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Introduction

We study homogenization problem for a stationary Maxwell system with
periodic rapidly oscillating coefficients.

This problem was studied by
traditional methods of homogenization theory. See the books

A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for
periodic structures, 1978.

E. Sanchez-Palencia. Nonhomogeneous media and vibration theory,
1980.

N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of
processes in periodic media, 1984.

V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of
differential operators, 1993.

The traditional results give weak convergence of the solutions to the
solution of the homogenized system. Our goal is to obtain approximations
for the solutions in the L2-norm with sharp order remainder estimates.
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Statement of the problem

Let Γ be a lattice in R3, let Ω be the cell of Γ.
By Γ̃ we denote the dual lattice. Let Ω̃ be the Brillouin zone of Γ̃.

Example:

Γ = Z3, Ω = (0, 1)3 , Γ̃ = (2πZ)3, Ω̃ = (−π, π)3.

Suppose that the dielectric permittivity η(x) and the magnetic
permeability µ(x) are Γ-periodic symmetric (3× 3)-matrix-valued functions
with real entries. Assume that

c01 6 η(x) 6 c11, c01 6 µ(x) 6 c11, x ∈ R3, 0 < c0 6 c1 <∞.
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Statement of the problem

By L2 = L2(R3;C3) we denote the L2-space of C3-valued functions in R3.

Besides the ordinary L2-space, we need the weighted spaces

L2(η−1) = L2(R3;C3; η−1), L2(µ−1) = L2(R3;C3;µ−1)

with the inner products

(f, g)L2(η−1) :=

∫
R3

〈η(x)−1f(x), g(x)〉 dx,

(f, g)L2(µ−1) :=

∫
R3

〈µ(x)−1f(x), g(x)〉 dx.

We put
J := {f ∈ L2(R3;C3) : div f = 0}.

Clearly, J is a closed subspace in L2 (and also in L2(η−1) and L2(µ−1)).
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Statement of the problem

Notation

Let u(x) be the electric field strength.

Let v(x) be the magnetic field strength.

Then w(x) = η(x)u(x) is the electric displacement vector,

and z(x) = µ(x)v(x) is the magnetic displacement vector.

It is assumed that w and z are divergence-free:

divw = 0, div z = 0.

It is convenient to write the Maxwell operator M =M(η, µ) in terms of
the displacement vectors w, z. Then M acts in the space J ⊕ J viewed as
a subspace of L2(η−1)⊕ L2(µ−1).
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Statement of the problem

Definition of the Maxwell operator

The operator M =M(η, µ) acts in the space J ⊕ J ⊂ L2(η−1)⊕ L2(µ−1)
and is given by

M =

(
0 i curlµ−1

−i curl η−1 0

)
on the domain

DomM = {(w, z) ∈ J ⊕ J : curl η−1w ∈ L2, curlµ
−1z ∈ L2}.

The operator M is selfadjoint with respect to the weighted inner product.
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Statement of the problem

Let ε > 0 be a small parameter. We use the notation

φε(x) = φ
(x
ε

)
, ε > 0.

Main object

Our main object is the Maxwell operator

Mε =M(ηε, µε), ε > 0,

with rapidly oscillating coefficients ηε and µε.

The point λ = i is a regular point for Mε.
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Statement of the problem

Problem

Our goal is to study the behavior of the resolvent (Mε − iI )−1 as ε→ 0.

In other words, we study the solutions (wε, zε) of the Maxwell system

(Mε − iI )

(
wε
zε

)
=

(
q
r

)
, q, r ∈ J. (1)

We also study the corresponding fields

uε = (ηε)−1wε, vε = (µε)−1zε.

In details, (1) looks as follows:

curl (µε)−1zε −wε = −iq
curl (ηε)−1wε + zε = ir
divwε = 0, div zε = 0


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The effective operator

Now we introduce the effective Maxwell operator M0 =M(η0, µ0).

Definition of the effective matrix

Let ej , j = 1, 2, 3, be the standard basis in C3. Let Φj(x) be the Γ-periodic
solution of the problem

div η(x)(∇Φj(x) + ej) = 0,

∫
Ω

Φj(x) dx = 0.

