Reconstruction of omega-categorical structures from their endomorphism monoids

David Evans

School of Mathematics, UEA, Norwich. From September 2015: Dept. of Mathematics, Imperial College, London.

Durham, July 2015.

Joint with Manuel Bodirsky, Michael Kompatscher and Michael Pinsker.

Non-reconstructibility

Fact

There exist separable profinite groups G_1 , G_2 which are isomorphic as groups, but not as topological groups.

Theorem (DE + P. Hewitt, 1990)

There exist two countable, ω -categorical structures $\mathcal{M}_1, \mathcal{M}_2$ whose automorphism groups are isomorphic as groups, but not as topological groups.

Theorem (M. Bodirsky + DE + M. Kompatscher + M. Pinsker, '14)

There exist two countable, ω -categorical structures $\mathcal{M}_1, \mathcal{M}_2$ whose endomorphism monoids are isomorphic as monoids, but not as topological monoids.

- Can use the same $\mathcal{M}_1, \mathcal{M}_2$.
- Question asked by Lascar ('87); Bodirsky, Pinsker, Pongrácz ('14).

Endomorphisms

Relational structure with domain A: $\mathcal{A} = (A; (R_i : i \in I))$, where $R_i \subseteq A^{n_i}, n_i \in \mathbb{N}$.

Endomorphism of A: $\alpha : A \to A$, $\alpha(R_i) \subseteq R_i$ for all $i \in I$.

End(\mathcal{A}): monoid of endomorphims of \mathcal{A} .

CAVEAT: Sensitive to the language (ie. choice of the atomic relations R_i).

Aut(\mathcal{A}): group of units in End(\mathcal{A}).

Topological monoid: $End(\mathcal{A}) \subseteq \mathcal{A}^{\mathcal{A}}$.

Translations

- Closed subgroups of Sym(A)
- Closed submonoids of $A^A \leftarrow$
- $\leftrightarrow \quad \operatorname{Aut}(\mathcal{A}), \, \mathcal{A} \text{ relational structure} \\ \text{with domain } \mathcal{A}.$
- $\leftrightarrow \quad \mathrm{End}(\mathcal{A}), \, \mathcal{A} \text{ relational structure} \\ \text{ with domain } \mathcal{A}.$
- Suppose *A* is countable:
 - Closed oligomorphic subgps of $Sym(A) \leftrightarrow Aut(A)$, $A \omega$ -categorical.
- Oligomorphic: finitely many orbits on A^n , for all $n \in \mathbb{N}$.
 - Closed submonoids of $A^A \leftrightarrow \text{End}(\mathcal{A}), \mathcal{A} \omega$ -categorical. with oligomorphic unit group
- If \mathcal{A} is ω -categorical the closure of $\operatorname{Aut}(\mathcal{A})$ in $\operatorname{End}(\mathcal{A})$ is the monoid $\operatorname{EEmb}(\mathcal{A})$ of elementary embeddings $\mathcal{A} \to \mathcal{A}$.

Reconstruction questions

Suppose A_1, A_2 are countable, ω -categorical structures. Suppose *X* denotes Aut, End or EEmb.

Suppose $X(A_1)$ and $X(A_2)$ are isomorphic as algebraic objects. How are A_1 and A_2 related?

REMARK: If $Aut(A_1)$ and $Aut(A_2)$ are isomorphic as topological groups, then A_1, A_2 are biinterpretable.

Failure of automatic continuity

Theorem (Bodirsky, Pinsker, Pongrácz, 2014)

Let \mathcal{A} be countable ω -categorical. Then there is a monoid homomorphism $\xi : \text{EEmb}(\mathcal{A}) \to \mathcal{A}^A$ which is not continuous.

Lascar's Theorem

DEFINITION: (1) If *S* is a topological group, denote by S° the intersection of the closed subgroups of finite index in *S*. (2) A countable, ω -categorical structure \mathcal{A} is *G*-finite if for every open subgroup $U \leq \operatorname{Aut}(\mathcal{A})$ the subgroup U° is of finite index in *U*.

Theorem (Lascar, 1980's)

Suppose A_1, A_2 are countable, *G*-finite, ω -categorical structures and $\alpha : \text{EEmb}(A_1) \to \text{EEmb}(A_2)$ is an isomorphism of monoids. Then the restriction of α to $\text{Aut}(A_1)$ is a topological isomorphism between $\text{Aut}(A_1)$ and $\text{Aut}(A_2)$. In particular, A_1 and A_2 are biinterpretable.

Start of proof: For $e, f \in \text{EEmb}(\mathcal{A}_1)$, write $e \leq f$ iff there is $k \in \text{EEmb}(\mathcal{A}_1)$ with e = fk. Note that this is preserved by α and $e \leq f$ iff $\text{im}(e) \subseteq \text{im}(f)$. So we can recover the poset of elementary submodels of \mathcal{A}_1 from the algebraic structure of $\text{EEmb}(\mathcal{A}_1)$...

QUESTION: Can we recover EEmb(A) from the algebraic structure of End(A) (for ω -categorical A)?

Profinite quotients

Any separable profinite group *K* embeds as a closed subgroup of $\prod_{n \in \mathbb{N}} \text{Sym}(n)$.

Fact (Cherlin - Hrushovski)

There is a countable, ω -categorical structure \mathcal{A} and a continuous surjection θ : Aut $(\mathcal{A}) \to \prod_{n \in \mathbb{N}} \text{Sym}(n)$ with kernel $\Phi = (\text{Aut}(\mathcal{A}))^{\circ}$.

So if $K \leq \prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$ is closed, then $\Sigma_K = \theta^{-1}(K)$ is a closed, oligomorphic group, $\Sigma_K^{\circ} = \Phi$, and $\Sigma_K / \Phi \cong K$.

