Optical Tomography and PhotoAcoustic Tomogrpahy

Simon R. Arridge!  Joint work with :
B.Cox3, A. Pulkkinen?, T. Tarvainen'-?

"Department of Computer Science, University College London, UK
2Department of Physics and Mathematics, University of Eastern Finland, Finland
3Department of Medical Physics, University College London, UK

Inverse Problems Workshop

LMS, EPSRC Durham Symposium
Mathematical and Comptuational Aspects of Maxwell’s Equations
11th-21st July 2016

UCL CENTRE FOR

INVARSE
@ PROBLEMS

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 1/47



0 Introduction

e Modelling in Optical Tomography

© PhotoAcoustics

e Coupled Physics Imaging : Quantitative PhotoAcoustic Tomography

e Summary

@ Acknowledgements

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 2/47



0 Introduction

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 3/47



Introduction
Optics in BioPhysics

Light propagation
through tissue used
for mammographic
investigations (Cutler
1929)
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Introduction

Optics in BioPhysics

Light propagation
through tissue used
for mammographic
investigations (Cutler
1929)

Josis 1977, used Noninvasive, Infrared Monitoring of Cerebral and
optical radiation in Myocardial Oxygen Sufficiency and Circulatory Parameters

the near—lnfrared Abstract, The relatively good transparency of biological materials in the near in-

b and as a method for frared region of the spectrum permits sufficient photon transmission through organs
in situ for the monitoring of cellular events. Observations by infrared transillumina-

StUinng cerebral tion in the exposed heart and in the brain in cephalo without surgical intervention

h . show that oxygen sufficiency for cytochrome a,a,, function, changes in tissue blood

aemOdynamICS on volume, and the average hemoglobin-oxyhemoglobin equilibrium can be recorded

effectively and in continuous fashion for research and clinical purposes. The copper

the exposed cortex atom associated with heme as did not respond to anoxia and may be reduced under
of a cat. normoxic conditions, whereas the heme-a copper was at least partially reducible.
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Introduction
Near InfraRed Spectroscopy

@ In Near Infrared Spectroscopy (NIRS), tissue is illuminated with
selected wavelengths, and light that has travelled through the
tissue between source and detector optodes is measured.
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Introduction
Near InfraRed Spectroscopy

@ In Near Infrared Spectroscopy (NIRS), tissue is illuminated with
selected wavelengths, and light that has travelled through the
tissue between source and detector optodes is measured.

@ The change in chromophore concentration is assumed to be
spread over the volume being measured. This leads to a
partial-volume effect, and underestimation of the magnitude of
localized changes.

@ From the attenuation of the light changes in the concentrations of
chromophores such as oxygenated (HbO2) and deoxygenated
heamoglobin (HbR), and cytochrome oxidase can be calculated.

@ NIRS is widely used to refer to monitoring of haemodynamic
processes in tissues such as muscle and breast, and the brain of
both adults and infants.
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Introduction
functional Near Infra Red Spectroscopy

Functional Near Infrared Spectroscopy (fNIRS) refers to the application
of NIRS to the haemodynamic response to an external stimulus; this is
a direct analogy to the term Functional Magnetic Resonance Imaging
(fMRI) as distinguished from strutural or “static” MRI. Thus fNIRS is a

dynamic modality (compare fMRI).
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Functional Near Infrared Spectroscopy (fNIRS) refers to the application
of NIRS to the haemodynamic response to an external stimulus; this is
a direct analogy to the term Functional Magnetic Resonance Imaging
(fMRI) as distinguished from strutural or “static” MRI. Thus fNIRS is a

dynamic modality (compare fMRI).
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Introduction

Comparison of Modalities

% Degree of infant
@ OT is faster than fNIRS g tolerance needed
@ OT gives a spectral é L
contrast ° u
va 1| 4
figure taken from . . V |
S. Lloyd-Fox, Neuroscience Spatial Resolution

and B|0 BehaV|Ora| ReV|eWS Fig. 2 This figure shows the spatial and temporal resolution of NIRS compared with
wother infant functional neuroimaging methods. It also illustrates the relative degree

2009 «of tolerance needed from the infant for each method, mnging from yellow (low) to
red (high) EEG, electmencephalography; ERP, event-related potential; MEG,
magnetoencephalography; NIRS, near infrared spectroscopy; fMRI functional
magnetic resonance imaging; DT, diffusion tensor imaging; PET, positron emission
tomography. (This figure was inspired by Walsh and Cowey, 2000.) (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article )
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Optical Tomography

Neonatal imaging
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Optical Tomography

Neonatal imaging

Figure 1. A fibre holder helmet on  Figure 2. Ultrasound image of infant
the head of n mfant durmg an with hasmorrhage m left ventricle.

