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The space of subgroups

Let G be a countably infinite group and let

SubG ⊂ P(G) = {0,1 }G = 2G

be the set of subgroups H 6 G.

Observation
SubG is a closed subset of 2G.

Proof.
If S ∈ 2G isn’t a subgroup, then either

S ∈ {T ∈ 2G | 1 /∈ T},
or there exist a, b ∈ G such that

S ∈ {T ∈ 2G | a,b ∈ T and ab−1 /∈ T}.
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Invariant random subgroups

Note that G y SubG via conjugation: H
g7→ g H g−1.

Definition (Miklós Abért)
A G-invariant probability measure ν on SubG is called an invariant
random subgroup or IRS.

A Boring Example
If N E G, then the Dirac measure δN is an IRS of G.
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Stabilizer distributions

Observation
Suppose that G y ( Z , µ ) is a measure-preserving action on
a probability space.
Let f : Z → SubG be the G-equivariant map defined by
z 7→ Gz = {g ∈ G | g · z = z }.
Then the stabilizer distribution ν = f∗µ is an IRS of G.
If B ⊆ SubG, then ν( B ) = µ( { z ∈ Z | Gz ∈ B } ).

Theorem (Abért-Glasner-Virag 2012)
If ν is an IRS of G, then ν is the stabilizer distribution of a
measure-preserving action G y ( Z , µ ).
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Ergodicity

Definition
A measure-preserving action G y ( Z , µ ) is ergodic if µ(A) = 0, 1
for every G-invariant µ-measurable subset A ⊆ Z.

Observation
If G y ( Z , µ ) is ergodic, then the corresponding stabilizer distribution
ν is an ergodic IRS of G.

Theorem (Creutz-Peterson 2013)
If ν is an ergodic IRS of G, then ν is the stabilizer distribution of
an ergodic action G y ( Z , µ ).
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Strongly simple locally finite groups

Definition
A countable group G is strongly simple if the only ergodic IRS
of G are δ1 and δG.

Theorem (Kirillov 1965 & Peterson-Thom 2013)
If K is a countably infinite field and n ≥ 2, then PSL(n,K )
is strongly simple.

Open Problem
Classify the strongly simple locally finite groups.

Definition
A countably infinite group G is locally finite if we can express
G =

⋃
i∈N Gi as the union of an increasing chain of finite groups.
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Inductive limits of finite alternating groups

Definition
G is an L(Alt)-group if we can express G =

⋃
i∈N Gi as the union

of an increasing chain of finite alternating groups Gi = Alt(∆i),
where |∆0| ≥ 5.
Here we allow arbitrary embeddings Gi ↪→ Gi+1.

Theorem (Thomas-Tucker-Drob 2015)
It is possible to classify the strongly simple L(Alt)-groups ... and
to classify the ergodic IRS’s of the non-strongly simple L(Alt)-groups.
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Inductive limits of finite alternating groups

Definition
Suppose that Σ ⊆ ∆i+1 is a Gi -orbit.

Σ is trivial if |Σ| = 1.
Σ is natural if Gi = Alt(∆i) y Σ is isomorphic to Alt(∆i) y ∆i .
Otherwise, Σ is exceptional.

Notation/Theorem
ni = |∆i |.
ei+1 is the number of x ∈ ∆i+1 which lie in an exceptional Gi -orbit.
si+1 is the number of natural Gi -orbits on ∆i+1.
If i < j , then sij = si+1si+2 · · · sj is the number of natural Gi -orbits
on ∆j .

Simon Thomas (Rutgers University) LMS-EPSRC Durham Symposium 25th July 2015



The classification theorem

Definition (Zalesskii)
G =

⋃
i∈N Gi is a diagonal limit if ei+1 = 0 for all i ∈ N.

Theorem (Thomas-Tucker-Drob 2015)
If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and only
if G can be expressed as an almost diagonal limit of finite alternating
groups.

