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Outline of the presentation

A concise review of features of the neoclassical theory - balanced
charges theory (BCT).

Lagrangian framework and field equations

Choosing internal nonlinearity by requiring the Planck-Einstein
energy-frequency relation: E = h̄ω (E = χω) to be exact in the
non-relativistic approximation.

Derivation on the logarithmic nonlinearity from the Planck-Einstein
energy-frequency relation: E = h̄ω.

A theorem of multiharmonic solutions for a system of many charges
and the Planck-Einstein energy-frequency relation: E = h̄ω.

The Schrödinger wave mechanics vs the neoclassical theory.

Comparison of the neoclassical theory with the QM.

Uncertainty relations in QM and in the neoclassical theory.
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Neoclassical theory, "balanced charges" theory (BCT)

The BCT theory is a relativistic Lagrangian theory. It is a single
theory for all spatial scales: macroscopic and atomic.

Balanced charge is a new concept for an elementary charge described
by a complex or spinor valued wave function over four dimensional
space-time continuum.

A b-charge does not interact with itself electromagnetically.

Every b-charge has its own elementary EM potential and the
corresponding EM field. It is naturally assigned a conserved
elementary 4-current via the Lagrangian.

B-charges interact with each other only through their elementary EM
potentials and fields.

The field equations for the elementary EM fields are exactly the
Maxwell equations with the elementary conserved currents.

Force densities acting upon b-charges are described exactly by the
Lorentz formula.
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New EM features of the neoclassical theory (BCT)

An elementary charge in the BCT is always a material wave that can
acquire particle properties when its energy is localized. This wave
function does not have a probabilistic interpretation as in QM, but it
can be interpreted as a charge “cloud”.

The coexistence of wave and particle properties in the BCT is
manifested through different regimes for the charge wave function.
Namely, an elementary charge is in a particle-like state when its
energy is well localized, and it is in a wave state when its energy is
well spread out in the space.

Marked difference with the QM duality concept where wave properties
are bound to the QM probabilistic aspects.

The balanced charge is neither a point charge as in classical EM
theory and in quantum mechanics, nor is it a distributed charge with
a fixed size and geometry as in the Lorentz—Abraham model.
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New EM features of the neoclassical theory (BCT)

Probabilistic aspects of the theory may arise in it effectively through
complex nonlinear dynamical evolution.

The neoclassical theory has a new fundamental spatial scale - the size
of a free electron. Its currently assesed value is 100 Bohr radii - 5 nm.

Every elementary charge has an individual wave function over
four-dimensional space-time continuum, and there is no configuration
space as in QM.

There is no a single EM field as independent entity, instead every
elementary charge has its own elementary EM potentials A`µ and
corresponding EM fields F `µν.

EM energy is an energy of interaction only defined for any pair of
b-charges. The interaction energy density can be positive or negative.
The later is analogous to the negative sign of the electrostatic energy
for two classical point charges of opposite signs.

Mechanism of negative radiation for certain prescribed currents.
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More on EM features of the neoclassical theory (BCT)

The BCT theory accounts for the both coherent (wave) and
incoherent (particle) properties of the charged matter.

The coherent properties are accounted, in particular, in the BCT
Hydrogen atom (HA) which has frequency spectrum matching the
same for Schrodinger HA with suffi cient accuracy.

Incoherent properties are accounted, in particular, by the Newton
equations with Lorentz forces as an approximation in the case when
charges are well separated and move with nonrelativistic velocities.

If a b-charge is in a wave-corpuscle state then the both coherent and
incoherent properties are present, namely, there is the de Broglie wave
factor manifesting the wave properties and the wave function
maintain its spatially localized shape as a particle-like object.
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Lagrangian Field Framework, Particle via Field

Lagrangian density, Variational principles

L(q` (x) , ∂µq` (x) , x), µ = 0, 1, 2, 3

↙ ↘
Euler-Lagrange Field

equations

∂L
∂q` − ∂µ

∂L
∂q`,µ

= 0

Noether theorem: conservation laws
via symmetries

∂µJ
µ
r = 0

↓
Energy-momentum (EnM) conservation,

EnM symmetry and the concept of particle (Planck)

∂µT µν = − ∂L
∂xν
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Structure of general energy-momentum tensor
T µν

General energy-momentum tensor structure: the energy density u, the
momentum and the energy flux pj and sj , the stress tensor σji

T µν =


u cp1 cp2 cp3

c−1s1 −σ11 −σ12 −σ13
c−1s2 −σ21 −σ22 −σ23
c−1s3 −σ31 −σ32 −σ33

 .

