Geometric Cauchy problems for surfaces associated to harmonic maps

David Brander
Technical University of Denmark

Credits: parts of this work are collaborations with Josef Dorfmeister, Martin Svensson and Peng Wang

3 August 2016

Geometric Cauchy problems

A classical problem

Björling's problem for minimal surfaces:

Prescribed normal field on curve
Unique minimal surface

A classical problem

Björling's problem for minimal surfaces:

Prescribed normal field on curve

Unique minimal surface

Schwarz formula:

$$
f(z)=N\left\{a(z)-i \int_{x_{0}}^{z} N(w) \times a^{\prime}(w) \mathrm{d} w\right\}
$$

$\alpha(z)$ and $N(z)$ are the holomorphic extensions.

A classical problem

Björling's problem for minimal surfaces:

Prescribed normal field on curve
Unique minimal surface
Schwarz formula:

$$
f(z)=\Re\left\{\alpha(z)-i \int_{x_{0}}^{z} N(w) \times \alpha^{\prime}(w) \mathrm{d} w\right\},
$$

$\alpha(z)$ and $N(z)$ are the holomorphic extensions.

Curve $+\ldots$ generates surface of type X

e.g. space curve given by:

$$
\kappa(s)=1-s^{4}, \quad \tau(s)=0
$$

Find the (unique?) surface of (e.g.) constant Gauss curvature $K=1$ containing this curve as:

1. a geodesic
2. a cuspidal edge singularity
3. or with some arbitrary prescribed surface normal

These are called geometric Cauchy problems

Curve $+\ldots$ generates surface of type X

e.g. space curve given by:

$$
\kappa(s)=1-s^{4}, \quad \tau(s)=0
$$

Find the (unique?) surface of (e.g.) constant Gauss curvature $K=1$ containing this curve as:

1. a geodesic
2. a cuspidal edge singularity
3. or with some arbitrary prescribed surface normal

These are called geometric Cauchy problems

Curve $+\ldots$ generates surface of type X

e.g. space curve given by:

$$
\kappa(s)=1-s^{4}, \quad \tau(s)=0
$$

As a geodesic curve (the CGC $K=1$ solution)

Curve $+\ldots$ generates surface of type X

e.g. space curve given by:

$$
\kappa(s)=1-s^{4}, \quad \tau(s)=0 .
$$

As a cuspidal edge singular curve

Curve $+\ldots$ generates surface of type X

e.g. Find the unique CGC $K=1$ surface containing the curve with surface geometry given by:

$$
\kappa_{g}(s)=1, \quad \kappa_{n}(s)=1, \quad \tau_{g}(s)=\sin (s)
$$

Curve $+\ldots$ generates surface of type X

e.g. Find the unique CGC $K=1$ surface containing the curve with surface geometry given by:

$$
\kappa_{g}(s)=1, \quad \kappa_{n}(s)=1, \quad \tau_{g}(s)=\sin (s)
$$

Special surfaces and harmonic maps

Special surfaces and harmonic maps

Many important classical surfaces correspond to harmonic maps from either \mathbb{R}^{2} or $\mathbb{R}^{1,1}$ into G / K.

Examples:

- Constant mean curvature (CMC) surfaces in space forms
- Constant Gauss curvature (CGC) surfaces in space forms
- Willmore surfaces

Example: Constant Gauss Curvature Surfaces

1. $N: \mathbb{C} \rightarrow \mathbb{S}^{2}$ is harmonic iff

$$
N \times N_{z \bar{z}}=0
$$

iff

$$
f_{z}=i N \times N_{z},
$$

is integrable i.e. $\left(f_{z}\right)_{\bar{z}}=\left(f_{\bar{z}}\right)_{z}$.
Moreover: $\quad f: \mathbb{C} \rightarrow \mathbb{R}^{3}$ (with induced metric) is $C G C$, with $K=1$.
2. $N: \mathbb{R}^{1,1} \rightarrow \mathbb{S}^{2}$ is (Lorentzian)-harmonic iff
is integrable.
Moreover: $f: \mathbb{R}^{1,1} \rightarrow \mathbb{R}^{3}$ is CGC with $K=-1$.

