int_s^t \langle C_j^2 \tilde{u}(\sigma), \psi \rangle \, d\sigma$, $\tilde{\mathbb{P}}$ -a.s. Since $\tilde{u}_n \to \tilde{u}$ in $C([0,T];\mathrm{H})$ and $u_n(t) \in \mathcal{M}$ for every $t \in [0,T]$, we infer that $\tilde{u}(t) \in \mathcal{M}, \quad t \in [0,T].$ (27)

We are close to conclude the proof of Theorem 3. We are just left to deal with the ltô integral.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Itô integral

Define

$$M_n(t) = \sum_{j=1}^m \int_0^t P_n C_j u_n(s) \, dW_j(s).$$

 M_n is a martingale on $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover

$$M_{n}(t) = u_{n}(t) - P_{n}u_{n}(0) + \int_{0}^{t} P_{n}Au_{n}(s) ds + \int_{0}^{t} P_{n}B(u_{n}(s)) ds - \int_{0}^{t} |\nabla u_{n}(s)|_{L^{2}}^{2}u_{n}(s) ds - \frac{1}{2}\sum_{j=1}^{m} \int_{0}^{t} (P_{n}C_{j})^{2}u_{n}(s) ds$$
(28)

The equation (28) can also be used on $(\hat\Omega,\hat{\mathcal F},\hat{\mathbb F},\hat{\mathbb P})$ to define a process $ilde M_n$, i.e.

$$\tilde{M}_{n}(t) = \tilde{u}_{n}(t) - P_{n}\tilde{u}_{n}(0) + \int_{0}^{t} P_{n}A\tilde{u}_{n}(s) \, ds + \int_{0}^{t} P_{n}B(\tilde{u}_{n}(s)) \, ds - \int_{0}^{t} |\nabla \tilde{u}_{n}(s)|_{L^{2}}^{2} \tilde{u}_{n}(s) \, ds - \frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} (P_{n}C_{j})^{2} \tilde{u}_{n}(s) \, ds$$
(29)

・ロト ・回ト ・ヨト ・ヨ

Itô integral

Define

$$M_n(t) = \sum_{j=1}^m \int_0^t P_n C_j u_n(s) \, dW_j(s).$$

 M_n is a martingale on $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover

$$M_n(t) = u_n(t) - P_n u_n(0) + \int_0^t P_n A u_n(s) \, ds + \int_0^t P_n B(u_n(s)) \, ds - \int_0^t |\nabla u_n(s)|_{L^2}^2 u_n(s) \, ds - \frac{1}{2} \sum_{j=1}^m \int_0^t (P_n C_j)^2 u_n(s) \, ds$$
(28)

The equation (28) can also be used on $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{F}}, \hat{\mathbb{P}})$ to define a process \tilde{M}_n , i.e.

$$\tilde{M}_{n}(t) = \tilde{u}_{n}(t) - P_{n}\tilde{u}_{n}(0) + \int_{0}^{t} P_{n}A\tilde{u}_{n}(s) \, ds + \int_{0}^{t} P_{n}B(\tilde{u}_{n}(s)) \, ds - \int_{0}^{t} |\nabla \tilde{u}_{n}(s)|_{L^{2}}^{2}\tilde{u}_{n}(s) \, ds - \frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} (P_{n}C_{j})^{2}\tilde{u}_{n}(s) \, ds$$
(29)

イロト イロト イヨト イ

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$\tilde{M}_{n}(t) \to \tilde{M}(t) := \tilde{u}(t) - \tilde{u}(0) + \int_{0}^{t} A\tilde{u}(s) \, ds + \int_{0}^{t} B(\tilde{u}(s)) \, ds - \int_{0}^{t} |\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) \, ds - \frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) \, ds.$$
(30)

From equality (30) one can deduce that

(i) \tilde{M} is $\tilde{\mathbb{F}}$ -martingale.

(ii) $\operatorname{Cov}(\tilde{M}_n) \to \operatorname{Cov}(\tilde{M}) = \sum_{j=1}^m \int_0^t C_j \tilde{u}(s) \left(C_j \tilde{u}(s)\right)^* ds.$

This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{F}}, \bar{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

$$\bar{M}(t) = \int_0^t \sum_{j=1}^m C_j \bar{u}(s) \, d\bar{W}_j(s).$$

Hence we proved Theorem 3.