Conservation laws as the motion equations

∂tpi = ∑
j=1,2,3

∂jσji −
∂L
∂x i

, where pi =
1
c
T 0i , σji = −T ji , i , j = 1, 2, 3,

∂tu + ∑
j=1,2,3

∂j sj = −
∂L
∂t

, where u = T 00, si = cT i0 = c2pi .
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Neoclassical theory, electrodynamics of balanced charges
A system of N elementary b-charges

(
ψ`,A`µ

)
, 1 ≤ ` ≤ N.

ψ` is the `-th b-charge wave function (no the configuration space as
in the QM!), A`µ and F `µν = ∂µA`ν − ∂νA`µ are its elementary EM
potential and field (no the single EM field as in the CEM!).
The action upon the `-th charge by all other charges is described by a
single EM potential and field:

A`µ6= = ∑
`′ 6=`

A`
′µ, A`µ6= =

(
ϕ`6=,A`6=

)
, F `µν

6= = ∑
`′ 6=`

F `
′µν,

F `µν = ∂µA`ν − ∂νA`µ.

The total EM potential Aµ and field Fµν:

Aµ = ∑
1≤`≤N

A`µ, Fµν = ∑
1≤`≤N

F `µν.

The total EM field is just the sum of elementary ones, it has no
independent degrees of freedom which can carry EM energy.
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Lagrangian for many interacting b-charges
Lagrangian for the system of N b-charges:

L
({

ψ`, ψ`;µ

}
,
{

ψ`∗, ψ`∗;µ

}
,A`µ

)
=

N

∑
`=1

L`
(

ψ`, ψ`;µ, ψ`∗, ψ`∗;µ

)
+ LBCT,

LBCT = LCEM −Le, LCEM = −
FµνFµν

16π
, Le = − ∑

1≤`≤N

F `µνF `µν

16π
,

where L` is the Lagrangian of the `-th bare charge, and the covariant
derivatives are defined by the following formulas

ψ`;µ = ∂̃`µψ`, ψ`∗;µ = ∂̃`µ∗ψ`∗,

∂̃`µ = ∂µ +
iq`A`µ6=

χc
, ∂̃`µ∗ = ∂µ −

iq`A`µ6=
χc

.

Covariant differentiation operators ∂̃µ and ∂̃∗µ provide for the
"minimal coupling" between the charge and the EM field.
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Lagrangian for many interacting b-charges
EM part LBCT can be obtained by the removal from the classical EM
Lagrangian LCEM all self-interaction contributions

LBCT = − ∑
{`,`′}:`′ 6=`

F `µνF `
′

µν

16π
= − ∑

1≤`≤N

F `µνF `6=µν

16π
.

The "bare" charge Lagrangians (nonlinear Klein-Gordon) L` are

L`
(

ψ`, ψ`;µ, ψ`∗, ψ`∗;µ

)
=

χ2

2m`

{
ψ`∗;µ ψ`;µ − κ`2ψ`∗ψ` − G `

(
ψ`∗ψ`

)}
,

G ` is a nonlinear internal-interaction function describing action of
internal non-electromagnetic cohesive forces (new physics);
m` > 0 is the charge mass; q` is the value of the charge;
χ > 0 is a constant similar to the Planck constant h̄ = h

2π and

κ` =
ω`

c
=
m`c

χ
, ω` =

m`c2

χ
.
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Euler-Lagrange field equations: elementary wave equations

Elementary wave equations (nonlinear Klein-Gordon)

[
∂̃`µ∂̃`µ + κ`2 + G `′

(∣∣∣ψ`∣∣∣2)]ψ` = 0, ∂̃`µ = ∂µ +
iq`A`µ6=

χc
,

and similar equations for the conjugate ψ∗`.