Let Yη(x) be the matrix with the columns ∇Φj(x), j = 1, 2, 3. Denote

η̃(x) := η(x)(Yη(x) + 1), η0 := |Ω|−1

∫
Ω
η̃(x) dx.

We also define the matrix Gη(x) := η̃(x)(η0)−1 − 1.

Note that Yη(x) and Gη(x) are periodic and
∫

Ω Yη dx =
∫

Ω Gη dx = 0.
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The effective operator

The effective matrix µ0 is defined similarly.

Definition of the effective matrix

Let Ψj(x) be the Γ-periodic solution of the problem

divµ(x)(∇Ψj(x) + ej) = 0,

∫
Ω

Ψj(x) dx = 0.

Let Yµ(x) be the matrix with the columns ∇Ψj(x), j = 1, 2, 3. Denote

µ̃(x) := µ(x)(Yµ(x) + 1), µ0 := |Ω|−1

∫
Ω
µ̃(x) dx.

We also define the matrix Gµ(x) := µ̃(x)(µ0)−1 − 1.

Note that Yµ(x) and Gµ(x) are periodic and
∫

Ω Yµ dx =
∫

Ω Gµ dx = 0.
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Main results for the Maxwell system

So, we study the solutions of the Maxwell system

(Mε − iI )

(
wε
zε

)
=

(
q
r

)
, q, r ∈ J, (1)

and also the fields uε = (ηε)−1wε and vε = (µε)−1zε.

Consider the homogenized system

(M0 − iI )

(
w0

z0

)
=

(
q
r

)
, q, r ∈ J, (2)

and denote u0 = (η0)−1w0, v0 = (µ0)−1z0.

Classical results

The solutions of (1) weakly converge in L2 to the solutions of (2):

uε
w−→ u0, vε

w−→ v0, wε
w−→ w0, zε

w−→ z0, ε→ 0.
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Main results for the Maxwell system

We find approximations for uε, vε, wε, zε in the L2-norm.

To formulate the results, we consider the ”correction Maxwell system”

(M0 − iI )

(
ŵε
ẑε

)
=

(
qε
rε

)
, qε := Pη0(Y ε

η )∗q, rε := Pµ0(Y ε
µ)∗r. (3)

Here Pη0 is the orthogonal projection of the weighted space L2((η0)−1)
onto J, and Pµ0 is the orthogonal projection of L2((µ0)−1) onto J.
Introduce the corresponding ”correction fields”

ûε := (η0)−1ŵε, v̂ε := (µ0)−1ẑε.

Note that ûε, v̂ε, ŵε, and ẑε weakly converge to zero in L2, as ε→ 0.
Finally, we define the auxiliary smoothing operator Πε in L2(R3;C3):

(Πεf)(x) = (2π)−3/2

∫
Ω̃/ε

e i〈x,ξ〉f̂(ξ) dξ,

where f̂(ξ) is the Fourier-image of f(x).
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(
ŵε
ẑε
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=
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qε
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)
, qε := Pη0(Y ε

η )∗q, rε := Pµ0(Y ε
µ)∗r. (3)

Here Pη0 is the orthogonal projection of the weighted space L2((η0)−1)
onto J, and Pµ0 is the orthogonal projection of L2((µ0)−1) onto J.

Introduce the corresponding ”correction fields”

ûε := (η0)−1ŵε, v̂ε := (µ0)−1ẑε.

Note that ûε, v̂ε, ŵε, and ẑε weakly converge to zero in L2, as ε→ 0.
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Main results for the Maxwell system

Our main result is

Theorem 1 [T. Suslina]

For 0 < ε 6 1 we have

‖uε − (1 + Y ε
η )(u0 + Πεûε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖wε − (1 + G ε
η )(w0 + Πεŵε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖vε − (1 + Y ε
µ)(v0 + Πεv̂ε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖zε − (1 + G ε
µ)(z0 + Πεẑε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2).

Remark.
1) Estimates of Theorem 1 are order-sharp.
2) The constants depend only on ‖η‖L∞ , ‖η−1‖L∞ , ‖µ‖L∞ , ‖µ−1‖L∞ , and
the parameters of the lattice.
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Main results for the Maxwell system

Remark.
3) All approximations are similar to each other. For instance, we have

wε ∼ w0 + G ε
ηw0 + Πεŵε + G ε

ηΠεŵε.