Example: Constant Gauss Curvature Surfaces

1. $N: \mathbb{C} \rightarrow \mathbb{S}^{2}$ is harmonic iff

$$
N \times N_{z \bar{z}}=0,
$$

iff

$$
f_{z}=i N \times N_{z},
$$

is integrable i.e. $\left(f_{z}\right)_{\bar{z}}=\left(f_{\bar{z}}\right)_{z}$.
Moreover: $\quad f: \mathbb{C} \rightarrow \mathbb{R}^{3}$ (with induced metric) is CGC, with $K=1$.
2. $N: \mathbb{R}^{1,1} \rightarrow \mathbb{S}^{2}$ is (Lorentzian)-harmonic iff
iff
is integrable.
Moreover: $f: \mathbb{R}^{1,1} \rightarrow \mathbb{R}^{3}$ is CGC with $K=-1$.

Example: Constant Gauss Curvature Surfaces

1. $N: \mathbb{C} \rightarrow \mathbb{S}^{2}$ is harmonic iff

$$
N \times N_{z \bar{z}}=0
$$

iff

$$
f_{z}=i N \times N_{z},
$$

is integrable i.e. $\left(f_{z}\right)_{\bar{z}}=\left(f_{\bar{z}}\right)_{z}$.
Moreover: $\quad f: \mathbb{C} \rightarrow \mathbb{R}^{3}$ (with induced metric) is CGC , with $K=1$.
2. $N: \mathbb{R}^{1,1} \rightarrow \mathbb{S}^{2}$ is (Lorentzian)-harmonic iff

$$
N \times N_{x y}=0
$$

iff

$$
f_{x}=N \times N_{x}, \quad f_{y}=-N \times N_{y}
$$

is integrable.
Moreover: $f: \mathbb{R}^{1,1} \rightarrow \mathbb{R}^{3}$ is CGC with $K=-1$.

Loop group lift of a harmonic map into G / K

$$
G=G_{\rho}^{\mathbb{C}}, \quad K=G_{\sigma}
$$

Loop group $\wedge G^{\mathbb{C}}:=\left\{\gamma: \mathbb{S}^{1} \rightarrow G^{\mathbb{C}}\right\}$. Twisted subgroup is the fixed point subgroup

$$
\Lambda G_{\hat{\sigma}}^{\mathbb{C}}, \quad \text { for } \quad \hat{\sigma} x(\lambda):=\sigma(x(-\lambda))
$$

Real forms determined by the involutions:

$$
\hat{\rho}_{1} x(\lambda):=\rho(x(1 / \bar{\lambda})), \quad \hat{\rho}_{2} x(\lambda):=\rho(x(\bar{\lambda})) .
$$

Note:

Loop group lift of a harmonic map into G / K

$$
G=G_{\rho}^{\mathbb{C}}, \quad K=G_{\sigma}
$$

Loop group $\wedge G^{\mathbb{C}}:=\left\{\gamma: \mathbb{S}^{1} \rightarrow G^{\mathbb{C}}\right\}$. Twisted subgroup is the fixed point subgroup

$$
\wedge G_{\hat{\sigma}}^{\mathbb{C}}, \quad \text { for } \quad \hat{\sigma} x(\lambda):=\sigma(x(-\lambda)) .
$$

Real forms determined by the involutions:

$$
\hat{\rho}_{1} x(\lambda):=\rho(x(1 / \bar{\lambda})), \quad \hat{\rho}_{2} x(\lambda):=\rho(x(\bar{\lambda})) .
$$

Note:

$$
\Lambda G=\Lambda G_{\hat{\rho}_{1}}^{\mathbb{C}} .
$$

Loop group lift of a harmonic map into G / K

 Riemannian case: Harmonic maps $\mathbb{C} \supset U \rightarrow G / K$,Characterized by $F: U \rightarrow \wedge G_{\hat{\rho}, \hat{\sigma}}^{C}=\wedge G_{\hat{\alpha}}$

For any $\lambda_{0} \in \mathbb{S}^{1}$ the map
projects to a harmonic map $f: U \rightarrow G / K$.
Call such F an admissible frame.

Lorentzian case: $\mathbb{R}^{1,1} \supset V \rightarrow G / K$,
Characterized by $F: V \rightarrow \wedge G_{\hat{C}}^{\mathbb{C}}, \hat{o}$,

Loop group lift of a harmonic map into G / K

Riemannian case: Harmonic maps $\mathbb{C} \supset U \rightarrow G / K$,
Characterized by $F: U \rightarrow \Lambda G_{\hat{\rho}_{1} \hat{\sigma}}^{\mathbb{C}}=\Lambda G_{\hat{\sigma}}$

$$
F^{-1} \mathbf{d} F=A_{-1} \lambda^{-1} \mathbf{d} z+\alpha_{0}+\overline{A_{-1}} \lambda \mathbf{d} \bar{z},
$$

For any $\lambda_{0} \in \mathbb{S}^{1}$ the map
projects to a harmonic map $f: U \rightarrow G / K$.
Call such F an admissible frame.

