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Brownian motion as a two-dimensional object

Signature as a transform on rough paths:

Sig(X ) = (1,
ˆ T

0
dXt1 ,

ˆ T

0

ˆ t2

0
dXt1 ⊗ dXt2 , . . .).
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Motivation

Theorem: (Hambly, Lyons, Geng, Yang, B.) If

Sig(X |[0,T ]) = Sig(X̃ |[0,T ]),

then for all smooth V ,

dYt = V (Yt)dXt , Y0 = y

dỸt = V (Ỹt)dX̃t , Ỹ0 = y

we have YT = ỸT .
Applicaion: Chinese handwriting recognition.
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Inversion problem

Question: How to get geometric info about X from
Sig(X )?

Hambly-Lyons Theorem : X ∈ C 1,X ′ 6= 0,

lim sup
n→∞

‖n!
ˆ T

0
. . .

ˆ t1

0
dXt1 ⊗ . . .⊗ dXtn‖

1
n = length(X |[0,T ]).

Non-commutativity of ⊗ important!
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Lower bound for iterated integrals

Let (Mi )
d
i=1 be constant matrices such that

sup
‖x‖≤1,‖y‖≤1

‖
d∑

i=1

Mix
iy‖ ≤ 1, ‖Y0‖ ≤ 1,

and dY λ
t = λ

d∑
i=1

MiY
λ
t dX i

t , then

lim sup
λ→∞

log ‖Y λ
T‖

λ
≤ lim sup

n→∞
‖n!
ˆ T

0
. . .

ˆ t1

0
dXt1⊗. . .⊗dXtn‖

1
n .
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Hyperbolic development

Hambly-Lyons considers “Hyperbolic development”:

dY λ
t = λ


0 . . . 0 dX 1

t
...

. . . 0
...

0 . . . 0 dX d
t

dX 1 . . . dX d
t 0

Y λ
t , Y0 =


0
...
0
1

 .

Dynamical system argument =⇒

length(X |[0,T ])

= lim sup
λ→∞

log ‖Y λ
T‖

λ

≤ lim sup
n→∞

‖n!
ˆ T

0
. . .

ˆ t1

0
dXt1 ⊗ . . .⊗ dXtn‖

1
n .
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Large noise asymptotics

Generally, if X is a p-rough path, (Mi )
d
i=1 constant

matrices,

dY λ
t = λ

d∑
i=1

MiY
λ
t dX i

t

‖Y0‖ ≤ 1, sup
‖x‖≤1,‖y‖≤1

‖
d∑

i=1

Mix
iy‖ ≤ 1

lim sup
λ→∞

log ‖Y λ
T‖

λp
≤ lim sup

n→∞
‖n
p
!

ˆ T

0
. . .

ˆ t1

0
dXt1 . . . dXtn‖

p
n .
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The Brownian motion case

Question: What about Brownian motion?

If

dY λ
t = λ


0 . . . 0 ◦dB1

t
...

. . . 0
...

0 . . . 0 ◦dBd
t

◦dB1 . . . ◦dBd
t 0

Y λ
t , Y0 =


0
...
0
1


then
(d − 1)T

2
≤ lim sup

λ→∞

log ‖Y λ
T‖

λ2

≤ lim sup
n→∞

‖n
2
!

ˆ T

0
. . .

ˆ t1

0
◦dBt1 . . . ◦ dBtn‖

2
n

Key step: Use martingale method to find for µ < 0

E(‖Y λ
T‖µ).
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The Itô case

If • is Itô, consider instead

dY λ
t = −λXλ

t

d∑
i=1

•dB i
t , Y

λ
0 = 1

dXλ
t = λY λ

t

d∑
i=1

•dB i
t , X

λ
0 = 0.

then

dT

2
≤ lim sup

λ→∞

log ‖(Xλ
T ,Y

λ
T )‖

λ2

≤ lim sup
n→∞

‖n
2
!

ˆ T

0
. . .

ˆ t1

0
•dBt1 ⊗ . . .⊗ •dBtn‖

2
n
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Estimating the iterated integrals

Theorem:
For Stratonovitch iterated integral, a.s.

d − 1
2

T ≤ lim sup
n
‖
(n
2

)
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
◦dBt1⊗. . .⊗◦dBtn‖

2
n

and for Itô,

d

2
T ≤ lim sup

n
‖
(n
2

)
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
•dBt1 ⊗ . . .⊗ •dBtn‖

2
n .