From the gauge invariance via the Noether theorem we get
elementary conserved currents,

J`ν = −i
q`

χ

(
∂L`

∂ψ`;ν
ψ` − ∂L`

∂ψ∗`;ν
ψ∗`
)
= −c

∂L`

∂A`6=ν

,

with the conservation laws

∂νJ`ν = 0, ∂tρ
` +∇ · J` = 0, J`ν =

(
ρ`c, J`

)
.
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Euler-Lagrange field equations: elementary Maxwell
equations

Elementary Maxwell equations

∂µF `µν =
4π

c
J`ν,

or in the familiar vector form

∇ · E` = 4π$`, ∇ ·B` = 0,

∇× E` + 1
c

∂tB` = 0, ∇×B` − 1
c

∂tE` =
4π

c
J`.

the normalization condition cosistent with the charge conservation in
the non-relativistic case takes the form∫

ρ` dx = const = q`, or
∫

ψ`ψ
∗
` dx = 1,
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Euler-Lagrange field equations: charge and current
densities

Elementary currents are just as in QM:

J`ν = −
q`χ

∣∣ψ`∣∣2
m`

(
Im

∂νψ`

ψ`
+
q`A`ν6=

χc

)
,

or in the vector form

ρ` = −
q`
∣∣ψ`∣∣2
m`c2

(
χ Im

∂tψ
`

ψ`
+ q`ϕ`6=

)
,

J` =
q`
∣∣ψ`∣∣2
m`

(
χ Im

∇ψ`

ψ`
−
q`A`6=

c

)
.
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Single relativistic charge and the nonlinearity
Lagrangian (nonlinear Klein-Gordon)

L0 =
χ2

2m

{∣∣∂̃tψ∣∣2
c2

−
∣∣∇̃ψ

∣∣2 − κ20 |ψ|2 − G (ψ∗ψ)
}

.

Without EM self-interaction L0 does not depend on the potentials ϕ,
A! Though we can still find the potentials based on the elementary
Maxwell equations they have no role to play and carry no energy.
Rest state of the b-charge

ψ (t, x) = e−iω0t ψ̊ (x) , ω0 =
mc2

χ
= cκ0,

ϕ (t, x) = ϕ̊ (x) , A (t, x) = 0,

where ψ̊ (|x|) and ϕ̊ = ϕ̊ (|x|) are real-valued radial functions, and we
refer to them, respectively, as form factor and form factor potential.
Rest charge equations:

−∇2ψ̊+ G ′
(∣∣ψ̊∣∣2) ψ̊ = 0, −∇2 ϕ̊ = 4π

∣∣ψ̊∣∣2 .
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Nonlinearity, charge equilibrium equation and its size

Charge equilibrium equation for the resting charge:

−∇2ψ̊+ G ′
(∣∣ψ̊∣∣2) ψ̊ = 0.

It signifies a complete balance of the two forces: (i) internal elastic
deformation force −∆ψ̊; (ii) internal nonlinear self-interaction
G ′
(
|ψ̊|2

)
ψ̊.

We pick the form factor ψ̊ considering it as the model parameter and
then the nonlinear self interaction function G is determined based on
the charge equilibrium equation .

We integrate the size of the b-charge into the model via size
parameter a > 0:

G ′a (s) = a
−2G ′1

(
a3s
)

, where G ′ (s) = ∂sG (s) .
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Choosing internal-interaction nonlinearity
There is a certain degree of freedom in choosing the form factor and
the resulting nonlinearity.
The proposed choice is justified by its unique physically sound
property: the energies and the frequencies of the time-harmonic
states of the Hydrogen atom satisfy exactly the Einstein-Planck
energy-frequency relation: E = h̄ω (E = χω).
The form factor is Gaussian and defined by

ψ̊ (r) = Cg e−r
2/2, Cg =

1
π3/4 ,

implying

∇2ψ̊ (r)
ψ̊ (r)

= r2 − 3 = − ln
(

ψ̊
2
(r) /C 2g

)
− 3.

