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Part 1: Negative index materials



Negative index materials (NIMs)

Definition: NIMs are artificial structures where the refractive index has a
negative value over some frequency range.

Figure: Left: RP-photonics; Right: Wikipedia.

Highlights of the development

1 Veselago (UFN 64) investigated theoretically NIMs.

2 Nicorovici, McPhedran, & Milton (PRB 94) and Pendry (PRL 00).

3 Shelby et al. (Science 01) confirmed experimentally.



Mathematical settings

Electromagnetic setting: {
∇× E = ikµH,

∇×H = −ikεE+ j.

Negative index materials: ε < 0 and µ < 0.

Acoustic setting:
div(A∇u) + k2Σu = f.

Negative index materials: A < 0 and Σ < 0.

Remarks:

1 The ellipticity and compactness might be lost.

2 Localized resonance might appear.

3 Many surprising interesting properties.
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Part 2: Two examples



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



First example: Nicorovici, McPhedran, & Milton’s result, PRB 94

Consider

div(Aδ∇uδ) = f in R2 where

Aδ =


1 in R2 \ Br2

,
−1 − iδ in Br2

\ Br1
,

1 in Br1
.

Theorem

If supp f ∩ Br3
= Ø where r3 = r2

2/r1, then

uδ → U in R2 \ Br3
, where ∆U = f in R2.

I

r
1

r
2

(−1 − i δ)II

Some questions:

1 Why do the phenomena hold for r3 = r2
2/r1?

2 Is it necessary that the geometry is radial symmetric?

3 What happens in the finite frequency case (k 6= 0) and in three dimensions?



Second example: Ng. & Loc Nguyen, M2AN 15

Set

εδ =

{
−1 − iδ in B1,

1 otherwise.

Theorem

Let d = 2, R > 1, g ∈ H1/2(∂BR) and uδ ∈ H1(BR) be s.t.

div(εδ∇uδ) = 0 in BR and uδ = g on ∂BR.

Case 1: g is compatible. Then uδ → u0 weakly in H1(BR) as δ→ 0.
Case 2: g is not compatible. Then limδ→0 ‖uδ‖H1(BR) = +∞; however,

uδ → v weakly in H1(B1/R), where

{
∆v = 0 in B1/R,

v(x) = g(x/|x|2) on ∂B1/R.

Moreover,

lim sup
δ→0

δ

∫
BR

|∇uδ|2dx < +∞, ∀g ∈ H1/2(∂BR).

Compatibility condition: v can be extended as a harmonic function in B1.
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Second example contd.

Recall

εδ =

{
−1 − iδ in B1,

1 otherwise.

Theorem

Let d = 2, and f ∈ L2
c(R2) with supp f∩B1 = Ø, and uδ ∈W1(R2) be the unique

solution to
div(εδ∇uδ) = f in R2,

Case 1: f is compatible. Then uδ → u0 weakly in H1
loc(R2) as δ→ 0.

Case 2: f is not compatible. Then, for any open O,

0 < lim inf
δ→0

δ2

∫
O

|∇uδ|2dx 6 lim sup
δ→0

δ2

∫
O

|∇uδ|2dx < +∞.

Compatibility condition: ∃ v s.t. ∆v = f in R2 \ B1 and v = ∂rv = 0 on ∂B1.
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Part 3: Superlensing using complementary
media



Superlensing using complementary media - State of the art

• Veselago’s lens (slab lens): Veselago UFN 64 (ray theory), Pendry PRL 00
(Maxwell’s equations).

Figure: Left: Veselago’s lens. Right: Yang et al.’s experiment Nature 08.

• Cylindrical lens: Nicorovici, McPhedran, Milton PRB 94 (quasistatic regime),
Pendry OE 03 (finite frequency regime).
• Spherical lens: Ramakrishna & Pendry PRE 04 (finite frequency regime).



State of the art contd.

• Standard proposal:

Cylindrical lens: To magnify m times “an object” in Br0
, one puts a

plasmonic structure −I in Br2
\ Br0

with r2
2/r

2
0 = m.

Spherical lens: To magnify m times “an object” in Br0
, one puts a

plasmonic structure −(r2
2/|x|

2)I in Br2
\ Br0

with r2
2/r

2
0 = m.

r
2

r
0

• Known results : “Object”: a constant isotropic object, homogeneous medium
via separation of variables.
• Comments: The structure in 3d is not easy to predict. This was done by
searching in the set of radial isotropic structures.
• Theory confirmed for arbitrary objects: Acoustic setting: Ng. AIHP 15,
Electromagnetic setting: Ng. 15. Related but different schemes are used, the
modification is necessary.
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The two dimensional quasistatic regime, Ng, AIHP 15

Magnified region: Br0
; Magnification: m > 1.