Lorentzian case: $\mathbb{R}^{1,1} \supset V \rightarrow G / K$,
Characterized by $F: V \rightarrow \wedge G_{\hat{C}}^{\mathbb{C}}$,

Loop group lift of a harmonic map into G / K

Riemannian case: Harmonic maps $\mathbb{C} \supset U \rightarrow G / K$,
Characterized by $F: U \rightarrow \Lambda G_{\hat{\rho}_{1} \hat{\sigma}}^{\mathbb{C}}=\Lambda G_{\hat{\sigma}}$

$$
F^{-1} \mathbf{d} F=A_{-1} \lambda^{-1} \mathbf{d} z+\alpha_{0}+\overline{A_{-1}} \lambda \mathbf{d} \bar{z},
$$

For any $\lambda_{0} \in \mathbb{S}^{1}$ the map

$$
\left.F\right|_{\lambda_{0}}: U \rightarrow G
$$

projects to a harmonic map $f: U \rightarrow G / K$.
Call such F an admissible frame.

Lorentzian case: $\mathbb{R}^{1,1} \supset V \rightarrow G / K$,
Characterized by $F: V \rightarrow \wedge G_{\mathcal{P}_{2}}^{\mathbb{C}}$,

Loop group lift of a harmonic map into G / K

Riemannian case: Harmonic maps $\mathbb{C} \supset U \rightarrow G / K$,
Characterized by $F: U \rightarrow \Lambda G_{\hat{\rho}_{1} \hat{\sigma}}^{\mathbb{C}}=\Lambda G_{\hat{\sigma}}$

$$
F^{-1} \mathbf{d} F=A_{-1} \lambda^{-1} \mathbf{d} z+\alpha_{0}+\overline{A_{-1}} \lambda \mathbf{d} \bar{z},
$$

For any $\lambda_{0} \in \mathbb{S}^{1}$ the map

$$
\left.F\right|_{\lambda_{0}}: U \rightarrow G
$$

projects to a harmonic map $f: U \rightarrow G / K$.
Call such F an admissible frame.

Lorentzian case: $\mathbb{R}^{1,1} \supset V \rightarrow G / K$,
Characterized by $F: V \rightarrow \Lambda G_{\hat{\rho}_{2} \hat{\sigma}}^{\mathbb{C}}$,

$$
F^{-1} \mathrm{~d} F=A_{1} \lambda \mathrm{~d} x+\alpha_{0}+A_{-1} \lambda^{-1} \mathrm{~d} y, \quad(x, y) \text { null coord.s. }
$$

Link with Soliton equations

Important loop group decompositions

$$
\text { Set } \Lambda^{ \pm} G^{\mathbb{C}}=\left\{\gamma \in \Lambda G^{\mathbb{C}} \mid \gamma=\sum_{n=0}^{\infty} a_{n} \lambda^{ \pm n}\right\}
$$

We need:

1. The Birkhoff decomposition
1.1

$$
\Lambda^{-} G^{\mathbb{C}} \cdot \Lambda^{+} G^{C}
$$

is open an dense in the identity component of ΛG^{C}.
1.2 For compact G :

$$
\Lambda G_{\hat{\rho}_{2}}^{\mathbb{C}}=\Lambda^{-} G_{\hat{\rho}_{2}}^{\mathbb{C}} \cdot \Lambda^{+} G_{\hat{\rho}_{2}}^{\mathbb{C}}
$$

Analogue: $A=L U$ matrix factorization.
2. The Iwasawa decomposition (for compact G):

Analogue: $A=Q R$ matrix factorization.

Important loop group decompositions

$$
\text { Set } \Lambda^{ \pm} G^{\mathbb{C}}=\left\{\gamma \in \Lambda G^{\mathbb{C}} \mid \gamma=\sum_{n=0}^{\infty} a_{n} \lambda^{ \pm n}\right\} .
$$

We need:

1. The Birkhoff decomposition
1.1

$$
\Lambda^{-} G^{\mathbb{C}} \cdot \Lambda^{+} G^{\mathbb{C}}
$$

is open an dense in the identity component of ΛG^{C}.
1.2 For compact G :

$$
\Lambda G_{\hat{\rho}_{2}}^{\mathbb{C}}=\Lambda^{-} G_{\hat{\rho}_{2}}^{\mathbb{C}} \cdot \Lambda^{+} G_{\hat{\rho}_{2}}^{\mathbb{C}}
$$

Analogue: $A=L U$ matrix factorization.
2. The Iwasawa decomposition (for compact G):

$$
\Lambda G^{\mathbb{C}}=\Lambda G \cdot \Lambda^{+} G^{\mathbb{C}}
$$

Analogue: $A=Q R$ matrix factorization.