ϕ̊ (x) = q
∫

R3

∣∣ψ̊ (y)∣∣2
|y− x| dy
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Logarithmic internal-interaction nonlinearity and its
Gaussian form factor

Consequently, the nonlinearity reads

G ′ (s) = − ln
(
s/C 2g

)
− 3,

implying

G (s) = −s ln s + s
(
ln

1
π3/2 − 2

)
.

and we call it the logarithmic nonlinearity.

The nonlinearity explicit dependence on the size parameter a > 0 is

G ′a (s) = −a−2 ln
(
a3s/C 2g

)
− 3.
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Nonrelativistic BCT Lagrangian and its Field Equations
Non-relativistic Lagrangian

L̂0
({

ψ`
}N
`=1

,
{

ϕ`
}N
`=1

)
=

∣∣∇∑` ϕ`
∣∣2

8π
+∑

`

L̂`0
(

ψ`, ψ`∗, ϕ
)

,

L̂`0 =
χi
2

[
ψ`∗∂tψ

` − ψ`∂tψ
`∗
]
− χ2

2m`

{∣∣∣∇̃`exψ`
∣∣∣2 + G ` (ψ`∗ψ`

)}
−

−q`
(

ϕ 6=` + ϕex

)
ψ`ψ`∗ −

∣∣∇ϕ`
∣∣2

8π
,

where Aex (t, x) and ϕex (t, x) are potentials of external EM fields.
The Euler-Lagrange field (non-linear Schrodinger) equations

iχ∂tψ
` = − χ2

2m`

(
∇̃`ex

)2
ψ`+q`

(
ϕ 6=` + ϕex

)
ψ`+

χ2

2m`

[
G `a
]′ (∣∣∣ψ`∣∣∣2)ψ`,

∇2ϕ` = −4πq`
∣∣∣ψ`∣∣∣2 , ` = 1, ...,N.
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Planck-Einstein energy-frequency relation and the
nonlinearity

Let us consider now multiharmonic solutions

ψ` (t, x) = e−iω`tψ` (x) , ϕ` (t, x) = ϕ` (x) ,

1
4π
∇2ϕ` = −q`

∣∣∣ψ`∣∣∣2 , or ϕ` (t, x) = q`
∫

R3

∣∣ψ`∣∣2 (t, y)
|y− x| dy.

Then {ψ` (x)}
N
`=1 satisfy the nonlinear eigenvalue problem

χω`ψ` +
χ2

2m`
∇2ψ` − q`ϕ 6=`ψ` −

χ2

2m`
G ′
`

(
|ψ`|

2
)

ψ` = 0.

This problem may have many solutions; every solution {ψ`}
N
`=1

determines a set of frequencies {ω`}N`=1 and energies {E0`}
N
`=1:

E0` =
∫
q`
∣∣∣ψ`∣∣∣2 ϕ 6=` dx+

∫
χ2

2m`

{∣∣∣∇ψ`
∣∣∣2 + G ` (∣∣∣ψ`∣∣∣2)} dx.
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Planck-Einstein energy-frequency relation and the
nonlinearity

We seek nonlinearities G ` such that any two solutions {ψ`}
N
`=1,{

ψ′`
}N
`=1 satisfy Planck-Einstein frequency-energy relation:

χ
(
ω` −ω′`

)
= E0` − E′0`, ` = 1, ...,N.

Based on the nonlinear eigenvalue equations and the charge
normalization condition ‖ψ`‖ = 1 we obtain an integral
representation for the frequencies ω`:

χω` =
∫ [

χ2

2m`
|∇ψ`|

2 dy+ q`ϕ 6=` |ψ`|
2 +

χ2

2m`
G ′`
(
|ψ`|

2
)
|ψ`|

2
]

dy.