The superlensing device contains two layers:

1 The first one −I in Br2
\ Br1

2 The second (new) one I in Br1
\ Br0

.

Here r2 = mr0 and r1 = m1/2r0. With loss, the
medium is

sδA =


1 · I in Ω \ Br2

,
(−1 − iδ) · I in Br2

\ Br1
,

1 · I in Br1
\ Br0

,
1 · a in Br0

.

−I

II a(x)

r
2

r
1

r
0

two layers of superlens object magnified

Theorem

Let f ∈ L2(Ω) be s.t. supp f ⊂ Ω \ Br3
with r3 = r2

2/r1

and let uδ ∈ H1
0(Ω) be s.t. div(sδA∇uδ) = f. Then

uδ → û weakly in H1(Ω \ Br3
) as δ→ 0,

where û ∈ H1
0(Ω) is s.t. div(Â∇û) = f in Ω.

c(x/m)

m r
0

a(x/m)

m r
0

I
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c(x/m)

m r
0

a(x/m)

m r
0

I



The two dimensional quasistatic regime, Ng, AIHP 15

Magnified region: Br0
; Magnification: m > 1.

The superlensing device contains two layers:

1 The first one −I in Br2
\ Br1

2 The second (new) one I in Br1
\ Br0

.

Here r2 = mr0 and r1 = m1/2r0. With loss, the
medium is

sδA =


1 · I in Ω \ Br2

,
(−1 − iδ) · I in Br2

\ Br1
,

1 · I in Br1
\ Br0

,
1 · a in Br0

.

−I

II a(x)

r
2

r
1

r
0

two layers of superlens object magnified

Theorem

Let f ∈ L2(Ω) be s.t. supp f ⊂ Ω \ Br3
with r3 = r2

2/r1

and let uδ ∈ H1
0(Ω) be s.t. div(sδA∇uδ) = f. Then
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Proof.

We first consider the case a = I in
Br0

. Define

u1(x
∗) = u(x), x∗ = F(x) = r2

2x/|x|
2.

We have ∂Br3 = F(∂Br1
) and

div(M∇u1) = 0 in R2 \ Br2
where

M = 1 in Br3
\ Br2

,−1 in R2 \ Br3
.

Thus

∆u1 = ∆u = 0 in Br3
\ Br2

u1 − u = ∂ru1 − ∂ru
∣∣∣
+
= 0 on ∂Br2

.

By the unique continuation principle,

u1 = u in Br3
\ Br2

.

1 −1 1

r
1

r
2

u

u
1

F−1

1
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Set û =

{
u in Ω \ B̄r3

u2 in Br3
.

, then ∆û = f in Ω.

The general case: div(Â∇u2) = 0 in Br3
and Â = I in Br3

\ Br1
. Therefore

u2 = u1 in Br2
\ Br1

and the conclusion follows.

Remark: From û, one can compute u (= u0): which is unique.
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{
u in Ω \ B̄r3

u2 in Br3
.
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Proof cont. and comments

Lemma

Let d = 2, 3, g ∈ H−1(Ω), A be uniformly elliptic in Ω. ∃!vδ ∈ H1
0(Ω) to

div(sδA∇vδ) = g in Ω.

Moreover,
‖vδ‖H1(Ω) 6 Cmax{1, 1/δ}‖g‖H−1(Ω).

Set vδ = uδ − u0. Then

div(sδA∇vδ) = div(sδA∇uδ) − div(sδA∇u0) = div
[
(s0 − sδ)A∇u0

]
.

It follows that ‖vδ‖H1(Ω) 6 C; hence ‖vδ‖H1(Ω) 6 C. The conclusion follows
from a standard compactness argument.
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What happens in the general case?

Transformations optics

Lemma

Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 and T : Ω2 \Ω1 → Ω3 \Ω2. Fix u defined in Ω2 \Ω1 and
set v = u ◦ T−1. We have

div(a∇u) + σu = f in Ω2 \Ω1 iff div(T∗a∇v) + T∗σv = T∗f in Ω3 \Ω2.

If T(x) = x on ∂Ω2 then

v = u, T∗a∇v · η1 = −a∇u · η1 on ∂Ω2.

T∗A(y) =
DT(x)A(x)DTT (x)

J(x)
, T∗Σ(y) =

Σ(x)

J(x)
, and T∗f(y) =

f(x)

J(x)
,

where x = T−1(y) and J(x) = |detDT(x)|.