Riemannian-harmonic maps

Riemannian case (Dorfmeister/Pedit/Wu)

Given admissible frame $F: U \rightarrow \Lambda G_{\hat{\rho} 1 \hat{\sigma}}^{\mathbb{C}}=\Lambda G_{\hat{\sigma}}$

$$
F^{-1} \mathrm{~d} F=A_{-1} \lambda^{-1} \mathrm{~d} z+\alpha_{0}+\overline{A_{-1}} \lambda \mathrm{~d} \bar{z},
$$

Birkhoff decompose: $F(z)=F_{-}(z) F_{+}(z)$ (with normalization), then

$$
F_{-}^{-1} \mathrm{~d} F_{-}=B_{-1} \lambda^{-1} \mathrm{~d} z, \quad B_{-1} \text { holo., } B_{-1}(z) \in \mathfrak{g}^{\mathbb{C}}
$$

Conversely: given a holomorphic 1-form with values in $\operatorname{Lie}\left(\wedge \mathcal{G}^{\mathrm{C}} \hat{\sigma}\right)$,

1. solve $\Phi^{-1} \mathrm{~d} \Phi=\eta$, with $\Phi\left(z_{0}\right)=I$,
2. Iwasawa

$$
\Phi(z)=F(z) G_{+}(z)
$$

Riemannian case (Dorfmeister/Pedit/Wu)

\Rightarrow
Given admissible frame $F: U \rightarrow \Lambda G_{\hat{\rho} 1 \hat{\sigma}}^{\mathbb{C}}=\Lambda G_{\hat{\sigma}}$

$$
F^{-1} \mathrm{~d} F=A_{-1} \lambda^{-1} \mathrm{~d} z+\alpha_{0}+\overline{A_{-1}} \lambda \mathrm{~d} \bar{z},
$$

Birkhoff decompose: $F(z)=F_{-}(z) F_{+}(z)$ (with normalization), then

$$
F_{-}^{-1} \mathrm{~d} F_{-}=B_{-1} \lambda^{-1} \mathrm{~d} z, \quad B_{-1} \text { holo., } B_{-1}(z) \in \mathfrak{g}^{\mathbb{C}}
$$

Conversely: given a holomorphic 1 -form with values in $\operatorname{Lie}\left(\wedge G^{\mathbb{C}} \hat{\sigma}\right)$,

$$
\eta=\sum_{n=-1}^{\infty} B_{n}(z) \lambda^{n} \mathrm{~d} z
$$

1. solve $\Phi^{-1} \mathrm{~d} \Phi=\eta$, with $\Phi\left(z_{0}\right)=I$,
2. Iwasawa

$$
\Phi(z)=F(z) G_{+}(z)
$$

Then F is an admissible frame.

Applications: e.g. CGC $K=1$ (spherical) surfaces

$F: U \rightarrow \Lambda G$ admissible frame for the harmonic Gauss map.

The CGC surface can be obtained from F by the Sym formula:

$$
f=\left.i \lambda \frac{\partial F}{\partial \lambda} F^{-1}\right|_{\lambda=1}=: \quad \mathcal{S}(F)
$$

Numerical Implementation

e.g. DPW for spherical surfaces:
"holomorphic potential": $\quad \eta=\sum_{i=-1}^{\infty} A_{i} \lambda^{i} \mathrm{~d} z$
integrate: $\quad \Phi^{-1} \mathrm{~d} \Phi=\eta$.
Iwasawa: $\quad \Phi=F H_{+}$.
Sym: $\quad f=\mathcal{S}(F)$.

Implementation: Can represent $\sum_{i=-n}^{n} A_{i} \lambda^{i}$ as a matrix:

$$
\left(\begin{array}{ccccccccc}
A_{0} & \ldots & A_{n} & 0 & & & \ldots & & 0 \\
A_{-1} & A_{0} & \ldots & A_{n} & 0 & & \ldots & & 0 \\
\vdots & & & & & & & & \\
0 & \ldots & A_{-n} & \ldots & A_{0} & \ldots & A_{n} & \ldots & 0 \\
\vdots & & & & & & & & \\
0 & & \ldots & & & 0 & A_{-n} & \ldots & A_{0}
\end{array}\right)
$$

Loop group decompositions $\leftrightarrow \quad$ matrix decompositions

Examples

Simplest potentials:

$$
\eta=\left(\begin{array}{cc}
0 & a(z) \\
b(z) & 0
\end{array}\right) \lambda^{-1} \mathrm{~d} z
$$

$a=z$
$b=1$

$a=1+z$
$b=0.5+0.5 z-z^{2}$

Summary of DPW for spherical surfaces:

"holomorphic potential": $\quad \eta=\sum_{i=-1}^{\infty} A_{i} \lambda^{i} \mathrm{~d} z$
integrate: $\quad \Phi^{-1} \mathrm{~d} \Phi=\eta$.
Iwasawa: $\quad \Phi=F H_{+}$.
Sym: $\quad f=\mathcal{S}(F)$.

