Regularity for jump equations using an interpolation method

Vlad Bally, Lucia Caramellino

University de Marne-la-Vallée, University Tor Vergata Roma

$$
\text { julay } 2017
$$

The Equation :

$$
X_{t}(x)=x+\int_{0}^{t} \int_{R} c\left(z, X_{s-}(x)\right) \widetilde{N}_{\mu}(d s, d z)
$$

with

$$
d \widetilde{N}_{\mu}=d N_{\mu}-d \widehat{N}_{\mu} \quad \widehat{N}_{\mu}(d s, d z)=d s \mu(d z)
$$

The Problem : give sufficient conditions in order to get

$$
P\left(X_{t}(x) \in d y\right)=p_{t}(x, y) d y
$$

Three approaches :

1. Jump amplitudes:

$$
\mu(d z)=h(z) d z \quad h \in C^{\infty}(R)
$$

Malliavin type calculus based on $h(z)$. Bismut, Leandre, Bichteler Gravereux Jacod, Bouleau Denis
2. Jump times: Mall. calc. based on " $T_{k}-T_{k-1}$ ": Carlen Pardoux (B Clément).
3. Mall. Calc. with "Finite differences" Picard, Kunita, Ischikawa ...

Sector condition : $\exists \theta$ such that

$$
C \varepsilon^{2-\theta} \geq \int_{|z| \leq \varepsilon}|z|^{2} d \mu(z) \geq \frac{1}{C} \varepsilon^{2-\theta}
$$

One also assumes "ellipticity" and "regularity" for the coefficients and proves "regularity" of the law

$$
P\left(X_{t}(x) \in d y\right)=p_{t}(x, y) d y, \quad p_{t} \in C^{\infty}(R \times R)
$$

and "short time behaviour"

$$
\left|p_{t}(x, y)\right| \leq \frac{C}{t^{d / \theta}}
$$

Heuristics (Picard) "small jumps" produce sufficient noise in order to regularize "as in the $C L T$ "

Our approach :

Step 1. Replace small jumps by a Brownian motion :

$$
\begin{aligned}
X_{t}^{\varepsilon}(x) & =x+\int_{0}^{t} \sigma_{\varepsilon}\left(X_{s}^{\varepsilon}(x) d W_{s}+\int_{0}^{t} \int_{|z| \geq \varepsilon} c\left(z, X_{s-}^{\varepsilon}(x)\right) \widetilde{N}_{\mu}(d s, d z)\right. \\
\sigma_{\varepsilon} & =\sqrt{A_{\varepsilon}} \quad A_{\varepsilon}^{i, j}(x)=\int_{|z| \leq \varepsilon} c^{i}(z, x) c^{j}(z, x) d \mu(d z)
\end{aligned}
$$

Infinitesimal operators

$$
\left(L-L_{\varepsilon}\right) f=\int_{|z| \leq \varepsilon}\left(f(x+c)-f(x)-\langle f(x), \nabla c\rangle-\frac{1}{2} \sum_{i, j=1}^{d} \partial_{i} \partial_{j} f(x) c^{i} c^{j}\right) d \mu(z)
$$

so that

$$
\left\|\left(L-L_{\varepsilon}\right) f\right\|_{\infty} \leq C\|f\|_{3, \infty} \times \sup _{x} \int_{|z| \leq \varepsilon}|c(z, x)|^{3} d \mu(z) \quad \rightarrow 0
$$

Trotter Kato

$$
L-L_{\varepsilon} \rightarrow 0 \quad \text { implies } \quad P_{t}^{\varepsilon} \rightarrow P_{t}
$$

Step 2. Using standard Malliaiv calculus for W one gets

$$
P_{t}^{\varepsilon}(x, d y)=p_{t}^{\varepsilon}(x, y) d y
$$

Step 3

$$
P_{t}(x, d y)-P_{t}^{\varepsilon}(x, d y) \rightarrow 0, \quad p_{t}^{\varepsilon}(x, y) \rightarrow \infty
$$

One looks for "equilibrium" in order to "save" some regularity. (FournierPrintemps, Debouche Romito, BCaramellino (interpolation) Use it for Markv semigroups.

HYPOTHESIS

1. Regularity for c and $\left(I+\nabla_{x} c\right)\left(I+\nabla_{x} c\right)^{*}>0$.
2. Ellipticity

$$
\frac{1}{\int_{|z| \leq \varepsilon}|z|^{2} d \mu(z)} \times \int_{|z| \leq \varepsilon} c^{i}(z, x) c^{j}(z, x) d \mu(d z) \geq \lambda>0
$$

3. "noise" $\exists \delta>0$ such that

$$
\varlimsup_{\varepsilon \rightarrow 0} \frac{\left(\int_{|z| \leq \varepsilon}|z|^{3} d \mu(z)\right)^{\frac{1}{3}}}{\left(\int_{|z| \leq \varepsilon}|z|^{2} d \mu(z)\right)^{\frac{1}{2}+\delta}}<\infty
$$

3 BIS. "generalized sector condion" There exists

$$
0<\theta_{*}<2 \quad \text { and } \quad \theta^{*} \in\left[\theta_{*}, \frac{3}{2} \theta_{*}\right)
$$

such that

$$
C \varepsilon^{2-\theta^{*}} \geq \int_{|z| \leq \varepsilon}|z|^{2} d \mu(z) \geq \frac{1}{C} \varepsilon^{2-\theta_{*}} .
$$

Theorem

$$
P\left(X_{t}(x) \in d y\right)=p_{t}(x, y) d y, \quad p_{t} \in C^{\infty}(R \times R)
$$

and "short time behaviour"

$$
\left|p_{t}(x, y)\right| \leq C t^{-d \times \frac{1+\theta_{*}-\theta^{*}}{3 \theta_{*}-2 \theta^{*}} \times c(\delta)}
$$

Idea of the Proof.