Question: What about upper bound?
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Upper bound

G. Ben Arous’s bounds:

E
[ ∑
i1,...,in

( ˆ T

0
. . .

ˆ t2

0
•dB i1

t1 . . . • dB in
tn

)2]
=

dnT n

n!

E
[ ∑
i1,...,in

( ˆ T

0
. . .

ˆ t2

0
◦dB i1

t1 . . . ◦ dB in
tn

)2] ≤ 5ndnT n

2nn!

implies a.s.

lim sup
n
‖n
2
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
•dBt1 ⊗ . . .⊗•dBtn‖

2
n ≤ d2

2
T

lim sup
n
‖n
2
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
◦dBt1⊗. . .⊗◦dBtn‖

2
n ≤ 1

2
52

22 d
2T
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Estimating the iterated integrals

Theorem:
For Stratonovitch iterated integral, a.s.

d − 1
2

T ≤ lim sup
n
‖n
2
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
◦dBt1 ⊗ . . .⊗ ◦dBtn‖

2
n

≤ 1
2
52

22 d
2T

and for Itô,

dT

2
≤ lim sup

n
‖n
2
!

ˆ T

0

ˆ tn

0
. . .

ˆ t2

0
•dBt1 ⊗ . . .⊗ •dBtn‖

2
n

≤ d2

2
T .

Question: Is the limsup in fact deterministic?
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The Brownian motion case

One dimensional case: •=Itô,

lim sup
n
|(n
2
)!

ˆ t

0

ˆ tn

0
. . .

ˆ t2

0
dBt1 • . . . • dBtn |

2
n =

1
2
t.

◦=Stratonovitch,

lim sup
n
|(n
2
)!

ˆ t

0

ˆ tn

0
. . .

ˆ t2

0
dBt1 ◦ . . . ◦ dBtn |

2
n = 0.

Question: limsup still deterministic for high dimensions?
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Main result

Theorem: (B. and X. Geng)
Let Bt be a d-dim Brownian motion Then there exists deter-
ministic C <∞, a.s. for all t

lim sup
n
‖
(n
2

)
!

ˆ t

0

ˆ tn

0
. . .

ˆ t2

0
◦dBt1 ⊗ . . .⊗ ◦dBtn‖

2
n = Ct.

Also true for Itô integrals, and adding any bounded drift to Bt .
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Key Lemma

Key Lemma: If

A(s, t) = lim sup
n
‖(n

2
)!

ˆ t

s

ˆ tn

s
. . .

ˆ t2

s
dBt1⊗. . .⊗dBtn‖

2
n ,

then
A(s, t) ≤ A(s, u) + A(u, t).
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Key Lemma

As A(s, t) ≤ A(s, u) + A(u, t),

=⇒ A(0, 1) ≤ lim
m→∞

1
2m

2m−1∑
i=0

2mA(
i

2m
,
i + 1
2m

).

{2mA( i
2m ,

i+1
2m )}2mi=0 are i.i.d =⇒ R.H.S. is E[A(0, 1)].

A(0, 1) ≤ E(A(0, 1)) =⇒ A(0, 1) deterministic.
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General rough paths

Question: For p-rough path X , find

lim sup
n
‖(n
p
)!

ˆ T

0

ˆ tn

0
. . .

ˆ t1

0
dXt1 ⊗ . . .⊗ dXtn‖

p
n ?

Is

ω(s, t) = lim sup
n
‖(n
p
)!

ˆ t

s

ˆ tn

s
. . .

ˆ t1

s
dXt1⊗ . . .⊗dXtn‖

p
n

a more natural notion of “length” for rough paths?

Generalise length and quadratic variation;

Advantages over p-variation:

Additive: ω(s, u) + ω(u, t) = ω(s, t);
Ignore “tree-like” path;
Cass-Litterer-Lyons integrability estimates.
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Generalise length and quadratic variation;

Advantages over p-variation:

Additive: ω(s, u) + ω(u, t) = ω(s, t);
Ignore “tree-like” path;
Cass-Litterer-Lyons integrability estimates.
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Pure rough paths

If X is p-rough path,

X = exp((t − s)(P1 + P2 + . . .+ Pm))

where Pi are Lie polynomial degree i ,
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Open problem: Lower bound
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