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Geometric Cauchy problems
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A classical problem
Björling’s problem for minimal surfaces:

Prescribed normal field on curve → Unique minimal surface

3 / 42



A classical problem
Björling’s problem for minimal surfaces:

Prescribed normal field on curve → Unique minimal surface

Schwarz formula:

f (z) = <
{
α(z)− i

∫ z

x0

N(w)× α′(w)dw
}
,

α(z) and N(z) are the holomorphic extensions.
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Curve +... generates surface of type X
e.g. space curve given by:

κ(s) = 1− s4, τ(s) = 0.

Find the (unique?) surface of (e.g.) constant Gauss curvature K = 1
containing this curve as:

1. a geodesic
2. a cuspidal edge singularity
3. or with some arbitrary prescribed surface normal

These are called geometric Cauchy problems
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Curve +... generates surface of type X
e.g. space curve given by:

κ(s) = 1− s4, τ(s) = 0.

As a geodesic curve (the CGC K = 1 solution)
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Curve +... generates surface of type X
e.g. space curve given by:

κ(s) = 1− s4, τ(s) = 0.

As a cuspidal edge singular curve
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Curve +... generates surface of type X
e.g. Find the unique CGC K = 1 surface containing the curve with
surface geometry given by:

κg(s) = 1, κn(s) = 1, τg(s) = sin(s)
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Special surfaces and harmonic maps

10 / 42



Special surfaces and harmonic maps

Many important classical surfaces correspond to harmonic maps from
either R2 or R1,1 into G/K .

Examples:
I Constant mean curvature (CMC) surfaces in space forms
I Constant Gauss curvature (CGC) surfaces in space forms
I Willmore surfaces
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Example: Constant Gauss Curvature Surfaces

1. N : C→ S2 is harmonic iff

N × Nzz̄ = 0,

iff
fz = iN × Nz ,

is integrable i.e. (fz)z̄ = (fz̄)z .

Moreover: f : C→ R3 (with induced metric) is CGC, with K = 1.

2. N : R1,1 → S2 is (Lorentzian)-harmonic iff

N × Nxy = 0,

iff
fx = N × Nx , fy = −N × Ny ,

is integrable.

Moreover: f : R1,1 → R3 is CGC with K = −1.
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Loop group lift of a harmonic map into G/K

G = GC
ρ , K = Gσ

Loop group ΛGC := {γ : S1 → GC} . Twisted subgroup is the fixed
point subgroup

ΛGC
σ̂ , for σ̂x(λ) := σ(x(−λ)).

Real forms determined by the involutions:

ρ̂1x(λ) := ρ(x(1/λ̄)), ρ̂2x(λ) := ρ(x(λ̄)).

Note:
ΛG = ΛGC

ρ̂1
.
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Loop group lift of a harmonic map into G/K
Riemannian case: Harmonic maps C ⊃ U → G/K ,

Characterized by F : U → ΛGC
ρ̂1σ̂

= ΛGσ̂

F−1dF = A−1λ
−1dz + α0 + A−1λdz̄,

For any λ0 ∈ S1 the map

F
∣∣
λ0

: U → G

projects to a harmonic map f : U → G/K .

Call such F an admissible frame.

Lorentzian case: R1,1 ⊃ V → G/K ,

Characterized by F : V → ΛGC
ρ̂2σ̂

,

F−1dF = A1λdx + α0 + A−1λ
−1dy , (x , y) null coord.s.
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Link with Soliton equations

Map into loop group Flat loopalgebra-valued
connection

Special submanifold

Adapted frame

Maurer-Cartan form

Solution of soliton 
equation

Special coordinates
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Important loop group decompositions
Set Λ±GC = {γ ∈ ΛGC | γ =

∑∞
n=0 anλ

±n}.

We need:

1. The Birkhoff decomposition
1.1

Λ−GC · Λ+GC

is open an dense in the identity component of ΛGC.
1.2 For compact G:

ΛGC
ρ̂2 = Λ−GC

ρ̂2 · Λ
+GC

ρ̂2

Analogue: A = LU matrix factorization.