Abstract criterion. μ, ν probability measures on R^{d}.

$$
d_{k}(\mu, \nu)=\sup \left\{\left|\int f d \mu-\int f d \nu\right|:\|f\|_{k, \infty}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{\infty} \leq 1\right\}
$$

We consider a sequence of measures

$$
\mu_{n}(d x)=f_{n}(x) d x \quad \text { with } \quad f_{n} \in C^{\infty}\left(R^{d}\right)
$$

Equilibrium between

$$
\mu_{n} \rightarrow \mu \quad \text { and } \quad f_{n} \rightarrow \infty
$$

Theorem Assume that there exists $p \geq 1$ and $h \in N$ such that

$$
\varlimsup_{n} d_{k}\left(\mu, \mu_{n}\right) \times\left\|f_{n}\right\|_{h, p} \frac{k+d / p_{*}}{h}<\infty
$$

Then

$$
\mu(d x)=f(x) d x \quad \text { and } \quad f \in L^{p}\left(R^{d}\right)
$$

Transfer of regularity for Markov Semigroups

We consider P_{t} with generator L and P_{t}^{n} with generator L_{n} and we assume : for every $q \in N, p \geq 1$

Error (Infinitesimal operators) There exists $a \in N$ such that

$$
\begin{array}{ll}
A_{1} & \left\|\left(L-L_{n}\right) f\right\|_{q, \infty} \leq \varepsilon_{n}\|f\|_{q+a, \infty} \\
A_{1}^{*} & \left\|\left(L-L_{n}\right)^{*} f\right\|_{q, p} \leq \varepsilon_{n}\|f\|_{q+a, p}
\end{array}
$$

In our case $a=3$.

Propagation of regularity

$$
\begin{aligned}
& A_{2} \quad\left\|P_{t}^{n} f\right\|_{q, \infty} \leq C\|f\|_{q, \infty} \\
& A_{2}^{*} \quad\left\|P_{t}^{n, *} f\right\|_{q, p} \leq C\|f\|_{q, p}
\end{aligned}
$$

Regularization One has

$$
P_{t}^{n}(x, d y)=p_{t}^{n}(x, y) \quad \text { with } \quad p_{t}^{n} \in C^{\infty}\left(R^{d} \times R^{d}\right)
$$

and

$$
A_{3} \quad\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} p_{t}^{n}(x, y)\right| \leq \frac{C}{\left(\lambda_{n} t\right)^{\theta(|\alpha|+|\beta|+d)}}
$$

In our case $\theta=\frac{1}{2}$ and λ_{n} is the lower eigenvalue of

$$
A_{n}^{i, j}(x)=\int_{|z| \leq \varepsilon_{n}} c^{i}(z, x) c^{j}(z, x) d \mu(d z)
$$

Equilibriu condition $\exists \delta>0$ such that

$$
E \quad \varlimsup_{n} \frac{\varepsilon_{n}}{\lambda_{n}^{\theta(a+\delta)}}<\infty
$$

Theorem Under the above hypothesis

$$
P_{t}(x, d y)=p_{t}(x, y) \quad \text { with } \quad p_{t} \in C^{\infty}\left(R^{d} \times R^{d}\right)
$$

Sckach of the proof.

Step 1 (Lindemberg) Let $\Delta_{n}=L-L_{n}$.

$$
\begin{aligned}
P_{t} f(x)-P_{t}^{n} f(x) & =\int_{0}^{t} \partial_{s} P_{t-s} P_{s}^{n} f(x) d s=\int_{0}^{t} P_{t-s} \Delta_{n} P_{s}^{n} f(x) d s \\
& =\sum_{m=1}^{m_{0}} I_{m}^{n} f(x)+R_{m_{0}}^{n} f(x)
\end{aligned}
$$

with

$$
I_{m}^{n} f(x)=\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} \prod_{i=1}^{m}\left(P_{t_{i}-t_{i+1}}^{n} \Delta_{n}\right) P_{t_{m}}^{n} f(x) d t_{m}
$$

Step 2

$$
\left(P_{t_{i}-t_{i+1}}^{n} \Delta_{n}\right) P_{t_{m}}^{n}(x, d y)=p_{t_{1}, \ldots, t_{m}}^{n}(x, y) d y \quad \text { with } \quad p_{t_{1}, \ldots, t_{m}}^{n} \in C^{\infty}\left(R^{d} \times R^{d}\right)
$$

Step 3 Regularity of $p_{t_{1}, \ldots, t_{m}}^{n}$

Step 4 Regularity of

$$
P_{t}^{n}(x, d y)+\sum_{m=1}^{m_{0}} I_{m}^{n}(x, d y)
$$

Step 5 Use the abstract criterion.