-1

0.00 0.015 mm

Figure 3. Absorption images of infant brain with left-side haemorrhage:
2) Coronal and b) sagittal views.
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e Modelling in Optical Tomography
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Modelling in Optical Tomography

Physical Models of Light Propagation

The Radiative Transfer Equation (RTE) is a natural description of
light considered as photons. It represents a balance equation where
photons in a constant refractive index medium, in the absence of
scattering, are propagated along rays I := ro + IS

§Vo+tmdp=0 = T,p=0 (1)

whose solution

¢ = ¢ogexp [— /Iua(ro + 18)d/ (2)
is the basis for the definition of the Ray Transform
gs(p) = —In [jo] = [ s 18 = g=Ren O
S.Arridge (University College London) DOT and PAT
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Modelling in Optical Tomography

The Radiative Transfer Equation

In the presence of scattering, and with source terms g, eq.(1) becomes

(89 4 () + () o(r.8) = [ ©(3.8)o(r.8)d8 + q(r.3)

L
e = s + 1y is the attenuation coefficent

S is the scattering operator, (local, non propagating).
Method of successive approximation (Sobolev 1963) :

Har Har Foar Har Jtr

k
¢ = T*1+T*1MSST*1+...<T’1MSS) T1...]q (5)

The first term may be found from the Ray Transform, giving an
alternative equation for the collided flux

[7;1«“ - NSS] Deollided = HsS 7:;1 q (6)
~——

uncollided
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Modelling in Optical Tomography

RTE solutions
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Modelling in Optical Tomography

RTE solutions

ey 0.01 Np 1,92
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Modelling in Optical Tomography

RTE solutions
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Modelling in Optical Tomography

RTE solutions
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Modelling in Optical Tomography

RTE solutions

I, 0.04 Ny, 7 68
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Modelling in Optical Tomography

RTE solutions

M 0.05 Np, 3.6 -8
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Modelling in Optical Tomography

RTE solutions
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Modelling in Optical Tomography

RTE solutions
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Modelling in Optical Tomography

RTE solutions

g 0.08 Np 1536 5
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Modelling in Optical Tomography

Diffusion Approximation

In the Diffusion pproximation (DA), the radiance is approximated by
first order spherical harmonics only (8 = [Y; _1, Y10, Y1.1]), giving

A 1 3 .
o(r,8) ~ Ecb(r) TS J(r) (7)
where ®(r) and J(r) are the photon density and current defined as
CD(I‘) = fan ¢(r7 é)dé (8)
J(r) = fsn—1 §¢(ra é)d§ 9)

Inserting the approximation (7) into equation (4) results in a second
order PDE in the photon density

=V -5VO(r) + 1a®(r) = qo(r) =D®=qo, (10)

with k = m Equation(10) and its associated frequency and

time domain versions, including the Telegraph Equation, are the most
commonly used in DOIL.
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The Inverse Problems in Optical Tomography

Parameter Identification

Non-linear reconstruction
X = {ta, £} OF X = {41, pic} and

A (Ha) — Uiy (g
P\ K o \VUr-VU;) \x°

Durham 18th July 2016 15/47
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e PhotoAcoustics
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PhotoAcoustic Tomography

The Early Years
The Early Years...