All spherical surfaces can be constructed this way.
Limitation: Geometric information lost in the Iwasawa splitting, can not read off geometric infomation from η.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces associated to Lorentzian harmonic maps (such as CGC $K=-1$).

Summary of DPW for spherical surfaces:

"holomorphic potential": $\quad \eta=\sum_{i=-1}^{\infty} A_{i} \lambda^{i} \mathrm{~d} z$
integrate: $\quad \Phi^{-1} \mathrm{~d} \Phi=\eta$.
Iwasawa: $\quad \Phi=F H_{+}$.
Sym: $\quad f=\mathcal{S}(F)$.

All spherical surfaces can be constructed this way.
Limitation: Geometric information lost in the Iwasawa splitting, can not read off geometric infomation from η.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces associated to Lorentzian harmonic maps (such as CGC $K=-1$).

Summary of DPW for spherical surfaces:

"holomorphic potential": $\quad \eta=\sum_{i=-1}^{\infty} A_{i} \lambda^{i} \mathrm{~d} z$
integrate: $\quad \Phi^{-1} \mathrm{~d} \Phi=\eta$.
Iwasawa: $\quad \Phi=F H_{+}$.
Sym: $\quad f=\mathcal{S}(F)$.

All spherical surfaces can be constructed this way.
Limitation: Geometric information lost in the Iwasawa splitting, can not read off geometric infomation from η.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces associated to Lorentzian harmonic maps (such as CGC $K=-1$).

Summary of DPW for spherical surfaces:

"holomorphic potential": $\quad \eta=\sum_{i=-1}^{\infty} A_{i} \lambda^{i} \mathrm{~d} z$
integrate: $\quad \Phi^{-1} \mathrm{~d} \Phi=\eta$.
Iwasawa: $\quad \Phi=F H_{+}$.
Sym: $\quad f=\mathcal{S}(F)$.

All spherical surfaces can be constructed this way.
Limitation: Geometric information lost in the Iwasawa splitting, can not read off geometric infomation from η.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces associated to Lorentzian harmonic maps (such as CGC $K=-1$).

Using DPW for Geometry

Problem: Find the potential η that produces the solution with some desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more complicated solutions, e.g. potentials on n-punctured sphere with prescribed end behaviour.

Drawback: there are not that many known potentials.

Using DPW for Geometry

Problem: Find the potential η that produces the solution with some desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more complicated solutions, e.g. potentials on n-punctured sphere with prescribed end behaviour.

Drawback: there are not that many known potentials.

Using DPW for Geometry

Problem: Find the potential η that produces the solution with some desired geometric properties.
One approach Use known potentials (e.g. rotational) to define more complicated solutions, e.g. potentials on n-punctured sphere with prescribed end behaviour.
Drawback: there are not that many known potentials.

Another idea: prescribed geometry along a curve

The geometric Cauchy problem:

- Specify sufficient geometric data along a curve for a unique solution
- Find formulas for DPW-type potentials in terms of this data.

Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

$$
F \leftarrow \Phi \quad \text { via } \quad \Phi=F H_{+} \quad \text { Iwasawa }
$$

Many choices of potentials, hence of ϕ.
Essential idea: Find potentials such that the Iwasawa/Birkhoff decomposition is trivial along the curve, i.e. such that

Main point: F contains the geometric information, while Φ are the "Weierstrass data".

Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

$$
F \leftarrow \Phi \quad \text { via } \quad \Phi=F H_{+} \quad \text { Iwasawa }
$$

Many choices of potentials, hence of Φ.
Essential idea: Find potentials such that the Iwasawa/Birkhoff decomposition is trivial along the curve, i.e. such that

Main point: F contains the geometric information, while Φ are the "Weierstrass data".

Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

$$
F \leftarrow \Phi \quad \text { via } \quad \Phi=F H_{+} \quad \text { Iwasawa }
$$

Many choices of potentials, hence of Φ.
Essential idea: Find potentials such that the Iwasawa/Birkhoff decomposition is trivial along the curve, i.e. such that

$$
\left.F\right|_{\gamma}=\left.\Phi\right|_{\gamma}
$$

Main point: F contains the geometric information, while Φ are the "Weierstrass data".

Solving the GCP

Outline:

- Choose coordinates $z=x+i y$ so that the curve is $y=0$.

Prescribe sufficient information to construct the loop group frame $F_{0}(x)$ along $y=0$, from γ and N.

- Write $\alpha=F^{-1} \mathrm{~d} F=\left(\boldsymbol{A}_{-1} \lambda^{-1}+\alpha_{0}+\overline{\boldsymbol{A}_{-1}} \lambda\right) \mathrm{d} x$.
- Let η be the holomorphic extension of α.
- Apply DPW to η : solve $\Phi^{-1} \mathrm{~d} \Phi=\eta$, Iwasawa split $\Phi=F H_{+}$, then F is an admissible frame.
- Along $y=0$ we have $F(x, 0)=\Phi(x, 0)=F_{0}(x)$ by construction.

Solving the GCP

Outline:

- Choose coordinates $z=x+i y$ so that the curve is $y=0$.

Prescribe sufficient information to construct the loop group frame $F_{0}(x)$ along $y=0$, from γ and N.

- Write $\alpha=F^{-1} \mathrm{~d} F=\left(\boldsymbol{A}_{-1} \lambda^{-1}+\alpha_{0}+\overline{\boldsymbol{A}_{-1}} \lambda\right) \mathrm{d} x$.
- Let η be the holomorphic extension of α.
- Apply DPW to η : solve $\Phi^{-1} \mathrm{~d} \Phi=\eta$, Iwasawa split $\Phi=F H_{+}$, then F is an admissible frame.
- Along $y=0$ we have $F(x, 0)=\Phi(x, 0)=F_{0}(x)$ by construction.

Solving the GCP

Outline:

- Choose coordinates $z=x+i y$ so that the curve is $y=0$.

Prescribe sufficient information to construct the loop group frame $F_{0}(x)$ along $y=0$, from γ and N.

- Write $\alpha=F^{-1} \mathrm{~d} F=\left(\boldsymbol{A}_{-1} \lambda^{-1}+\alpha_{0}+\overline{\boldsymbol{A}_{-1}} \lambda\right) \mathrm{d} x$.
- Let η be the holomorphic extension of α.
- Apply DPW to η : solve $\Phi^{-1} \mathrm{~d} \Phi=\eta$, Iwasawa split $\Phi=F H_{+}$, then F is an admissible frame.
- Along $y=0$ we have $F(x, 0)=\Phi(x, 0)=F_{0}(x)$ by construction.

Solution of GCP for spherical surfaces

Theorem

Give real analytic functions

$$
\kappa_{g}(s), \quad \kappa_{n}(s), \quad \tau_{g}(s)
$$

The unique spherical surface containing a curve along $\{y=0\}$ with the prescribed geodesic and normal curvature and geodesic torsion is obtained from the DPW potential
$\eta=\left[\left[\frac{\tau_{g}(z)-i}{2} e_{1}-\frac{\kappa_{n}(z)}{2} e_{2}\right] \frac{1}{\lambda}+\kappa_{g}(z) e_{3}+\left[\frac{\tau_{g}(z)+i}{2} e_{1}-\frac{\kappa_{n}(z)}{2} e_{2}\right] \lambda\right] d z$.
(All functions extended holomorphically, Here e_{i} are an o.n. basis for g.)

Singular geometric Cauchy problem

Similarly, given real analytic

$$
\kappa(s), \quad \tau(s),
$$

with $\kappa \not \equiv 0$, holomorphically extend and then:

$$
\hat{\eta}=\left(\frac{\tau(z)-i}{2} \lambda^{-1} e_{1}+\kappa(z) e_{3}+\frac{\tau(z)+i}{2} \lambda e_{1}\right) \mathrm{d} z,
$$

generates the singular curve solution.