Definition
G =

⋃
i∈N Gi is an almost diagonal limit if si+1 > 0 for all i ∈ N and∑∞

i=1 ei/s0i <∞.

Simon Thomas (Rutgers University) LMS-EPSRC Durham Symposium 25th July 2015



Classifying of the ergodic IRS’s of diagonal limits

From now on, we suppose that G =
⋃

i∈N Gi is a diagonal limit.

The analysis initially splits into two cases:
G has linear natural orbit growth.
G has sublinear natural orbit growth.

The sublinear case then splits into two cases:
G � Alt(N).
G ∼= Alt(N).
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Linear vs sublinear natural orbit growth

Proposition (Leinen-Puglisi 2003)
For each i ∈ N, the limit ai = limj→∞ sij/nj exists.

Proof.
If i < j < k , then sik = sijsjk and sjknj ≤ nk . Hence we obtain that

sik

nk
=

sij

nj
·

sjknj

nk
≤

sij

nj
.

Definition (Leinen-Puglisi 2003)
G has linear natural orbit growth if ai > 0 for some (equivalently every)
i ∈ N. Otherwise, G has sublinear natural orbit growth.
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A natural candidate for a nontrivial ergodic IRS

Clearly we can suppose that
∆0 = {α0

` | ` < t0 = n0 }.
∆i+1 = {σ ̂k | σ ∈ ∆i ,0 ≤ k < si+1 } ∪ {αi+1

` | 0 ≤ ` < ti+1 }
and that the embedding ϕi : Alt(∆i)→ Alt(∆i+1) satisfies

ϕi(g)(σ ̂k) = g(σ)̂k
ϕi(g)(αi+1

` ) = αi+1
` .

Let ∆ consist of the infinite sequences of the form

(αi
`, ki+1, ki+2, ki+3, · · · )

where 0 ≤ kj < sj . Then G y ∆ via

g · (αi
`, ki+1, · · · , kj , kj+1 · · · ) = ( g(αi

`, ki+1, · · · , kj), kj+1 · · · ), g ∈ Gj .
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A natural candidate for a nontrivial ergodic IRS

For each σ ∈ ∆i , let ∆(σ) ⊆ ∆ be the set of sequences of the form

σ ̂ ( ki+1, ki+2, ki+3, · · · ).

Then the ∆(σ) form a clopen basis for a locally compact topology
on ∆; and G y ∆ via homeomorphisms.

Question
When is there a G-invariant ergodic probability measure on ∆?
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The Pointwise Ergodic Theorem

Theorem (Vershik 1974 & Lindenstrauss 1999)
Suppose that G =

⋃
Gi is locally finite and that G y ( Z , µ ) is ergodic.

If B ⊆ Z is µ-measurable, then for µ-a.e z ∈ Z,

µ(B) = lim
i→∞

1
|Gi |
|{g ∈ Gi | g · z ∈ B }|.
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Linear vs sublinear natural orbit growth

Proposition
If µ is a G-invariant ergodic probability measure on ∆ and σ ∈ ∆i , then

µ(∆(σ)) = lim
j→∞

sij/nj = ai .

Corollary
If G has sublinear natural orbit growth, then no such µ exists.

Proof.
Supposing that µ exists, we have that

1 = µ(∆) =
∑
i∈N

∑
0≤`<ti

µ(∆(αi
`)) = 0.
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The proof of the proposition

Choose z ∈ ∆ such that

µ(∆(σ)) = lim
j→∞

1
|Gj |
|{g ∈ Gj | g · z ∈ ∆(σ) }|.

Let z = (αr
`, kr+1, kr+2, kr+3, · · · ) and for each j > r , let

zj = (αr
`, kr+1, kr+2, kr+3, · · · , kj ) ∈ ∆j .

For each j > max{ i , r }, let Sj ⊆ ∆j be the set of sequences
of the form σ ̂ ( di+1,di+2, · · · ,dj ).

Then |Sj | = sij and we have that

{g ∈ Gj | g · z ∈ ∆(σ) } = {g ∈ Gj | g · zj ∈ Sj }.