1. 1880 Alexander Graham Bell
observes photoacoustic effect

2. 1960 Invention of the laser by
Theodore Maiman

3. 1995 First photoacoustic image of a
tissue phantom (R. Kruger)

4. 1999 First in vivo image (A. Oraevsky)

5. 2003 /n vivo non invasive image of the
mouse brain (L. Wang)
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PhotoAcoustic Tomography

Motivation

@ Optical Imaging : Pros

e High intrinsic contrast based upon optical absorption and scattering

@ Spectroscopic specificity — chemical information

e Functional imaging of physiological parameters — blood oxygenation
@ Optical Imaging : Cons

e Imaging depth/spatial resolution limited by strong optical scattering
@ Ultrasound Imaging : Pros

o Images of soft tissue anatomy

e High spatial resolution: scalable with depth 100’s um — — ~ mm
e Large penetration depth: ~ 10cm

e Physiological information via measurement of blood flow

@ Ultrasound Imaging : Cons

o Weak contrast provided by certain important targets — e.g. the
microvasculature
o Limited specificity: weak sensitivity to chemical differences
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PhotoAcoustic Tomography

PhotoAcoustic Signal Generation

ns lazer pulzes

122/ S
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| array of ultrasound

detectors
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PhotoAcoustic Tomography

PhotoAcoustic Spherical BackProjection

nz laser pulzes

(/2

IiT—T* ultrazcund array

il
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PhotoAcou

Some PAT systems

ultrasound
array probe

excitation
fi light
'\ IIQ 4)'\ fibre-optic
) bundle

excitation
light §

compuler

light Beam

clear aperture

Kruger et al. (2010) Med
Phys. 37, 6096

S.Arridge (University College Londol

fabry—perot senso

1=cannmg interrogation beam

excitation laser
pulses
scanning system

X-y scanner

Brecht et al. (2009) JBO, 14, 064007

DOT and PAT

Zhang et al (2008) Appl. Opt., 47, 561-577
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Mathematical Models
Point Detectors and the wave equation model

Initial value Problem

<02(r)v2 - 82> p(r,t) = 0 t>0,reR®
oz ) PP e
p(r,0) = T(r)ua(r)o(r)
op(r, 1) _ 0
CL G P

Data p°(rs, t) measured on 99, but model assumes propagation
beyond this, i.e. 09 is not a boundary condition
forward model

A:po(r) — p°(rs, t) t>0,rscoQ
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Mathematical Models
Acoustically Homogeneous Media and Spherical Means

In the constant speed case c¢(r) = c, the signal detected at an
observation point at time ¢ is the sum of waves arriving from a distance
r = ct.

This leads to the Spherical Mean Transform (SMT). In 3D this is stated

ME(r, 1) = 417 /82 F(r + ct8)d®s

In analogy to the Radon Transform which integrates functions over
planes, the SMT can be used as a basis for analytical inversions. In
particular the adjoint of M can be used as the basis for back
Projection and Filtered Back Projection formulae.
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PhotoAcoustic Reconstruction Methods

Filtered backprojection

Filtered Back projection formulae for SMT (Finch, Patch, Rakesh,
2006), constant speed case. Complete data on sphere radius R.
‘Universal’ Backprojection, valid for spheres, cylinders and planes (Xu
and Wang, 2005)

’ o (10 P (r p)) 2
r) = 7v . n I" <, d r/
Po(F) = o 0 (r) pdp p=|r'—r|
1 / 0 <1 0 pObS(r’,p)> 2,
h__ 1 [ 0 (10pCrp) d2r
po(r) 812 Joq On \ p Op p p=|r'—r|

where A(r') is the outward normal vector to 9. Differentiation in
space is the filtering step, and integration over spheres is the
backprojection step.

Extensions to arbitrary n > 2 in (Kunyansky 2007). More details
(Kuchment 2014).
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PhotoAcoustic Reconstruction Methods

Time Reversal

Initial value Problem

82
2v72
(75 5a)

0
p‘t:O = T
op
0ty = O
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PhotoAcoustic Reconstruction Methods

Time Reversal
Initial value Problem

52
22
(cv tz)p =0

p‘t:O = Tp,®
B,
L

Boundary value Problem (t
running backwards from T to 0)

H?
202
(cV t2>p =

0
p(l’, t)‘t:T =0
o

,O(r, t)’aQ = Obs(r37 t)
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PhotoAcoustic Reconstruction Methods