Comparing the above with the integral for E0` we see that

χω` − E0` =
χ2

2m`

∫ [
G ′`
(
|ψ`|

2
)
|ψ`|

2 − G`
(
|ψ`|

2
)]

dy.
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Planck-Einstein energy-frequency relation and the
nonlinearity

Consequently, we obtain for any two solutions{ψ`}
N
`=1 ,

{
ψ′`
}N
`=1:

χ
(
ω` −ω′`

)
−
(
E0` − E′0`

)
=

=
χ2

2m`

∫
G`
(∣∣ψ′`∣∣2)− G ′` (∣∣ψ′`∣∣2) ∣∣ψ′`∣∣2 dy−

− χ2

2m`

∫
G`
(
|ψ`|

2
)
− G ′`

(
|ψ`|

2
)
|ψ`|

2 dy.

Observe that for the above to hold it is suffi cient that for every |ψ`|
2

with ‖ψ`‖ = 1, there exists constants C` such that∫ [
G`
(
|ψ`|

2
)
− G ′`

(
|ψ`|

2
)
|ψ`|

2
]

dy = C`.
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Planck-Einstein energy-frequency relation and the
nonlinearity

The previous integral identities will hold if the following differential
equations hold for some constants KG` :

s
d
ds
G` (s)− G` (s) = KG`s.

The above equation together with the normalization condition
‖ψ`‖ = 1 yield

χω`−E0` =
χ2

2m`

∫ [
G ′`
(
|ψ`|

2
)
|ψ`|

2 − G`
(
|ψ`|

2
)]

dy = − χ2

2m`
KG` ,

implying the Planck-Einstein energy-frequency relation.
Solving the above differential equations we obtain the following
explicit formula

G` (s) = KG`s ln s + C`s.

yielding for KG` < 0 exactly the logarithmic nonlinearity
corresponding to the Gaussian factor.
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Planck-Einstein energy-frequency relation and the
nonlinearity

For the proper choice of constants KG` we obtain

G` (s) = G`,a (s) = −
1

(a`)2
s ln s +

1

(a`)2
s
(
ln

1
π3/2 − 2− 3 ln a

)
,

where a` is the size parameter for `-th charge.

If KG = 0 then G`
(
|ψ`|

2
)
is quadratic and the eigenvalue equations

turn into the linear Schrödinger equations for which fulfillment of the
Planck-Einstein relation is a well-known fundamental property.

It is remarkable that the logarithmic nonlinearity which is singled out
by the fulfillment of the Planck-Einstein relation has a second crucial
property: it allows for a Gaussian localized soliton solution.

The above arguments continue to hold if there is an external
time-independent electric field.
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Multiharmonic solutions for a system of many charges

Field equations without external fields

iχ∂tψ
`+

χ2

2m`
∇2ψ`− q`ϕ 6=`ψ` =

χ2

2m`
G ′`

(∣∣∣ψ`∣∣∣2)ψ`, ` = 1, ...,N,

ϕ 6=` = ∑
`′ 6=`

ϕ`,
1
4π
∇2ϕ` = −q`

∣∣∣ψ`∣∣∣2 .

The total conserved energy

E = ∑
`

E0` + EBCT

E0` =
1
2

∫
q`
∣∣∣ψ`∣∣∣2 ϕ 6=` dx+

∫
χ2

2m`

{∣∣∣∇ψ`
∣∣∣2 + G ` (∣∣∣ψ`∣∣∣2)} dx.

where EBCT is the energy of EM fields, and E0` is `-th charge energy
in the system’s field as it was determined before.
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Multiharmonic solutions for a system of many charges

For a single charge E0` = E` = E . In the general case N ≥ 2 the
total energy E does not equal the sum of E0`, and the difference
between the sum of E0` and the total energy E coincides with the
total energy EBCT of EM fields.

We assume

ψ` ∈ Ξ, where Ξ =
{

ψ ∈ H1
(
R3) : ‖ψ‖2 =

∫
|ψ|2 dx = 1

}
.
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Multiharmonic solutions for a system of many charges

Let us consider now multiharmonic solutions

ψ` (t, x) = e−iω`tψ` (x) , ϕ` (t, x) = ϕ` (x) .

1
4π
∇2ϕ` = −q`

∣∣∣ψ`∣∣∣2 , or ϕ` (t, x) = q`
∫

R3

∣∣ψ`∣∣2 (t, y)
|y− x| dy.