The first term is the effective field; other three terms weakly tend to zero
and can be interpreted as the correctors of zero order.

4) The result can be formulated in operator terms:∥∥(Mε − iI )−1 − (I + G ε)(M0 − iI )−1(I + Zε)
∥∥ 6 Cε,

where

G ε =

(
G ε
η 0

0 G ε
µ

)
, Zε =

(
ΠεPη0(Y ε

η )∗ 0
0 ΠεPµ0(Y ε

µ)∗

)
.
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Main results for the Maxwell system

5) Under some additional assumptions it is possible to replace Πε by
identity. For instance, this is possible if η ∈W 1

p,per(Ω) with p > 3 and µ is
arbitrary, or if µ ∈W 1

p,per(Ω) with p > 3 and η is arbitrary.

6) If one of the coefficients (η or µ) is constant, the results are simpler.

Theorem 2 [M. Birman and T. Suslina]

Let µ = µ0 be a constant positive matrix. For 0 < ε 6 1 we have

‖uε − (1 + Y ε
η )(u0 + ûε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖wε − (1 + G ε
η )(w0 + ŵε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖vε − (v0 + v̂ε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2),

‖zε − (z0 + ẑε)‖L2 6 Cε(‖q‖L2 + ‖r‖L2).
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Main results for the Maxwell system

Corollary

Let µ = µ0 be a constant positive matrix, and let q = 0. Then the
”correction fields” ûε, ŵε, v̂ε, ẑε are equal to zero. For 0 < ε 6 1 we have

‖uε − (1 + Y ε
η )u0‖L2 6 Cε‖r‖L2 ,

‖wε − (1 + G ε
η )w0‖L2 6 Cε‖r‖L2 ,

‖vε − v0‖L2 6 Cε‖r‖L2 ,

‖zε − z0‖L2 6 Cε‖r‖L2 .
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Reduction to the second order elliptic operator

We reduce the problem to the study of some second order elliptic operator.

First, we represent each field as the sum of two terms:

wε = w(q)
ε + w(r)

ε , zε = z(q)
ε + z(r)

ε ,

where (w
(q)
ε , z

(q)
ε ) is the solution of system (1) with r = 0, and (w

(r)
ε , z

(r)
ε )

is the solution of system (1) with q = 0.
Similarly, we represent uε and vε as the sum of two terms:

uε = u(q)
ε + u(r)

ε , vε = v(q)
ε + v(r)

ε .

We study the fields with indices (q) and (r) separately. The cases q = 0
and r = 0 are similar.
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Reduction to the second order elliptic operator

The case where q = 0. System (1) with q = 0 takes the form

w
(r)
ε = curl (µε)−1z

(r)
ε

curl (ηε)−1w
(r)
ε + z

(r)
ε = ir

divw
(r)
ε = 0, div z

(r)
ε = 0



Hence, z
(r)
ε is the solution of the second order equation

curl (ηε)−1curl (µε)−1z(r)
ε + z(r)

ε = ir, div z(r)
ε = 0. (4)

In order to study equation (4), it is convenient to substitute

fε := (µε)−1/2z(r)
ε .

Then fε is the solution of the problem

(µε)−1/2curl (ηε)−1curl (µε)−1/2fε + fε = i(µε)−1/2r,

div (µε)1/2fε = 0.
(5)
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Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is
selfadjoint with respect to the standard inner product in L2(R3;C3).

However, there is a difficulty: fε satisfies the divergence-free condition
containing rapidly oscillating coefficient. We extend the system in order to
remove the divergence-free condition. This leads to the study of the
second order operator Lε = L(ηε, µε):

Lε = (µε)−1/2curl (ηε)−1curl (µε)−1/2 − (µε)1/2∇div (µε)1/2

acting in L2(R3;C3). The precise definition of the operator Lε is given in
terms of the quadratic form

lε[f, f] =

∫
R3

(
〈(ηε)−1curl (µε)−1/2f, curl (µε)−1/2f〉+ |div (µε)1/2f|2

)
dx,

Dom lε = {f ∈ L2(R3;C3) : curl (µε)−1/2f ∈ L2, div (µε)1/2f ∈ L2}.
This form is closed and nonnegative. By definition, Lε is the selfadjoint
operator in L2(R3;C3) generated by this form.
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Reduction to the second order elliptic operator

The operator

Lε = (µε)−1/2curl (ηε)−1curl (µε)−1/2 − (µε)1/2∇div (µε)1/2

is elliptic and acts in the whole space L2(R3;C3).