Time Reversal
Initial value Problem

82
2v72

1=670nm, $=5.7Tmd/cm*

,0‘ t=0 — r,uafb
op
0ty = O

Boundary value Problem (t

20mm x 20mm x &mm

running backwards from T to 0) xay=zsoum

82
2v72
(#v=3a) -

0
p(l’, t)‘t:T =0
o

p(r7 t)’BQ = Obs(r37 t)
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e Coupled Physics Imaging : Quantitative PhotoAcoustic Tomography
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Coupled Physics Imaging

Quantitiative PhotoAcoustic Tomography

@ Naturally occuring contrast agents
(chromphores) give rise to optical
absorption in the medium.

light
transport

coefficients p, and p, determine the
fluence distribution ¢,

OPTICAL
FORWARD

PROBLEM

“““““““““ @ 1,® — H (deposited energy).

THERMOELASTIC
COUPLING

oo T T TR @ 'H — py (pressure distribution) via
thermalisation,

|
: @ The absorption and scattering

| FORWARD
PROBLEM

acoustic
propagation &
detection

(elasticity of tissue).

@ Sensor detects PA time series p(t).

; @ py propagates as an acoustic pulse
i Cox, A. Laufer, Beard, 2012.
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Quantitative PhotoAcoustic Tomography

Optimisation Approaches

Strategy used here : fit a model of light transport to the reconstructed
data

~ A~ H 1 0DS
{fia, i1} = arg min | € := S[[H — F(a, )| [* + Rpra, 1)
Has s

where F(p,, 1l) = pa®(1a, 111) is the forward model of optical energy
absorption, and R is a regularisation term.

@ Forward model F can be based on RTE or diffusion.
@ Principle regularisation term used : Total Variation.
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Quantitative PhotoAcoustic Tomography

Error functionals

Rearranging we get
§
De (13) = = (O™ = Fluas)oid) gy + (60 0 o

<¢¢ 'U’S>L2 QxSn—1) <¢S¢*’NS>LZ(QXS"*1)

so that
o0& obs 8)h*( S
L ol )+ [ (8)0(8)08
R CaC | / H($)O(8,8)¢"(8))d5e8
8MS gn—1 sn—1.Jgn—1
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Quantitative PhotoAcoustic Tomography

Matrix Free method

Explicit construction of Jacobians is too expensive = use matrix free
method based on adjoint fields

Limited memory BFGS optimisation
true rccovcred recovered

AT ] B ey s abiarphion eoaffcient e '} B R“mtw.ﬁ—umm

If .i =,

G Trus seamering coa ficiant jrem ') O Reoved st costicent (rmem )

- )

Using 4 images from 4 illumination directions, Tikhonov regularisation
(Saratoon, Tarvainen, Cox, A., 2013)

k] D
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Forward Models
Optical Model
Diffusion Approximation (DA) is solved with Finite Element Method

(FEM). Discretisation :
pa(r) = p(r) = Z#a,/u/(r), fa = (Hats - - - HaNa)

pe(r) ~ ' ( Z e jui(r = (s )

o(r)~ o"(r) = Z¢,uj(r), ® = (dq,...,0n)

FEM solution obtained by solving

K(x)d(x; q) = b(q) & &(x,q) = K~ (x)b(q)

where K is the FEM matrix, b arises from the light source s, and
= (fia, fit,) is @ vector of optical parameters.
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Forward Models
Acoustic Model

The acoustic model is approximated with

1 0 5 1 0
——p(r,t) — ==

c2 atzp( ) ) \% p(r7 t) C2p0( )81‘
where g, is a Gaussian function approximating instantaneous heating
(or delta function). Equation (11) has an analytical solution, that can be

expressed as convolution
1 A 2
p(r.t) = /Q gpo(r’)f"{lwgf(w)G(llr— r'[l,w)}(t)dr’

where F~1{}(t) is the temporal inverse Fourier transform,
gr(w) = F{g-(1)} (w) , and

1 (1) (w % _
G(||r — ||, w)} = 1” (Elir - W”) p n=2
pexp (igllr—ri) n=3

47r||r r

g-(r,t), reR”teR (11)

is the Green’s function defined by V2G + %5 G = —4(r).
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Forward Models
Acoustic Mode - continued |