Lorentzian-harmonic maps
"DPW"' for Lorentzian harmonic maps (Krichever, M. Toda)
\Rightarrow : Given $F: V \rightarrow \Lambda G_{\stackrel{\hat{\rho}_{2}}{\sim}}^{C}$,

$$
F^{-1} \mathrm{~d} F=A_{1} \lambda \mathrm{~d} x+\alpha_{0}+\boldsymbol{A}_{-1} \lambda^{-1} \mathrm{~d} y,
$$

Birkhoff: $F(x, y)=X_{+}(x, y) G_{-}(x, y)=Y_{-}(x, y) G_{+}(x, y)$ (with normalizations), then

$$
\begin{array}{r}
X_{+}^{-1} \mathrm{~d} X_{+}=B_{1}(x) \lambda \mathrm{d} x, \\
Y_{-}^{-1} \mathrm{~d} Y_{-}=C_{-1}(y) \lambda^{-1} \mathrm{~d} y .
\end{array}
$$

Conversely: given 1-forms (χ, ψ) on \mathbb{R} with values in $\operatorname{Lie}\left(\wedge G^{C} \hat{\sigma} \hat{\rho}_{2}\right)$,

"DPW"' for Lorentzian harmonic maps (Krichever, M. Toda)
$\Rightarrow:$ Given $F: V \rightarrow \Lambda G_{\hat{\rho}_{2} \hat{\sigma}}^{C}$,

$$
F^{-1} \mathrm{~d} F=A_{1} \lambda \mathrm{~d} x+\alpha_{0}+A_{-1} \lambda^{-1} \mathrm{~d} y
$$

Birkhoff: $F(x, y)=X_{+}(x, y) G_{-}(x, y)=Y_{-}(x, y) G_{+}(x, y)$ (with normalizations), then

$$
\begin{gathered}
X_{+}^{-1} \mathrm{~d} X_{+}=B_{1}(x) \lambda \mathrm{d} x, \\
Y_{-}^{-1} \mathrm{~d} Y_{-}=C_{-1}(y) \lambda^{-1} \mathrm{~d} y .
\end{gathered}
$$

\Leftarrow
Conversely: given 1 -forms (χ, ψ) on \mathbb{R} with values in $\operatorname{Lie}\left(\wedge G^{C} \hat{\sigma} \hat{\rho}_{2}\right)$,

$$
\chi=\sum_{n=-\infty}^{1} B_{n}(x) \lambda^{n} \mathrm{~d} x, \quad \psi=\sum_{n=-1}^{\infty} C_{n}(y) \lambda^{n} \mathrm{~d} y
$$

1. Solve $X^{-1} \mathrm{~d} X=\chi$, and $Y^{-1} \mathrm{~d} Y=\psi$,
2. Birkhoff decompose

$$
X^{-1}(x) Y(y)=H_{-}(x, y) H_{+}(x, y)
$$

Then $F:=X H_{-}$is an admissible frame.

The GCP for Lorentz-harmonic maps

"DPW" construction:

$$
F=X H_{-} \leftarrow(X, Y) \quad \text { via } \quad X^{-1} Y=H_{-} H_{+} \quad \text { Birkhoff }
$$

Many choices of potentials, hence of (X, Y).
Analogous to Riemannian case: Find potentials such that the Birkhoff decomposition is trivial along the curve, i.e. such that

The GCP for Lorentz-harmonic maps

"DPW" construction:

$$
F=X H_{-} \leftarrow(X, Y) \quad \text { via } \quad X^{-1} Y=H_{-} H_{+} \quad \text { Birkhoff }
$$

Many choices of potentials, hence of (X, Y).

> Analogous to Riemannian case: Find potentials such that the Birkhoff decomposition is trivial along the curve, i.e. such that

The GCP for Lorentz-harmonic maps

"DPW" construction:

$$
F=X H_{-} \leftarrow(X, Y) \quad \text { via } \quad X^{-1} Y=H_{-} H_{+} \quad \text { Birkhoff }
$$

Many choices of potentials, hence of (X, Y).
Analogous to Riemannian case: Find potentials such that the Birkhoff decomposition is trivial along the curve, i.e. such that

$$
\left.F\right|_{\gamma}=\left.X\right|_{\gamma}=\left.Y\right|_{\gamma}
$$

Solving the GCP (non-characteristic curve)

Required admissible frame:

$$
F^{-1} \mathrm{~d} F=A_{1} \lambda \mathrm{~d} x+\alpha_{0}+A_{-1} \lambda^{-1} \mathrm{~d} y
$$

Potential pairs of form:

$$
\begin{gathered}
\chi=X^{-1} \mathrm{~d} X=\sum_{n=-\infty}^{1} B_{n}(x) \lambda^{n} \mathrm{~d} x \\
\psi=Y^{-1} \mathrm{~d} Y=\sum_{n=-1}^{\infty} C_{n}(y) \lambda^{n} \mathrm{~d} y
\end{gathered}
$$

Related by $F:=X H_{-}$, where

$$
X^{-1}(x) Y(y)=H_{-}(x, y) H_{+}(x, y)
$$

- Choose null coordinates s.t. initial curve given by $y=x$.
- Set $u=(x+y) / 2, v=(x-y) / 2$, then initial curve is $v=0$, and $\mathrm{d} y=\mathrm{d} x=\mathrm{d} u$ along the curve.
- Construct $F_{0}(u)=F(u, 0)$, so
$\alpha_{0}=F_{0}^{-1} d F_{0}=A_{1} \lambda d u+\alpha_{0}+A_{-1} \lambda^{-1} d u$.
\Rightarrow Set $\chi=\psi=\alpha_{0}$.