Reflecting complementary media : T∗a = a and T∗σ = σ (Ng. TRANS 15).
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Some comments

1 Similar facts hold for the Maxwell equations : Ng. 15.

2 The green layer can be thinner (Ng. AIHP 15) but necessary (Ng. 16).
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Theorem (Ng. 16)

Let d = 2 and f ∈ L2(Ω) be s.t. supp f ∩ Br3
= Ø where r3 = r2

2/r1. We have

uδ → û in Ω \ Br3
as δ→ 0,

where û ∈ H1
0(Ω) be s.t. ∆û = f in Ω.
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uδ → û in Ω \ Br3
as δ→ 0,

where û ∈ H1
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Part 4: Cloaking using complementary media



Cloaking using complementary media

1 Suggestion: Lai et. al. PRL 09.
Difficulty: Localized resonance + loss of ellipticity.

Figure: Lai et. al. PRL 09.

2 Theory confirmed: Ng. AIHP 15, Ng.-L-Nguyen TRANS B 15 (for a class
of inspired schemes). Tools : removing localized singularity technique +
three sphere inequality + reflecting technique.
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Our proposal

Our construction: 2 parts

The first one is to cancel the effect of the cloaked region.

The second part is to fill the space which ”disappears” from the
cancellation.

For the first part, we slightly change the strategy of Lai et. al.’s. We
consider Br3

\ Br2
as the cloaked region in which the medium is

characterised by

b =

{
a in B2r2

\ Br2
,

I in Br3
\ B2r2

.

The complementary media in Br2
\ Br1

is given by

−
(
F−1
)
∗b,

Here F : Br2
\ B̄r1

→ Br3
\ B̄r2

is the Kelvin’s transform w.r.t. ∂Br2
, i.e.,

F(x) = r2
2x/|x|

2.

Here is the construction for the second part in Br1(
r2

3/r
2
2

)d−2
I
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Mathematics setting

To study the problem correctly, one needs to add some loss to the medium.
With the loss, the medium is characterized by sδA, where

A =



b in Br3
\ Br2

,

F−1
∗ b in Br2

\ Br1
,(

r2
3/r

2
2

)d−2

I in Br1
,

I otherwise,

and

sδ =

{
−1 + iδ in Br2

\ Br1
,

1 otherwise.



Statement of the result

Let Ω be a smooth open subset of Rd (d = 2, 3) such that Br3
⊂⊂ Ω. Given

f ∈ L2(Ω), let uδ, u ∈ H1
0(Ω) be resp. the unique solution to

div(sδA∇uδ) = f in Ω, (0.1)

and
∆u = f in Ω. (0.2)

Theorem (Ng.)

Let d = 2, 3, f ∈ L2(Ω) with supp f ⊂ Ω \ Br3
. There exists m > 0 s.t. if

r3 > mr2 then
uδ → u weakly in H1(Ω \ Br3

) as δ→ 0.

For an observer outside Br3
, the medium in Br3

looks like I: one has cloaking.



Sketch of the proof

We have
‖uδ‖H1(Ω) 6 Cδ

−1/2‖f‖1/2

L2(Ω)
‖uδ‖1/2

L2(Ω\Br3 )
(∼ δ−1/2) (0.3)

Let u1,δ be the refl. of uδ through ∂Br2
and u2,δ be the refl. of u1,δ through

∂Br3
(by F and G, the Kelvin’s transform w.r.t. ∂Br2

and ∂Br3
). We have

div(b∇u1,δ) = 0 in Br3
\ Br2

and ∆u2,δ = 0 in Br3
.

If
uδ − u1,δ would be small on ∂Br3

,

then, ∆W̃δ = f+ lower order term, where W̃δ =

{
uδ in Ω \ Br3

u2,δ in Br3

. Hence

W̃δ → u. The proof would be complete. This is not true in general !!!

How to deal with this: three spheres inequality + removing
localized singularity technique
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Sketch of the proof

We have
‖uδ‖H1(Ω) 6 Cδ

−1/2‖f‖1/2

L2(Ω)
‖uδ‖1/2

L2(Ω\Br3 )
(∼ δ−1/2) (0.4)

Recall
div(b∇u1,δ) = 0 in Br3

\ Br2
and ∆u2,δ = 0 in Br3

.

Three spheres inequality, if div(A∇V) = 0 in Br3
, then

‖V‖L2(∂B2r2
) 6 C‖V‖αL2(∂Br2 )

‖V‖1−α
L2(∂Br3 )

.

Since uδ = u1,δ and ∂ruδ = (1 − iδ)∂ru1,δ on ∂Br2
, it follows that if r3 >> r2,

uδ − u1,δ is small on ∂B2r2
.

Define

Wδ =


uδ in Ω \ Br3

,
u2,δ − (u1,δ − uδ) in Br3

\ B2r2
,

u2,δ in B2r2
.

Then ∆Wδ = f in Ω \ (∂Br3
∪ ∂B2r2

), [Wδ] and [A∇Wδ · ν] are small on
∂Br3

∪ ∂B2r2
and Wδ = uδ in Ω \ Br3

. The conclusion follows. �
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Negative index materials.

Two interesting examples.

Superlensing using complementary media

Cloaking using complementary media.
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