Approximating pg with base functions v, as

po(r) ~ pg(r ZPOme Po = (Po1,---,Pom)

the photoacoustic time series at detector located at dk(k =1...nk) is

M
p(dk7 t) = Z pO,me(dlﬁ t)

m=1

where

Win(F. 1) = /Q Lva()F [, @G- L)} (ar (12)

pr = Wpo
with W being formed by e.g. Gaussian quadrature integration of (12).
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Forward Models
PhotoAcoustic Model
By writing
Po,qg = VHa,qPq
and assuming « being known, the combined photoacoustic model

describing acoustic time series corresponding to optical parameters
X = (fia, i) and illumination g is then

pr = Wdiag {/1.} K~ (x)b(q).
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Forward Models
PhotoAcoustic Model
By writing
Po,qg = VHa,qPq
and assuming « being known, the combined photoacoustic model

describing acoustic time series corresponding to optical parameters
X = (fia, i) and illumination g is then

pr = Wdiag {/1.} K~ (x)b(q).
Given nq illuminations g . .. gn,, and corresponding photoacoustic

time series py.1, .. ., Pr,ny, the forward model can be written as
z=f(x),
with z = (ﬁt'17”'7ﬁt”0) e RMkXNTXNQ

and f(x) : RNatNs — RkxN7xNa given by

f(x) = (Wdiag {2} K~ (x)b(@1). ..., Wdiag {fia} K" (x)(dno))
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Inverse Problem

Bayesian Approach

Taking Bayesian approach to the photoacoustic inverse problem, and
assuming additive noise model

y=1fx)+e
where y is z = f(x) polluted by noise e,
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Inverse Problem

Bayesian Approach

Taking Bayesian approach to the photoacoustic inverse problem, and
assuming additive noise model

y=1f(x)+e

where y is z = f(x) polluted by noise e, the posterior distribution,
corresponding to additive noise model, is

m(x|y) o mx(X)me(y — (X)),
where me and 7y are the probability densities of the noise and the prior.
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Inverse Problem
Bayesian Approach

Taking Bayesian approach to the photoacoustic inverse problem, and
assuming additive noise model

y=1fx)+e
where y is z = f(x) polluted by noise e, the posterior distribution,
corresponding to additive noise model, is
m(x|y) o< mx(X)me(y — f(X)),
where me and 7y are the probability densities of the noise and the prior.
Assuming Gaussian distribution for the noise e and the prior of x

eNN’(U&re)a XNN(nX)rX)
the maximum a posteriori (MAP) estimate can be obtained as
Xuap = arg min, [[|Le(y — £(x) = ne) P + I|L(x = )| 2] .

where LoLT = 5" and Ly LT = I';" are Cholesky decompositions of
the covariance matrices.
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Inverse Problem

Bayesian Approach - continued

In addition to point estimates, such as MAP, Bayesian approach
enables approximation of the error of the estimate. One such
approximation is the credibility interval.

S.Arridge (University College London) DOT and PAT

Durham 18th July 2016 36/47



Inverse Problem
Bayesian Approach - continued

In addition to point estimates, such as MAP, Bayesian approach
enables approximation of the error of the estimate. One such
approximation is the credibility interval.
Given MAP estimate xyap, it is possible to linearize the forward model
f(x) using Taylor series as

f(x) & F(xmap) + Jraue) (X — Xmap);
is the Jacobian of f evaluated at xyap.

where Jf(XMAP)
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Inverse Problem
Bayesian Approach - continued

In addition to point estimates, such as MAP, Bayesian approach
enables approximation of the error of the estimate. One such
approximation is the credibility interval.