2. The Iwasawa decomposition (for compact G):

ΛGC = ΛG · Λ+GC

Analogue: A = QR matrix factorization.
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Riemannian-harmonic maps
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Riemannian case (Dorfmeister/Pedit/Wu)
⇒
Given admissible frame F : U → ΛGC

ρ̂1σ̂
= ΛGσ̂

F−1dF = A−1λ
−1dz + α0 + A−1λdz̄,

Birkhoff decompose: F (z) = F−(z)F+(z) (with normalization), then

F−1
− dF− = B−1λ

−1dz, B−1 holo., B−1(z) ∈ gC.

⇐
Conversely: given a holomorphic 1-form with values in Lie(ΛGCσ̂),

η =
∞∑

n=−1

Bn(z)λndz,

1. solve Φ−1dΦ = η, with Φ(z0) = I,
2. Iwasawa

Φ(z) = F (z)G+(z)

Then F is an admissible frame.
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Applications: e.g. CGC K = 1 (spherical) surfaces

F : U → ΛG admissible frame for the harmonic Gauss map.

The CGC surface can be obtained from F by the Sym formula:

f = iλ
∂F
∂λ

F−1
∣∣∣
λ=1

=: S(F ).
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Numerical Implementation
e.g. DPW for spherical surfaces:

"holomorphic potential": η =
∑∞

i=−1 Aiλ
idz

integrate: Φ−1dΦ = η.
Iwasawa: Φ = FH+.
Sym: f = S(F ).

Implementation: Can represent
∑n

i=−n Aiλ
i as a matrix:

A0 . . . An 0 . . . 0
A−1 A0 . . . An 0 . . . 0

...
0 . . . A−n . . . A0 . . . An . . . 0
...
0 . . . 0 A−n . . . A0


Loop group decompositions ↔ matrix decompositions
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Examples
Simplest potentials:

η =

(
0 a(z)

b(z) 0

)
λ−1dz.

a = 1 a = z a = 1 + z
b = 0 b = 1 b = 0.5 + 0.5z − z2
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Summary of DPW for spherical surfaces:
"holomorphic potential": η =

∑∞
i=−1 Aiλ

idz
integrate: Φ−1dΦ = η.
Iwasawa: Φ = FH+.
Sym: f = S(F ).

All spherical surfaces can be constructed this way.

Limitation: Geometric information lost in the Iwasawa splitting,
can not read off geometric infomation from η.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces
associated to Lorentzian harmonic maps (such as CGC K = −1).
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Using DPW for Geometry

Problem: Find the potential η that produces the solution with some
desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more
complicated solutions, e.g. potentials on n-punctured sphere with
prescribed end behaviour.

Drawback: there are not that many known potentials.

23 / 42



Using DPW for Geometry

Problem: Find the potential η that produces the solution with some
desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more
complicated solutions, e.g. potentials on n-punctured sphere with
prescribed end behaviour.

Drawback: there are not that many known potentials.

23 / 42



Using DPW for Geometry

Problem: Find the potential η that produces the solution with some
desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more
complicated solutions, e.g. potentials on n-punctured sphere with
prescribed end behaviour.

Drawback: there are not that many known potentials.

23 / 42



Another idea: prescribed geometry along a curve

The geometric Cauchy problem:

I Specify sufficient geometric data along a curve for a unique
solution

I Find formulas for DPW-type potentials in terms of this data.
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Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

F ← Φ via Φ = FH+ Iwasawa

Many choices of potentials, hence of Φ.

Essential idea: Find potentials such that the Iwasawa/Birkhoff
decomposition is trivial along the curve, i.e. such that

F
∣∣
γ

= Φ
∣∣
γ
.

Main point: F contains the geometric information, while Φ are the
“Weierstrass data”.
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Solving the GCP

Outline:
I Choose coordinates z = x + iy so that the curve is y = 0.

I
Prescribe sufficient information to construct the loop group
frame F0(x) along y = 0, from γ and N.

I Write α = F−1dF =
(
A−1λ

−1 + α0 + A−1λ
)

dx .

I Let η be the holomorphic extension of α.
I Apply DPW to η: solve Φ−1dΦ = η, Iwasawa split Φ = FH+ , then

F is an admissible frame.
I Along y = 0 we have F (x ,0) = Φ(x ,0) = F0(x) by construction.
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Solution of GCP for spherical surfaces

Theorem
Give real analytic functions

κg(s), κn(s), τg(s),

The unique spherical surface containing a curve along {y = 0} with the
prescribed geodesic and normal curvature and geodesic torsion is obtained
from the DPW potential

η =

[[
τg(z)− i

2
e1 −

κn(z)

2
e2

]
1
λ

+ κg(z)e3 +

[
τg(z) + i

2
e1 −

κn(z)

2
e2

]
λ

]
dz.