It now follows that

µ(∆(σ)) = lim
j→∞

1
|Gj |
|{g ∈ Gj | g · zj ∈ Sj }| = lim

j→∞
|Sj |/|∆j | = ai .
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The ergodic IRS’s for linear natural orbit growth

Theorem
If G has linear natural orbit growth, then there exists a unique
G-invariant ergodic probability measure µ on ∆.

Non-obvious Corollary
If G has linear natural orbit growth, then the diagonal action
G y ( ∆r , µ⊗r ) is ergodic for all r ≥ 1.

Theorem (Thomas-Tucker-Drob 2015)
If G has linear natural orbit growth and ν 6= δ1, δG is an ergodic IRS,
then there exists r ≥ 1 such that ν is the stabilizer distribution of
G y ( ∆r , µ⊗r ).
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The basic strategy for groups of linear orbit growth

Observation
Suppose that G has linear natural orbit growth and that νr is the
stabilizer distribution of G y ( ∆r , µ⊗r ).
Then for νr -a.e. H ∈ SubG, for all but finitely many i ∈ N, there
exists Σi ⊂ ∆i with |∆i r Σi | = r such that H ∩ Alt(∆i) = Alt(Σi).

Target
Suppose that G has linear natural orbit growth and that ν 6= δ1, δG
is the stabilizer distribution of the ergodic action G y ( Z , µ ).
Then there exists r ≥ 1 such that for ν-a.e. H ∈ SubG, for all but
finitely many i ∈ N, there exists Σi ⊂ ∆i with |∆i r Σi | = r such
that H ∩ Alt(∆i) = Alt(Σi).
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Another application of the pointwise ergodic theorem

Let G =
⋃

Gi be locally finite and let G y ( Z , µ ) be ergodic.

For each z ∈ Z and i ∈ N, let Ωi(z) = {g · z | g ∈ Gi }.

Theorem
With the above hypotheses, for µ-a.e. z ∈ Z, for all g ∈ G,

µ( FixZ (g) ) = lim
i→∞
| FixΩi (z)(g) |/|Ωi(z) |.

Remark
Note that the | FixΩi (z)(g) |/|Ωi(z) | is the probability that an element of
( Ωi(z), µi ) is fixed by g ∈ Gi , where µi is the uniform probability
measure on Ωi(z)
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Computing the normalized permutation character

Definition
The normalized permutation character of the action Gi y Ωi(z) is

χi(g) = | FixΩi (z)(g) |/|Ωi(z) |.

Note that Gi y Ωi(z) is isomorphic to Gi y Gi/Hi , where
Hi = {h ∈ Gi | h · z = z } is the stabilizer of z.

Proposition
If χi is the normalized permutation character corresponding to the
action Gi y Gi/Hi , then

χi(g) =
|gGi ∩ Hi |
|gGi |

=
| {s ∈ Gi | sgs−1 ∈ Hi }|

|Gi |
.
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The basic strategy for groups of linear orbit growth

Let G =
⋃

Gi have linear natural orbit growth, where Gi = Alt(∆i).

Let ν be the stabilizer distribution of the ergodic G y ( Z , µ ).

Then we can suppose that there exists 1 6= g ∈ G such that
µ( FixZ (g) ) 6= 0. Otherwise, ν = δ1.

Choose a µ-random point z ∈ Z such that for all g ∈ G,

µ( FixZ (g) ) = lim
i→∞
| FixΩi (z)(g) |/|Ωi(z) |;

and let H = {h ∈ G | h · z = z } be the ν-random subgroup.

Then we can suppose that µ( FixZ (h) ) > 0 for all h ∈ H.
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The basic strategy for groups of linear orbit growth

We must analyse the action of Hi = H ∩Gi on ∆i .

Let h ∈ H be an element of prime order p.

Regarded as an element of Alt(∆i), let h be a product
of ci p-cycles.