This operator splits in the orthogonal Weyl decomposition

L2(R3;C3) = G (µε)⊕ J(µε),

where
G (µε) = {g = (µε)1/2∇ϕ : ϕ ∈ H1

loc, ∇ϕ ∈ L2},
J(µε) = {f ∈ L2 : div (µε)1/2f = 0}.

We are interested in the part of Lε in the subspace J(µε). Let P(µε) be
the orthogonal projection of L2(R3;C3) onto J(µε).
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Reduction to the second order elliptic operator

Conclusion

The solution of problem (5) can be represented as

fε = P(µε)(Lε + I )−1
(
i(µε)−1/2r

)
.

The fields z
(r)
ε , v

(r)
ε , w

(r)
ε , u

(r)
ε can be expressed in terms of fε:

z(r)
ε = (µε)1/2fε, v(r)

ε = (µε)−1/2fε,

w(r)
ε = curl (µε)−1/2fε, u(r)

ε = (ηε)−1curl (µε)−1/2fε.

So, we have reduced the problem to the study of the resolvent (Lε + I )−1

and its ”divergence-free part” P(µε)(Lε + I )−1. We need to find
approximations in the (L2 → L2)-norm and in the energy norm.

The fields with index (q) are studied similarly.
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Results for the second order elliptic operator

Let L0 = L(η0, µ0) be the effective operator. We prove that

‖(Lε + I )−1 − (W ε)∗(L0 + I )−1W ε‖L2(R3)→L2(R3) 6 Cε. (6)

Here W (x) is some periodic matrix-valued function (it will be defined
later).

For the ”divergence-free part” of the resolvent we have

‖P(µε)(Lε + I )−1 − (W ε)∗P(µ0)(L0 + I )−1W ε‖L2(R3)→L2(R3) 6 Cε. (7)

From here we deduce the required approximations for v
(r)
ε and z

(r)
ε . The

required approximations for u
(r)
ε and w

(r)
ε are deduced from

‖L1/2
ε

(
P(µε)(Lε + I )−1 − (W ε)∗P(µ0)(L0 + I )−1W ε − εK (ε)

)
‖L2→L2

6 Cε,
(8)

where K (ε) is appropriate corrector.
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Method: the scaling transformation

The operator Lε is studied by the operator-theoretic approach based on
the scaling transformation, the Floquet-Bloch theory, and the analytic
perturbation theory.

Scaling transformation. Let L = L(η, µ) be the operator

L = µ−1/2curl η−1curlµ−1/2 − µ1/2∇divµ1/2.

Let Tε be the unitary scaling operator in L2(R3;C3):

(Tεf)(x) = ε3/2f(εx).

Then we have
(Lε + I )−1 = ε2T ∗ε (L+ ε2I )−1Tε

Thus, in order to approximate (Lε + I )−1 with error O(ε), it suffices to
approximate (L+ ε2I )−1 with error O(ε−1).
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Method: factorization

Factorization. It is important that the operator L admits a factorization
of the form

L = X ∗X ,

where X is the first order DO given by

X f =

(
−iη−1/2curl (µ−1/2f)
−idiv (µ1/2f)

)
.

Remark. If µ = µ0 is constant, then L can be written as

L = b(D)∗g(x)b(D), g(x) =

(
η(x)−1 0

0 1

)
, b(D) =

(
−icurlµ−1/2

0

−idivµ1/2
0

)
.

The class of operators of the form b(D)∗g(x)b(D) has been studied by
Birman and Suslina. So, if µ is constant, one can apply general results.
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Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator L admits the
direct integral expansion

L ∼
∫

Ω̃
⊕L(k) dk.