(All functions extended holomorphically, Here ei are an o.n. basis for g.)
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Singular geometric Cauchy problem

Similarly, given real analytic

κ(s), τ(s),

with κ 6≡ 0, holomorphically extend and then:

η̂ =

(
τ(z)− i

2
λ−1e1 + κ(z)e3 +

τ(z) + i
2

λe1

)
dz,

generates the singular curve solution.
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Lorentzian-harmonic maps
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"DPW"’ for Lorentzian harmonic maps (Krichever, M. Toda)

⇒: Given F : V → ΛGC
ρ̂2σ̂

,

F−1dF = A1λdx + α0 + A−1λ
−1dy ,

Birkhoff: F (x , y) = X+(x , y)G−(x , y) = Y−(x , y)G+(x , y) (with
normalizations), then

X−1
+ dX+ = B1(x)λdx ,

Y−1
− dY− = C−1(y)λ−1dy .

⇐
Conversely: given 1-forms (χ, ψ) on R with values in Lie(ΛGCσ̂ρ̂2),

χ =
1∑

n=−∞

Bn(x)λndx , ψ =
∞∑

n=−1

Cn(y)λndy ,

1. Solve X−1dX = χ, and Y−1dY = ψ,

2. Birkhoff decompose

X−1(x)Y (y) = H−(x , y)H+(x , y)

Then F := XH− is an admissible frame.
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The GCP for Lorentz-harmonic maps

"DPW" construction:

F = XH− ← (X ,Y ) via X−1Y = H−H+ Birkhoff

Many choices of potentials, hence of (X ,Y ).

Analogous to Riemannian case: Find potentials such that the
Birkhoff decomposition is trivial along the curve, i.e. such that

F
∣∣
γ

= X
∣∣
γ

= Y
∣∣
γ
.
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Solving the GCP (non-characteristic curve)
Required admissible frame:

F−1dF = A1λdx + α0 + A−1λ
−1dy ,

Potential pairs of form:

χ = X−1dX =
1∑

n=−∞

Bn(x)λndx ,

ψ = Y−1dY =
∞∑

n=−1

Cn(y)λndy ,

Related by F := XH−, where

X−1(x)Y (y) = H−(x , y)H+(x , y)

I Choose null coordinates s.t. initial curve given by y = x .
I Set u = (x + y)/2, v = (x − y)/2, then initial curve is v = 0, and

dy = dx = du along the curve.
I Construct F0(u) = F (u, 0), so

α0 = F−1
0 dF0 = A1λdu + α0 + A−1λ

−1du.

I Set χ = ψ = α0.
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Pseudospherical surfaces (Lorentzian harmonic)
I Analogous results to spherical surfaces
I Main difference: solution not unique for characteristic curves

Convenient way to generate examples:
Given curvature functions κ and τ there is a unique CGC K = −1 sur-
face containing this curve as a cuspidal edge

(degenerate where κ = 0 or τ = ±1).

κ(s) = 1− s4, τ(s) = 0
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Examples

κ(s) = 2− s2 κ(s) = s2

τ = 0 τ = 1/2
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Examples that are not weakly regular
Viviani figure 8 space curve γ(t) = 0.3

(
1 + cos t , sin t , 2 sin t

2

)
.

I τ = ±1 twice each on the curve.
I Solution to SG-equation not defined at these points
I The Lorentzian harmonic map is defined

35 / 42



Examples that are not weakly regular

36 / 42



Willmore surfaces
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Willmore Surfaces

Elliptic PDE

I Gauss map Riemannian-harmonic (like spherical surfaces)
I Uniqueness: need more than just the surface normal.
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Willmore Surfaces

It is sufficient to prescribe the dual surface Ŷ in addition to Y and the
conformal Gauss map along the curve.
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Equivariant Willmore Surfaces
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Summary

I We discussed surface classes with harmonic Gauss maps
I All solutions can be constructed from holomorphic Weierstrass-type data

(Riemannian) or d’Alembert-type data (Lorentzian) called potentials.
I The challenge is to explicitly write down the potential for a given

geometric problem
I We can solve this given geometric Cauchy data along a curve.
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