Then ψ` (x) satisfy the following nonlinear eigenvalue problem,
` = 1, ...,N

χω`ψ` +
χ2

2m`
∇2ψ` − q`ϕ 6=`ψ` −

χ2

2m`
G ′
`

(
|ψ`|

2
)

ψ` = 0.
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Multiharmonic solutions for a system of many charges

Theorem

Let G`(s), ` = 1, ...,N be the logarithmic functions with a = a`. Suppose{
ψσ
`

}N
`=1 ∈ ΞN , σ ∈ Σ is a set of solutions to the nonlinear eigenvalue

problem with the corresponding frequencies
{

ωσ
`

}N
`=1 and finite energies{

Eσ
0`

}N
`=1. Then

E0` = χω` +
χ2

2 (a`)2m`
.

and any two solutions ψσ
` = ψ` and ψσ1

` = ψ′` with σ, σ1 ∈ Σ satisfy the
Planck-Einstein relation

χ
(
ωσ
` −ωσ1

`

)
= Eσ

0` − E
σ1
0` , ` = 1, ...,N.
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Schrödinger wave mechanics
The Schrödinger wave theory was inspired by de Broglie ideas on
phase waves. Schrödinger’s approach to the construction of wave
mechanics is rooted in a deep inner connection of the Hamilton
theory and propagation of waves:
"The inner connection between Hamilton’s theory and the process of
wave propagation is anything but a new idea. It was not only well
known to Hamilton, but it also served him as the starting-point for his
theory of mechanics, which grew out of his Optics of
Nonhomogeneous Media. Hamilton’s variation principle can be shown
to correspond to Fermat’s Principle for a wave propagation in
configuration space (q-space), and the Hamilton—Jacobi equation
expresses Huygens’Principle for this wave propagation...".
He makes then an observation, critical to his entire theory, that
geometrical optics by itself is just an approximation to the undulatory
(wave) theory, and states that a proper wave equation in the
configuration space must replace the fundamental equations of
mechanics.
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Schrödinger wave mechanics
Schrödinger’s grand vision of the integration of quantum phenomena
into the wave theory was that these phenomena, including line
spectra, should arise naturally as “proper” states and “proper” values
(resonances, eigenvalues) of a certain wave equation with boundary
conditions. Schrödinger wave mechanics is constructed based on the
classical point particle Hamiltonian

E = H (p, x) =
p2

2m
+ V (x)

via the quantization procedure

p→ −i h̄∇, E → i h̄
∂

∂t
,

yielding the celebrated Schrödinger equation

i h̄
∂ψ

∂t
= − h̄

2∇2ψ
2m

+ V (x)ψ.
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Schrödinger wave mechanics vs the neoclassical theory

The quantization agrees with Bohr’s correspondence principle, which
requires a correspondence between quantum and classical mechanics
in the limit of large quantum numbers

Our approach works other way around. We introduce the Lagrangian
and the corresponding field equations as a fundamental basis and
deduce from them the classical Newtonian mechanics as a certain
approximation

To appreciate the difference consider a system of N charges. In
wave-corpuscle mechanics there are N wave functions and the EM
fields defined over the same 3 dimensional space, whereas the same
system of N charges in the Schrödinger wave mechanics has a single
wave function defined over a 3N-dimensional "configuration space".
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Born’s objections to Schrodinger’s material wave
interpretation of particles