The parameter k ∈ Ω̃ ⊂ R3 is called a quasimomentum. The operator
L(k) = L(k; η, µ) acts in L2(Ω;C3) and is given by the differential
expression

L(k) = µ−1/2curlkη
−1curlkµ

−1/2 − µ1/2∇kdivkµ
1/2

with periodic boundary conditions. Here

∇kϕ := ∇ϕ+ ikϕ, divkf := div f + ik · f, curlkf := curl f + ik× f.

The precise definition of L(k) is given in terms of the corresponding
quadratic form.
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Method: analytic perturbation theory

To study the operator family L(k), we apply abstract operator-theoretic
approach suggested by Birman and Suslina.

We put

k = tθ, t = |k|, θ = k/|k| ∈ S2,

and denote
L(k) =: L(t,θ).

We study the operator family L(t,θ) by means of the analytic perturbation
theory with respect to the one-dimensional parameter t. The unperturbed
operator is L(0), and the perturbed operator is L(k) = L(t,θ) (with small
t = |k|).
The operator L(t,θ) admits a factorization of the form

L(t,θ) = X (t,θ)∗X (t,θ), X (t,θ) = X0 + tX1(θ).
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Method: analytic perturbation theory

The operator L(t,θ) admits a factorization of the form

L(t,θ) = X (t,θ)∗X (t,θ),

where X (t,θ) is a linear operator pencil:

X (t,θ) = X0 + tX1(θ).

Here X0 is given by

X0f =

(
−iη−1/2curl (µ−1/2f)
−idiv (µ1/2f)

)
with periodic boundary conditions; X1(θ) is a bounded operator given by

X1(θ)f =

(
η−1/2θ × (µ−1/2f)

θ · (µ1/2f)

)
.
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Method: analytic perturbation theory

Consider the kernel of the operator L(0):

N = KerL(0) = KerX0.

It is given by

N = {f(x) = µ(x)1/2(C +∇ΨC(x)) : C ∈ C3},

where ΨC(x) is periodic solution of the equation

divµ(x)(C +∇ΨC(x)) = 0.

We have dimN = 3.

This means that the point λ = 0 is an isolated
eigenvalue of multiplicity three of the unperturbed operator L(0). Hence,
for t 6 t0 the perturbed operator L(k) = L(t,θ) has exactly three
eigenvalues on [0, δ], and the interval (δ, 3δ) is free of the spectrum. (We
control the numbers δ and t0 explicitly.) Only these eigenvalues and the
corresponding eigenfunctions are important for our problem.
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Method: analytic perturbation theory

By the Kato-Rellich theorem, for t 6 t0 there exist real-analytic branches
of the eigenvalues λl(t,θ) and real-analytic branches of the eigenvectors
ϕl(t,θ) of the operator L(t,θ):

L(t,θ)ϕl(t,θ) = λl(t,θ)ϕl(t,θ), l = 1, 2, 3.

The vectors ϕl(t,θ), l = 1, 2, 3, form an orthonormal basis in the
eigenspace of L(t,θ) corresponding to the interval [0, δ]. For small
t 6 t∗(θ) we have the following convergent power series expansions:

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, 2, 3,

ϕl(t,θ) = ωl(θ) + tψl(θ) + . . . , l = 1, 2, 3.

We have γl(θ) > c∗ > 0. The vectors ωl(θ), l = 1, 2, 3, form an
orthonormal basis in N. The coefficients γl(θ) and the vectors ωl(θ),
l = 1, 2, 3, are called threshold characteristics of L(t,θ).
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Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the
operator family L(t,θ).

Definition of the spectral germ

The selfadjoint operator S(θ) : N→ N such that

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, 2, 3,

is called the spectral germ of the operator family L(t,θ) at t = 0.

Thus, the germ contains information about the threshold characteristics.
It is possible to calculate the spectral germ.
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Method: analytic perturbation theory

Let L0 = L(η0, µ0) be the effective operator with constant effective
coefficients. Let L0(k) = L0(t,θ) be the corresponding operator family.

