# On a discretization of confocal quadrics

Alexander Bobenko

Technische Universität Berlin

LMS Symposium on Geomeric and Algebraic Aspects of Integrability Durham, July 25 - August 4, 2016

joint work with W. Schief, Yu. Suris, J. Techter

CRC 109 "Discretization in Geometry and Dynamics"





Conformal curvature line parametrized ellipsoid

Alexander Bobenko Discrete confocal quadrics

As a referee stated:

"Confocal quadrics is an ubiquitous subject that goes back to Jacobi and Chasles; it is also an evergreen topic, studied, in the 20th century, by J. Moser and V. Arnold, among others. Quadrics provide basic examples of continuous- and discrete-time integrable systems, namely, the geodesic flows and billiard ball maps."

"I expect this [...] to generate much more research: one cannot help wondering which of the numerous features of conics and quadrics, described in the classic geometry literature, have discrete analogs, and what these analogs may look like."

# Discrete ellipsoid (and confocal quadrics) in this talk



## **Confocal quadrics**

For any numbers  $a_1 > \cdots > a_N > 0$ , the one-parameter ( $\lambda$ ) family of quadrics defined by

$$\frac{x_1^2}{\lambda + a_1} + \dots + \frac{x_N^2}{\lambda + a_N} = 1$$

is known as a family of confocal quadrics in  $\mathbb{R}^N$ .





$$N = 3$$

## Confocal (elliptic) coordinates

Through each point  $\mathbf{x} = (x_1, ..., x_N) \in \mathbb{R}^N$  subject to  $x_1 \cdots x_N \neq 0$ , there pass exactly *N* orthogonal quadrics (different signatures) corresponding to some values  $\lambda = u_1, ..., \lambda = u_N$ . Obtained by solving the equations

$$\sum_{k=1}^{N} \frac{x_k^2}{u_i + a_k} = 1, \qquad i = 1, \dots, N,$$

 $-a_1 < u_1 < -a_2 < \cdots < -a_N < u_N.$ 

The parameters  $u_1, \ldots, u_N$  are known as confocal (or elliptic) coordinates and represent an orthogonal coordinate system in each of the 2<sup>*N*</sup> hyperoctants via

$$x_k^2 = rac{\prod_{i=1}^N (u_i + a_k)}{\prod_{i \neq k} (a_k - a_i)}, \qquad k = 1, \dots, N.$$
 (Discretisation?)

Confocal coordinates (in the first hyperoctant)

$$\mathbf{x}: \mathcal{U} \to \mathbb{R}^{N}_{+}, \qquad x_{k} = \frac{\prod_{i=1}^{k-1} \sqrt{-(u_{i}+a_{k})} \prod_{i=k}^{N} \sqrt{(u_{i}+a_{k})}}{\prod_{i=1}^{k-1} \sqrt{a_{i}-a_{k}} \prod_{i=k+1}^{N} \sqrt{a_{k}-a_{i}}}$$

 $U = \{(u_1, ..., u_N) : -a_1 < u_1 < -a_2 < \cdots < -a_N < u_N\}$ enjoy the following properties:

(1)  $x_k = \rho_k^1(u_1) \cdots \rho_k^N(u_N)$  (separability) (2)  $x_k(u_k \nearrow -a_k) = x_k(u_{k-1} \searrow -a_k) = 0$  (boundary conditions) (3)  $\boldsymbol{x}$  is a solution of the Euler-Poisson-Darboux equations

$$\frac{\partial^2 \boldsymbol{x}}{\partial u_i \partial u_j} = \frac{\gamma}{u_i - u_j} \left( \frac{\partial \boldsymbol{x}}{\partial u_j} - \frac{\partial \boldsymbol{x}}{\partial u_i} \right), \qquad \gamma = \frac{1}{2}$$

 $(i \neq j)$  which are multi-dimensionally consistent. The coordinate lines on the surfaces  $\mathbf{x}(u_i, u_j)$  are therefore conjugate.

(4) 
$$\left\langle \frac{\partial \boldsymbol{x}}{\partial u_i}, \frac{\partial \boldsymbol{x}}{\partial u_j} \right\rangle = 0$$
 (orthogonality)

Conjugacy and orthogonality means that the confocal coordinates  $(u_i, u_j)$  are curvature coordinates on the surfaces  $\mathbf{x}(u_i, u_j)$ .