REMARK: If $K_1, K_2 \leq \prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$ are closed and algebraically isomorphic, there does not seem to be any reason to expect that Σ_{K_1} and Σ_{K_2} should be algebraically isomorphic.

Examples for non-reconstructibility

Fact

There is a separable profinite group G with the following properties:

- G has a finite, central subgroup F ≠ 1 such that F has a complement in G and any such complement is dense in G.
- *G* is nilpotent of class 2 and the derived subgroup *G*⁽¹⁾ is a proper, dense subgroup of the centre *Z*(*G*).

From the first point, there is a subgroup $E \leq G$ with $G = F \times E$, and any such *E* is dense in *G*.

If H = G/F, then H is algebraically isomorphic to E, but not topologically.

Thus $K = F \times H$ and *G* are profinite groups which are isomorphic as groups.

Note that $Z(K) = F \times Z(H)$ and $K^{(1)} = 1 \times H^{(1)}$, so the derived group of *K* is not dense in its centre. So *G*, *K* are not topologically isomorphic.

From H to G

Consider $G \xrightarrow{\pi} H = G/F$ and $\eta : H \to E$ given by $(\pi | E)^{-1}$ (discontinuous).

G has a base $(G_i : i \le \omega)$ of open neighbourhoods of 1 where $G_i \trianglelefteq G$ and $\bigcap_{i < \omega} G_i = F$.

- Let $H_i = \pi(G_i)$ for $i < \omega$ and $H_\omega = \pi(G_\omega \cap E)$.
- Let $X = \coprod_{i < \omega} H/H_i$ and $C = H/H_{\omega}$.

The action of *H* on *X* gives a continuous embedding $H \rightarrow \text{Sym}(X)$.

The action of *H* on $X \cup C$ gives an embedding $H \rightarrow \text{Sym}(X \cup C)$ which is not continuous. The closure of the image is topologically isomorphic to *G*.

PROOF: Identify X with $\coprod_{i < \omega} G/G_i$ and C with G/G_{ω} via $\alpha : H/H_{\omega} \to G/G_{\omega}$ where $\alpha(hH_{\omega}) = \eta(h)G_{\omega}$. This is a bijection and $\eta(h)\alpha(kH_{\omega}) = \alpha(hkH_{\omega})$.

From Σ_H to Γ

- Find A countable, ω-categorical, Σ = Aut(A), with a continuous surjection ν : Σ → H with kernel Φ = Σ°.
- Let $\Psi = \nu^{-1}(H_{\omega})$; identify $C = H/H_{\omega}$ with Σ/Ψ .
- Let $B = A \cup C$ with $i : \Sigma \rightarrow \text{Sym}(B)$ the resulting action.
- Let Γ be the closure of $i(\Sigma)$ in Sym(*B*).

Lemma

- Γ is oligomorphic on B;
- **2** $\Gamma = i(\Sigma) \times \Gamma_A$ and $\Gamma_A \cong F$;
- Γ/Γ° is topologically isomorphic to *G*.

Conclusion - for automorphism groups

- There is an ω-categorical structure M₁ with domain B and automorphism group Γ.
- There is an ω-categorical structure M₂ with domain B and automorphism group Δ = Σ × F (topological product).

Theorem

 $\operatorname{Aut}(\mathcal{M}_1)$ and $\operatorname{Aut}(\mathcal{M}_2)$ are isomorphic as groups, but not as topological groups.

PROOF: The groups are both isomorphic to $\Sigma \times F$. Suppose $\beta : \Gamma \to \Delta$ is an isomorphism of topological groups. Then $\beta(\Gamma^{\circ}) = \Delta^{\circ}$ and so we have a topological isomorphism $\Gamma/\Gamma^{\circ} \to \Delta/\Delta^{\circ}$. But $\Gamma/\Gamma^{\circ} \cong G$ and $\Delta/\Delta^{\circ} \cong F \times H$ (topologically). Contradiction. \Box

Endomorphism monoids

 Canonical language for A: atomic relation for each Aut(A)-invariant subset of Aⁿ (all n).

• Let
$$\Lambda = \operatorname{End}(\mathcal{A}) = \operatorname{EEmb}(\mathcal{A}) = \overline{\Sigma} \subseteq \mathcal{A}^{\mathcal{A}}$$
.

- ν : Σ → H extends to a continuous monoid homomorphism μ : Λ → H.
- A acts on $C = H/H_{\omega} = G/G_{\omega}$ by $f(hH_{\omega}) = \mu(f)hH_{\omega}$.
- Obtain embedding $j : \Lambda \to B^B$ (where $B = A \cup C$) extending *i*.
- Let Ω be the closure of $j(\Lambda)$ in B^B .

Lemma

•
$$\Omega = j(\Lambda) \times \Omega_A$$
 and $\Omega_A = \Gamma_A$.

2 The group of units in Ω is Γ .

Conclusion - for endomorphism monoids

- Assume $\mathcal{M}_1, \mathcal{M}_2$ have their canonical languages.
- $\Gamma = \operatorname{Aut}(\mathcal{M}_1)$ and $\Omega = \operatorname{End}(\mathcal{M}_1)$.
- $End(\mathcal{M}_2)$ is isomorphic to the topological product $\Lambda \times F$.
- Both $\mathcal{M}_1, \mathcal{M}_2$ are countable, ω -categorical.

Theorem

 $\operatorname{End}(\mathcal{M}_1)$ and $\operatorname{End}(\mathcal{M}_2)$ are isomorphic as monoids, but not as topological monoids.

PROOF: The monoids are isomorphic to $\Lambda \times F$. A topological isomorphism between them would induce a topological isomorphism between their groups of units, Γ and Δ , which is impossible. \Box