Let N0 = KerL0(0). Then

N0 = {f0 = (µ0)1/2C : C ∈ C3}

consists of constant vectors. Let S0(θ) : N0 → N0 be the spectral germ of
the operator family L0(t,θ). Then the germ S0(θ) acts as multiplication
by the matrix

S0(θ) = (µ0)−1/2r(θ)∗(η0)−1r(θ)(µ0)−1/2 + (µ0)1/2θθ∗(µ0)1/2,

where

r(θ) =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 .

The matrix S0(θ) is the symbol of the effective operator.
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Method: analytic perturbation theory

Let U : N→ N0 be the unitary operator, which takes f = µ1/2(C +∇ΨC)
to f0 = (µ0)1/2C, C ∈ C3.

Then the germ S(θ) admits the following
representation:

S(θ) = U∗S0(θ)U .

Remark. If µ = µ0 is constant, then S(θ) = S0(θ).
Applying abstract results by Birman and Suslina, it is possible to
approximate the resolvent of L(t,θ) by the resolvent of the germ.

Theorem 3 [T. Suslina]

Let P be the orthogonal projection of L2(Ω;C3) onto N. Let
S(θ) : N→ N be the spectral germ of L(t,θ). Then

‖(L(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 33 / 40



Method: analytic perturbation theory

Let U : N→ N0 be the unitary operator, which takes f = µ1/2(C +∇ΨC)
to f0 = (µ0)1/2C, C ∈ C3. Then the germ S(θ) admits the following
representation:

S(θ) = U∗S0(θ)U .

Remark. If µ = µ0 is constant, then S(θ) = S0(θ).
Applying abstract results by Birman and Suslina, it is possible to
approximate the resolvent of L(t,θ) by the resolvent of the germ.

Theorem 3 [T. Suslina]

Let P be the orthogonal projection of L2(Ω;C3) onto N. Let
S(θ) : N→ N be the spectral germ of L(t,θ). Then

‖(L(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 33 / 40



Method: analytic perturbation theory

Let U : N→ N0 be the unitary operator, which takes f = µ1/2(C +∇ΨC)
to f0 = (µ0)1/2C, C ∈ C3. Then the germ S(θ) admits the following
representation:

S(θ) = U∗S0(θ)U .

Remark. If µ = µ0 is constant, then S(θ) = S0(θ).

Applying abstract results by Birman and Suslina, it is possible to
approximate the resolvent of L(t,θ) by the resolvent of the germ.

Theorem 3 [T. Suslina]

Let P be the orthogonal projection of L2(Ω;C3) onto N. Let
S(θ) : N→ N be the spectral germ of L(t,θ). Then

‖(L(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 33 / 40



Method: analytic perturbation theory

Let U : N→ N0 be the unitary operator, which takes f = µ1/2(C +∇ΨC)
to f0 = (µ0)1/2C, C ∈ C3. Then the germ S(θ) admits the following
representation:

S(θ) = U∗S0(θ)U .

Remark. If µ = µ0 is constant, then S(θ) = S0(θ).
Applying abstract results by Birman and Suslina, it is possible to
approximate the resolvent of L(t,θ) by the resolvent of the germ.

Theorem 3 [T. Suslina]

Let P be the orthogonal projection of L2(Ω;C3) onto N. Let
S(θ) : N→ N be the spectral germ of L(t,θ). Then

‖(L(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 33 / 40



Method: approximation of the resolvent

Using Theorem 3 and representation S(θ) = U∗S0(θ)U for the germ, we
arrive at the following result.

Theorem 4 [T. Suslina]

Let W (x) be the (3× 3)-matrix with the columns µ(x)1/2(Cj +∇ΨCj
(x)),

j = 1, 2, 3, where Cj = (µ0)−1/2ej . Then for 0 < ε 6 1 and k ∈ Ω̃ we have

‖(L(k) + ε2I )−1 −W ∗(L0(k) + ε2I )−1W ‖L2(Ω)→L2(Ω) 6 Cε−1.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 34 / 40



Method: approximation of the resolvent

Using the direct integral expansion, we obtain

Theorem 5 [T. Suslina]

For 0 < ε 6 1 we have

‖(L+ ε2I )−1 −W ∗(L0 + ε2I )−1W ‖L2(R3)→L2(R3) 6 Cε−1.