All two-dimensional coordinate surfaces are isothermic

#### The properties (1) - (4) characterise confocal coordinates

#### Formulas

Theorem. Separable solutions (1) of the

Euler-Poisson-Darboux equations (3) subject to the boundary conditions (2) are given by

$$x_k = D_k \prod_{i=1}^{k-1} \sqrt{-(u_i + a_k)} \prod_{i=k}^N \sqrt{(u_i + a_k)}.$$

The orthogonality condition (4) is satisfied if and only if (up to a global scaling)

$$D_k^{-1} = \prod_{i=1}^{k-1} \sqrt{a_i - a_k} \prod_{i=k+1}^N \sqrt{a_k - a_i}$$

so that  $(u_1, \ldots, u_N)$  constitute confocal coordinates.

#### What are the discrete analogues of the properties (1) - (4)?

# Discrete Euler-Poisson-Darboux equations

For some  $\mathcal{U} \subset \mathbb{Z}^N$ , we consider discrete nets

$$\boldsymbol{x}: \mathcal{U} \to \mathbb{R}^N, \qquad (n_1, \ldots, n_N) \mapsto (u_1, \ldots, u_N),$$

satisfying the discrete Euler-Poisson-Darboux equations

$$\Delta_i \Delta_j \boldsymbol{x} = \frac{\gamma}{n_i + \epsilon_i - n_j - \epsilon_j} (\Delta_j \boldsymbol{x} - \Delta_i \boldsymbol{x}), \qquad \gamma = \frac{1}{2},$$

where  $i \neq j$  and  $\Delta_i f(n_i) = f(n_i + 1) - f(n_i)$ .

- The discrete EPD equations are multi-dimensionally consistent and define particular discrete conjugate nets, i.e. the discrete surfaces x(n<sub>i</sub>, n<sub>j</sub>) are composed of planar quadrilaterals.
- The discrete EPD equations were introduced by Konopelchenko and Schief (2014).
- All two-dimensional subnets are Koenigs.

- A discrete surface f : Z<sup>2</sup> → R<sup>3</sup> with planar faces and non-planar vertices is a discrete Koenigs net if the intersection points of diagonals of any four quadrilaterals sharing a vertex are co-planar. [B., Suris '09]
- Koenigs + orthogonal = isothermic



Introduce the "Pochhammer symbol" (Gelfand et al.)

$$(u)_{1/2} = \frac{\Gamma(u+\frac{1}{2})}{\Gamma(u)}$$

which (up to rescaling) may be regarded as a discretisation of  $\sqrt{u}$  since

$$\lim_{\epsilon \to 0} \epsilon^{1/2} \left(\frac{u}{\epsilon}\right)_{1/2} = u^{1/2}.$$

Theorem. A separable function

$$x(n_1,\ldots,n_N)=\rho^1(n_1)\cdots\rho^N(u_n)$$

is a solution of the discrete EPD equations if and only if

$$\rho^{i}(\mathbf{n}_{i}) = \mathbf{d}_{i}(\mathbf{n}_{i} + \epsilon_{i} + \mathbf{c})_{1/2} = \tilde{\mathbf{d}}_{i}(-\mathbf{n}_{i} - \epsilon_{i} - \mathbf{c} + \frac{1}{2})_{1/2},$$

where c is a constant of separation.

## Combinatorics



 $n_1$ 

# **Boundary conditions**

Consider the region

$$\mathcal{U} = \{ (n_1, \ldots, n_N) \in \mathbb{Z}^N : -\alpha_1 \leq n_1 \leq -\alpha_2 \leq \cdots \leq \alpha_N \leq n_N \}$$

for some positive integers  $\alpha_1 > \cdots > \alpha_N$  and discrete nets  $\boldsymbol{x} : \mathcal{U} \to \mathbb{R}^N_+$ . Then, the parameters  $\epsilon_i$  and the constants of separation  $c_k$  may be adjusted in the following manner: Theorem. Separable solutions of the discrete EPD equations subject to the 2N - 1 boundary conditions

$$x_k(n_k = -\alpha_k) = x_k(n_{k-1} = -\alpha_k) = 0$$

are given by

$$x_{k} = D_{k} \prod_{i=1}^{k-1} \left( -u_{i} - a_{k} + \frac{1}{2} \right)_{1/2} \prod_{i=k}^{N} \left( u_{i} + a_{k} \right)_{1/2},$$
$$u_{i} = n_{i} - \frac{i}{2}, \quad a_{k} = \alpha_{k} + \frac{k}{2}.$$