イロト イ団ト イヨト イヨト

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$\tilde{M}_{n}(t) \to \tilde{M}(t) := \tilde{u}(t) - \tilde{u}(0) + \int_{0}^{t} A\tilde{u}(s) \, ds + \int_{0}^{t} B(\tilde{u}(s)) \, ds$$
$$- \int_{0}^{t} |\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) \, ds - \frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) \, ds.$$
(30)

From equality (30) one can deduce that

(i) \tilde{M} is $\tilde{\mathbb{F}}$ -martingale.

(ii) $\operatorname{Cov}(\tilde{M}_n) \to \operatorname{Cov}(\tilde{M}) = \sum_{j=1}^m \int_0^t C_j \tilde{u}(s) \left(C_j \tilde{u}(s)\right)^* ds.$

This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{F}}, \bar{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

$$\bar{M}(t) = \int_0^t \sum_{j=1}^m C_j \bar{u}(s) \, d\bar{W}_j(s).$$

Hence we proved Theorem 3.

イロト イヨト イヨト イヨト

Using the earlier convergence results and a priori estimates (25), (26), we can prove that

$$\tilde{M}_{n}(t) \to \tilde{M}(t) := \tilde{u}(t) - \tilde{u}(0) + \int_{0}^{t} A\tilde{u}(s) \, ds + \int_{0}^{t} B(\tilde{u}(s)) \, ds - \int_{0}^{t} |\nabla \tilde{u}(s)|_{L^{2}}^{2} \tilde{u}(s) \, ds - \frac{1}{2} \sum_{j=1}^{m} \int_{0}^{t} C_{j}^{2} \tilde{u}(s) \, ds.$$
(30)

From equality (30) one can deduce that

(i) \tilde{M} is $\tilde{\mathbb{F}}$ -martingale.

(ii) $\operatorname{Cov}(\tilde{M}_n) \to \operatorname{Cov}(\tilde{M}) = \sum_{j=1}^m \int_0^t C_j \tilde{u}(s) \left(C_j \tilde{u}(s)\right)^* ds.$

This allows to use the martingale representation theorem to deduce that there exists a bigger probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{F}}, \bar{\mathbb{P}})$ and a Wiener process \bar{W} on the same probability space such that

$$\bar{M}(t) = \int_0^t \sum_{j=1}^m C_j \bar{u}(s) \, d\bar{W}_j(s).$$

Hence we proved Theorem 3.

イロト イヨト イヨト イヨト

Theorem 7

Pathwise Uniqueness holds for the the stochastic constrained NSEs (18).

Theorem 8

The stochastic constrained NSEs (18) have a unique strong solution for each $u_0 \in V \cap \mathcal{M}$. Moreover, the paths of this solution belong to the space X_T for all T > 0. In particular, the paths are V-valued continuous (strongly and not only weakly).

イロト イヨト イヨト イ

References

- Z. Brzeźniak, G. Dhariwal and M. Mariani, *2D Constrained Navier-Stokes equations*, arXiv:1606.08360v2 (2016) (Submitted).
- Z. Brzeźniak and G. Dhariwal, Stochastic Constrained Navier-Stokes equations on T², arXiv:1701.01385 (2017)
- Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains, J. Differential Equations, 254(4), 1627-1685 (2013).
- **L**. Caffarelli and F. Lin, *Nonlocal heat flows preserving the* L^2 *energy*, Discrete and Continuous Dynamical Systems, **23**(1&2), 49-64 (2009).

E. Caglioti, M. Pulvirenti and F. Rousset, *On a constrained 2D Navier-Stokes Equation*, Communications in Mathematical Physics, **290**, 651-677 (2009).

A. Jakubowski, *The almost sure Skorokhod representation for subsequences in nonmetric spaces*, Teor. Veroyatn. Primen. **42**(1), 209-216 (1997); translation in Theory Probab. Appl. **42**(1), 167-174 (1998).

P. Rybka, Convergence of a heat flow on a Hilbert manifold, Proceedings of the Royal Society of Edinburgh, 136A, 851-862 (2006).

イロト イヨト イヨト イヨト