Solving the GCP (non-characteristic curve)

Required admissible frame:

$$
F^{-1} \mathrm{~d} F=A_{1} \lambda \mathrm{~d} x+\alpha_{0}+A_{-1} \lambda^{-1} \mathrm{~d} y
$$

Potential pairs of form:

$$
\begin{gathered}
\chi=X^{-1} \mathrm{~d} X=\sum_{n=-\infty}^{1} B_{n}(x) \lambda^{n} \mathrm{~d} x \\
\psi=Y^{-1} \mathrm{~d} Y=\sum_{n=-1}^{\infty} C_{n}(y) \lambda^{n} \mathrm{~d} y
\end{gathered}
$$

Related by $F:=X H_{-}$, where

$$
X^{-1}(x) Y(y)=H_{-}(x, y) H_{+}(x, y)
$$

- Choose null coordinates s.t. initial curve given by $y=x$.
- Set $u=(x+y) / 2, v=(x-y) / 2$, then initial curve is $v=0$, and $\mathbf{d} y=\mathbf{d} x=\mathbf{d} u$ along the curve.
- Construct $F_{0}(u)=F(u, 0)$, so

$$
\alpha_{0}=F_{0}^{-1} \mathrm{~d} F_{0}=A_{1} \lambda \mathrm{~d} u+\alpha_{0}+A_{-1} \lambda^{-1} \mathrm{~d} u
$$

- Set $\chi=\psi=\alpha_{0}$.

Pseudospherical surfaces (Lorentzian harmonic)

- Analogous results to spherical surfaces
- Main difference: solution not unique for characteristic curves

Convenient way to generate examples:
Given curvature functions κ and τ there is a unique CGC $K=-1$ surface containing this curve as a cuspidal edge (degenerate where $\kappa=0$ or $\tau= \pm 1$).

$$
\kappa(s)=1-s^{4}, \quad \tau(s)=0
$$

Examples

Examples that are not weakly regular
Viviani figure 8 space curve $\gamma(t)=0.3\left(1+\cos t, \sin t, 2 \sin \frac{t}{2}\right)$.

- $\tau= \pm 1$ twice each on the curve.
- Solution to SG-equation not defined at these points
- The Lorentzian harmonic map is defined

Examples that are not weakly regular

Willmore surfaces

Willmore Surfaces

Elliptic PDE

- Gauss map Riemannian-harmonic (like spherical surfaces)
- Uniqueness: need more than just the surface normal.

Willmore Surfaces

It is sufficient to prescribe the dual surface \hat{Y} in addition to Y and the conformal Gauss map along the curve.

Equivariant Willmore Surfaces

Summary

- We discussed surface classes with harmonic Gauss maps
- All solutions can be constructed from holomorphic Weierstrass-type data (Riemannian) or d'Alembert-type data (Lorentzian) called potentials.
- The challenge is to explicitly write down the potential for a given geometric problem
- We can solve this given geometric Cauchy data along a curve.

References I

D. Brander and J. Dorfmeister

The Björling problem for non-minimal constant mean curvature surfaces.
Comm. Anal. Geom. 18 (2010), 171-194.
D. Brander and M. Svensson

The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps.
J. Differential Geom. 93 (2013), 37-66.
D. Brander

Pseudospherical surfaces with singularities.
Ann. Mat. Pura Appl. (2016) doi:10.1007/s10231-016-0601-8
D. Brander

Spherical Surfaces.
Experimental Math. 25 (2016), 257-272.
D. Brander and P. Wang

On the Björling problem for Willmore surfaces.
Preprint: arXiv:1409.3953[math.DG]
D. Brander

Singularities of Spacelike Constant Mean Curvature Surfaces in Lorentz-Minkowski Space. Math. Proc. Cambridge Philos. Soc. 150 (2011), 527-556.
D. Brander and M. Svensson

Timelike constant mean curvature surfaces with singularities.
J. Geom. Anal. 24 (2014), 1641-1672.