The standard notion of discrete orthogonality (+ conjugacy), that is, circularity turns out to be incompatible! Instead, we extend the discrete net x to

$$oldsymbol{x}:\mathcal{U}\cup\mathcal{U}^*
ightarrow\mathbb{R}^{oldsymbol{N}}_+$$

 $\mathcal{U}^* = \{ (n_1, \ldots, n_N) \in (\mathbb{Z} + \frac{1}{2})^N : -\alpha_1 \le n_1 \le -\alpha_2 \le \cdots \le \alpha_N \le n_N \}$ and demand that any edge of  $x(\mathcal{U})$  be orthogonal to the dual facet of  $x(\mathcal{U}^*)$ .



Theorem. The discrete orthogonality condition is satisfied if and only if (up to a global scaling)

$$D_k^{-1} = \prod_{i=1}^{k-1} \sqrt{a_i - a_k} \prod_{i=k+1}^N \sqrt{a_k - a_i}$$

so that discrete confocal quadrics are uniquely defined.





## Discrete vc. Continuous



#### Three confocal quadrics and their discrete counterparts

# Algebraic identities

A lattice point  $\mathbf{x}(\mathbf{n})$  and its nearest neighbours  $\mathbf{x}(\mathbf{n} + \frac{1}{2}\sigma)$  are related by

$$\frac{x(n)x(n+\frac{1}{2}\sigma)}{u_{1}+a_{1}} + \frac{y(n)y(n+\frac{1}{2}\sigma)}{u_{1}+a_{2}} + \frac{z(n)z(n+\frac{1}{2}\sigma)}{u_{1}+a_{3}} = 1$$

$$\frac{x(n)x(n+\frac{1}{2}\sigma)}{u_{2}+a_{1}} + \frac{y(n)y(n+\frac{1}{2}\sigma)}{u_{2}+a_{2}} + \frac{z(n)z(n+\frac{1}{2}\sigma)}{u_{2}+a_{3}} = 1$$

$$\frac{x(n)x(n+\frac{1}{2}\sigma)}{u_{3}+a_{1}} + \frac{y(n)y(n+\frac{1}{2}\sigma)}{u_{3}+a_{2}} + \frac{z(n)z(n+\frac{1}{2}\sigma)}{u_{3}+a_{3}} = 1,$$
where  $\sigma = (\sigma_{1}, \sigma_{2}, \sigma_{3}), \sigma_{i} = \pm 1$  and
$$u_{1} = n_{1} + \frac{1}{4}\sigma_{1} - \frac{3}{4}, \quad u_{2} = n_{2} + \frac{1}{4}\sigma_{2} - \frac{5}{4}, \quad u_{3} = n_{3} + \frac{1}{4}\sigma_{3} - \frac{7}{4}.$$

This discretisation of the defining equations for confocal quadrics exists for any N.

## **Discrete umbilics**



The umbilics ("spherical" points) on confocal ellipsoids lie on the focal hyperbola

$$\frac{x^2}{a_1-a_2}-\frac{z^2}{a_2-a_3}=1, \qquad y=0.$$

The discrete umbilics (verices of valence 2;  $n_1 = n_2 = -\alpha_2$ ) likewise lie on a discrete focal hyperbola. We can discretize confocal quadrics parametrised in terms of arbitrary curvature coordinates. For instance, we can discretise the following classical parametrizations:  $N = 2^{\circ}$ 

$$\boldsymbol{x} = \left(\begin{array}{c} \cos u \cosh v \\ \sin u \sinh v \end{array}\right)$$

N = 3:

$$\mathbf{x} = \begin{pmatrix} \operatorname{sn}(u,k) \operatorname{dn}(v,\hat{k}) \operatorname{ns}(w,k) \\ \operatorname{cn}(u,k) \operatorname{cn}(v,\hat{k}) \operatorname{ds}(w,k) \\ \operatorname{dn}(u,k) \operatorname{sn}(v,\hat{k}) \operatorname{cs}(w,k) \end{pmatrix}$$
$$k^{2} = \frac{\alpha_{1} - \alpha_{2}}{\alpha_{1} - \alpha_{3}}, \quad \hat{k}^{2} = 1 - k^{2}.$$

# Discrete confocal quadrics