Given MAP estimate xyap, it is possible to linearize the forward model
f(x) using Taylor series as

f(x) &~ F(xmaP) + Jr(xyuap) (X — XMAP);
where Jf(XMAP) is the Jacobian of f evaluated at xyiap. Substituting the
linearization into the observation model
¥ = f(Xmap) + Jr(xpp) (X — Xmap) + €,
one finds posterior distribution being approximated as Gaussian, s.t.
x|y o< N(n,T),

where 7 = xusp,and T = (JFrg "0, + ")

is the approximative covariance matrix of the posterior distribution of

the original inverse problem.
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Inverse Problem
Bayesian Approach - continued

The approximative credibility interval is then
Ca = [XmaP — a0, XmapP + a0];

where o is vector of square roots of the diagonals of I', and ais 1, 2, or
3 for 68.3%, 95.5%, and 99.7% credibility intervals respectively.
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Inverse Problem
Bayesian Approach - continued

The approximative credibility interval is then
Ca = [XmaP — a0, XmapP + a0];

where o is vector of square roots of the diagonals of I', and ais 1, 2, or
3 for 68.3%, 95.5%, and 99.7% credibility intervals respectively.

It must be emphasized, that the credibility interval is dependent on the
forward model and the prior. If either the model or the prior information
is poor, then the estimates (and the credibility intervals) are bound to
be misleading.
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Simulations

The investigated domain was [-5mm,5mm|", n=2and n= 3.

11 Varied between 0.07 — 0.98mm~" and 1, between

0.75 —1.36mm~". Sound speed of ¢ = 1500 m=s was used.

The data was formed by two different illuminations. Each illumination
had light entering the investigated domain from 1-3 sides with both
illluminations covering at least 2 sides.

Acoustic detectors were located densely on 1-4 sides (2D) and 1 side
(3D) of the domain, as well as sparsely on a circle (2D). Number of
detectors was 31 - 128 (2D) and 1089 (3D).

Measurement data was simulated in grid with 372 = 1369 (2D) and
373 = 50653 (3D) nodes. Reconstructions were computed in grids with
312 =961 (2D) and 313 = 29791 (3D) nodes.

Noise was added to the simulated photoacoustic time series with
standard deviation being 5%, 1%, or 0.1% of the peak-to-peak
pressure amplitude.
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Simulations (continued)

Accurate noise statistics were assumed in the reconstructions.
Ornstein-Ohlenbeck was used for the prior with ¢ = 1mm. Prior
parameters were chosen for u, and . separately, s.t. the mean of the
prior corresponded to mean of peak-to-peak variation of parameters,

and peak-to-peak variation corresponed to mean + standard deviation
of the prior:

= 1(max+min) = 1(max- min)
77 - 2 ) 0 = 2 ’

MAP estimates were obtained in 2D and 3D for varying illumination
and acoustic detector setups. 99.7% credibility intervals were
computed for some 2D estimates.
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Simulations (2D)

ta (mm~t) () . 1y Y =
o 058 o078 Jas Jto (mm~1) il (mm-y
0.07 0.98 0.75 1.36

[

N )
N

Reconstructions for different acoustic detector configurations.
Illuminations from < + = and {} + |. Noise level 1%.
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Simulations )
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Reconstructlons and 99, 7"/( credibility intervals for 5%, 1%, and 0.1% noise.
IMTuminations from <= + = and |} + |.
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Simulations (
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Reconstructions for different illuminations. 0.1% noise. Illuminations are
DD<e+=andt+{, 2=+ Jand{, 3)<«<and].

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 42/ 47



Simulations (3D)

Reconstructions in 3D. Illuminations from three front sides and three back
sides. Noise 0.1%. Acoustic detectors on the red edge.

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 43 /47



© summary
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@ Optical Tomography is of interest because of its spectral contrast
that relate to functional activity of tissues
o Low resolution but relatively fast
e Inverse problems in parameter identification, source identification,
or both
o Multimodality systems provide complementary information
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@ Optical Tomography is of interest because of its spectral contrast
that relate to functional activity of tissues

o Low resolution but relatively fast

e Inverse problems in parameter identification, source identification,
or both

o Multimodality systems provide complementary information

@ Photoacoustic imaging : seeing optical contrast with high
resolution

e an example of “Coupled Physics Imaging”, not just data fusion

o large variety of systems with different resolution/speed/depth
penetration trade off

Many challenges remain, in solving both the acoustic and optical
inverse problems together : “Quantitative PhotoAcoustic Tomography”.
Next step : combine numerical methods (time -reversal) with optical
models (radiative transport equation).

The goal is to get high resolution, dynamic and spectrally resolved
quantitiative images (5D).
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