Then there exists a constant b such that ci ≥ b ni .

By Stirling’s Formula, there exist constants r , s > 0 such that

|h Alt(∆i )| > r sni nni (p−1)b
i
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The basic strategy for groups of linear orbit growth

Suppose that Hi y ∆i is primitive for infinitely many i ∈ N.

Theorem (Praeger-Saxl 1979)
If Hi < Alt(ni) is a proper primitive subgroup, then |Hi | < 4ni .

But this means that

µ( FixZ (g) ) = lim
i→∞

|h Alt(∆i ) ∩ Hi |
|h Alt(∆i )|

≤ lim
i→∞

|Hi |
|h Alt(∆i )|

= 0,

which is a contradiction!
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Another natural candidate for a nontrivial ergodic IRS

Observation
Suppose that G has linear natural orbit growth and that νr is the
stabilizer distribution of G y ( ∆r , µ⊗r ).
Then for νr -a.e. H ∈ SubG, for all but finitely many i ∈ N, there
exists Σi ⊂ ∆i with |∆i r Σi | = r such that H ∩ Alt(∆i) = Alt(Σi).

Basic Idea
Construct an IRS ν which concentrates on subgroups

H =
⋃

Alt(Σi), Σi ⊂ ∆i ,

such that |∆i r Σi | → ∞.
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Another natural candidate for a nontrivial ergodic IRS

Let Σ consist of the sequences ( Σi )i∈N such that:
Σi ⊆ ∆i

Alt(Σi+1) ∩Gi = Alt(Σi).

For each X ⊆ ∆i , let Σ(X ) ⊆ Σ be the sequences such that Σi = X .
Then the Σ(X ) form a basis for a locally compact topology on Σ;
and G y Σ via homeomorphisms.

Fix some β0 = β ∈ R+ and let βi+1 = βi/si+1. Then we can define a
G-invariant probability measure µβ on Σ by

µβ( Σ(X ) ) =
(

1/eβi
)|X | (

1− 1/eβi
)ni−|X |

for each X ⊆ ∆i . Note that 1/eβi = (1/eβi+1)si+1 .
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Another natural candidate for a nontrivial ergodic IRS

Question
When is µβ ergodic?

Proposition
If G has linear natural orbit growth, then µβ is not ergodic.

Proof.
If σ = ( ∆i )i∈N, then {σ } is G-invariant. Furthermore,

µβ( {σ } ) = lim
i→∞

µβ( Σ(∆i) ) = lim
i→∞

1
eβni/s0i

=
1

eβ/a0
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The ergodic decomposition of µβ

Remark
Suppose that G has linear natural orbit growth and let λ = β/a0.
For r ≥ 1, let νr be the stabilizer distribution of G y ( ∆r , µ⊗r ).
Write ν0 = δG.
Then the ergodic decomposition of µβ is given by

µβ =
1
eλ

∞∑
r=0

λr

r !
νr .
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The ergodic IRS’s for sublinear natural orbit growth

Theorem
If G has sublinear natural orbit growth, then µβ is ergodic.

Theorem (Thomas-Tucker-Drob 2015)
If G 6= Alt(N) has sublinear natural orbit growth and ν 6= δ1, δG is an
ergodic IRS, then there exists β ∈ R+ such that ν is the stabilizer
distribution of G y ( Σ, µβ ).

Remark (Vershik)
Alt(N) has a much richer collection of ergodic IRS’s.

Simon Thomas (Rutgers University) LMS-EPSRC Durham Symposium 25th July 2015



An open problem

Question
If G is a countably infinite simple locally finite group and ν is an ergodic
IRS of G, does ν necessarily concentrate on the subgroups H 6 G
of a fixed isomorphism type?

Remark
Clearly ν concentrates on the subgroups H 6 G with a fixed
skeleton; i.e. with a fixed set of isomorphism types of finite
subgroups.
However, since the skeleton is usually the set of all finite groups,
this observation is not very useful.

The End
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