Born’s objections to Schrodinger’s material wave interpretation of
particles which "lands us in grave diffi culties":
”To begin with, Schrodinger attempted to interpret corpuscles and
particularly electrons, as wave packets. Although his formulae are
entirely correct, his interpretation cannot be maintained, since on the
one hand, as we have already explained above, the wave packets must
in course of time become dissipated, and on the other hand the
description of the interaction of two electrons as a collision of two
wave packets in ordinary three-dimensional space lands us in grave
diffi culties.”
In BCT there is no configuration space but rather every elementary
charge is described by its individual wave function over 4-dimensional
space-time continuum.
In BCT the concept of particle is represented by the concept of a
wave-corpuscle which does not disperse. The wave and particle
properties naturally coexist in the wave-corpuscle.
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Comparison of the neoclassical theory with the QM
In sharp contrast to QM, there is no configuration space in our
theory. The system of N interacting charges is described by N
individual wave functions over the three spatial variables and time.
Recall that in QM the same system has one wave function of time
and 3N spatial variables known as the configuration space.
In the neoclassical theory the wave function for every elementary
charge does not have a probabilistic interpretation as in QM but
rather it can be interpreted as a charge “cloud”.
In particle-like regimes, the balanced charge described by
wave-corpuscles is not subjected to dispersion. In contrast, QM
wave-function in similar circumstances disperses
In the neoclassical theory the energy E and the frequency ω are two
independent physical quantities, which for certain regimes are related
according to the Planck—Einstein energy-frequency relation E = h̄ω.
In QM, the Planck—Einstein energy-frequency relation E = h̄ω is
universal and fundamentally exact, and the Schrödinger equation for
the entire system is in fact an operator form of the Planck—Einstein
energy-frequency relation.
Consequently, there is no quantization and correspondence principle in
the BCT, whereas they are absolutely instrumental in QM to generate
wave equations from the classical particle theory.
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Comparison of the neoclassical theory with the QM

The Heisenberg uncertainty principle does not hold as a universal
principal in the BCT. Since a balanced charge is not a point, there is
an uncertainty in its location, but it is not probabilistic in nature. In
the case of the wave-corpuscle, the total momentum of the charge is
defined without any uncertainty, whereas the wavevector and position
of the charge allow uncertainties which satisfy the uncertainty
principle

Wave-corpuscles in BCT unlike wave-packets in QM do not disperse
and when well separated interact as point charges governed by the
Newton motion equations with the Lorentz forces. In other words, in
relevant regimes classical Newtonian mechanics can be deduced from
the field equations as an approximation.
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Comparison of the neoclassical theory with the QM

In spite of fundamental differences, there is solid common ground
between the neoclassical theory and quantum mechanics. This
common ground rests on similarities between the neoclassical field
equations and the Schrödinger and Klein—Gordon equations in the
non-relativistic and relativistic case respectively.

Common feature of a wavepacket and a wave-corpuscle is the wave
mechanism of their motion manifested through the equality of their
velocities to the group velocity ∇kω (k) of underlying linear medium
with the dispersion relation ω (k).
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Uncertainty Relation in QM and the neoclassical theory
There is a marked difference between the essence of the uncertainty
relations in quantum mechanics and in the neoclassical theory. For
simplicity’s sake, let us consider the non-relativistic versions of both
theories.
The difference in the two theories shows already in the origin of the
uncertainty.
In QM the uncertainty is bound to the probabilistic interpretation of
the wave function. Namely, an elementary charge is a point-like
object, and the position vector x describes unambiguously its spatial
location. The uncertainty of the charge location comes entirely
through its complex-valued wave function ψ (x), so that the
probability to locate the charge in an infinitesimally small spatial
domain of volume dx is postulated to be |ψ (x)|2 dx.
Since in QM the wave function describes completely quantum states
of a charge, its location is fundamentally uncertain and described in
probabilistic terms from the outset: [Holland, p. 72 xvii]: “The
uncertainty is postulated to be intrinsic to the system.”
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Uncertainty Relation in QM and the neoclassical theory

In the neoclassical theory an elementary charge is never exactly a
point object, but it can be localized and treated then as a point-like
object. Its state just as in QM is described by a complex-valued wave
function ψ (x), but its physical interpretation is very different from
QM one.

The wave function ψ (x) of the balanced charge is interpreted as a
"material" wave of the charged matter distributed in space, and
q |ψ (x)|2 dx is interpreted as a fraction of the entire charge residing
in an infinitesimally small spatial domain of volume dx.
Hence in the neoclassical theory the uncertainty in the charge location
originates in its actual spatial distribution over the space.
Consequently, the uncertainty here is simply about a natural
ambiguity in assigning a single geometric point to a spatially
distributed object. Such an uncertainty differs markedly from QM
probabilistic uncertainty.
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