Finally, by the scaling transformation, we arrive at the following result.

Theorem 6 [T. Suslina]

Let Lε = L(ηε, µε) and L0 = L(η0, µ0). For 0 < ε 6 1 we have

‖(Lε + I )−1 − (W ε)∗(L0 + I )−1W ε‖L2(R3)→L2(R3) 6 Cε.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 35 / 40



Method: approximation of the resolvent

Using the direct integral expansion, we obtain

Theorem 5 [T. Suslina]

For 0 < ε 6 1 we have

‖(L+ ε2I )−1 −W ∗(L0 + ε2I )−1W ‖L2(R3)→L2(R3) 6 Cε−1.

Finally, by the scaling transformation, we arrive at the following result.

Theorem 6 [T. Suslina]

Let Lε = L(ηε, µε) and L0 = L(η0, µ0). For 0 < ε 6 1 we have

‖(Lε + I )−1 − (W ε)∗(L0 + I )−1W ε‖L2(R3)→L2(R3) 6 Cε.

Tatiana Suslina (SPbSU) Homogenization of Maxwell System Durham, July 2016 35 / 40



Method: approximation of the resolvent

It is possible to separate the ”divergence-free parts” of the operators on
each step of investigation.

The operator L splits in the orthogonal Weyl decomposition

L2(R3;C3) = G (µ)⊕ J(µ),

where
G (µ) = {g = µ1/2∇ϕ : ϕ ∈ H1

loc, ∇ϕ ∈ L2},
J(µ) = {f ∈ L2 : divµ1/2f = 0}.

The operator L(k) splits in the orthogonal Weyl decomposition

L2(Ω;C3) = G (µ; k)⊕ J(µ; k),

where
G (µ; k) = {g = µ1/2∇kϕ : ϕ ∈ H1

per(Ω)},

J(µ; k) = {f ∈ L2(Ω;Cn) : div k(µ1/2f) = 0}.
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Method: approximation of the resolvent

Moreover, the germ S(θ) splits in the orthogonal decomposition

N = Gθ ⊕ Jθ,

where

Gθ = {cfθ : fθ = µ1/2(θ +∇Ψθ), c ∈ C)}, dimGθ = 1,

Jθ = {f⊥ = µ1/2(C⊥ +∇ΨC⊥) : µ0C⊥ ⊥ θ}, dim Jθ = 2.

It turns out that two branches ϕ1(t,θ) and ϕ2(t,θ) belong to J(µ; k), and
ϕ3(t,θ) belongs to G (µ; k). The corresponding “embrios” ω1(θ) and
ω2(θ) belong to Jθ, and ω3(θ) ∈ Gθ.
The part of the germ acting in Jθ corresponds to the “divergence free”
part of the operator family L(t,θ).
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Method: approximation of the resolvent

These considerations lead to the following result.

Theorem 7 [T. Suslina]

Let Lε = L(ηε, µε) and L0 = L(η0, µ0). Let P(µε) be the orthogonal
projection of L2(R3;C3) onto the subspace
J(µε) = {f ∈ L2 : div (µε)1/2f = 0}. Let P(µ0) be the orthogonal
projection of L2(R3;C3) onto the subspace
J(µ0) = {f ∈ L2 : div (µ0)1/2f = 0}. For 0 < ε 6 1 we have

‖P(µε)(Lε + I )−1 − (W ε)∗P(µ0)(L0 + I )−1W ε‖L2(R3)→L2(R3) 6 Cε.
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Method: approximation of the resolvent

Approximation for the resolvent of Lε in the ”energy norm”:

Theorem 8 [T. Suslina]

For 0 < ε 6 1 we have

‖L1/2
ε

(
P(µε)(Lε + I )−1 − (W ε)∗P(µ0)(L0 + I )−1W ε

−εK (ε)) ‖L2(R3)→L2(R3) 6 Cε.

Here K (ε) is a corrector of the form

K (ε) =
3∑

l=1

Λεl DlP(µ0)(L0 + I )−1ΠεW
ε,

and Λl(x) are appropriate periodic matrix-valued functions.

The results for the Maxwell system are deduced from Theorems 7 and 8.
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