Invariant random subgroups of locally finite groups

Simon Thomas

Rutgers University "Jersey Roots, Global Reach"

25th July 2015

Simon Thomas (Rutgers University) LMS-EPSRC Durham Symposium

25th July 2015

The space of subgroups

• Let G be a countably infinite group and let

$$\operatorname{Sub}_{G} \subset \mathcal{P}(G) = \{0, 1\}^{G} = 2^{G}$$

be the set of subgroups $H \leq G$.

Observation

 Sub_G is a closed subset of 2^G .

Proof.

If $S \in 2^G$ isn't a subgroup, then either

•
$$S \in \{ T \in 2^G \mid 1 \notin T \},$$

or there exist $a, b \in G$ such that

•
$$S \in \{ T \in 2^G \mid a, b \in T \text{ and } ab^{-1} \notin T \}.$$

• Note that $G \curvearrowright \text{Sub}_G$ via conjugation: $H \stackrel{g}{\mapsto} g H g^{-1}$.

Definition (Miklós Abért)

A G-invariant probability measure ν on Sub_G is called an invariant random subgroup or IRS.

A Boring Example

If $N \leq G$, then the Dirac measure δ_N is an IRS of G.

Observation

- Suppose that G
 (Z, μ) is a measure-preserving action on a probability space.
- Let $f : Z \to \text{Sub}_G$ be the *G*-equivariant map defined by $z \mapsto G_z = \{ g \in G \mid g \cdot z = z \}.$
- Then the stabilizer distribution $\nu = f_*\mu$ is an IRS of *G*.
- If $B \subseteq \operatorname{Sub}_G$, then $\nu(B) = \mu(\{z \in Z \mid G_z \in B\})$.

Theorem (Abért-Glasner-Virag 2012)

If ν is an IRS of G, then ν is the stabilizer distribution of a measure-preserving action $G \curvearrowright (Z, \mu)$.

Definition

A measure-preserving action $G \curvearrowright (Z, \mu)$ is ergodic if $\mu(A) = 0, 1$ for every G-invariant μ -measurable subset $A \subseteq Z$.

Observation

If $G \frown (Z, \mu)$ is ergodic, then the corresponding stabilizer distribution ν is an ergodic IRS of *G*.

Theorem (Creutz-Peterson 2013)

If ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic action $G \curvearrowright (Z, \mu)$.

Strongly simple locally finite groups

Definition

A countable group G is strongly simple if the only ergodic IRS of G are δ_1 and δ_G .

Theorem (Kirillov 1965 & Peterson-Thom 2013)

If K is a countably infinite field and $n \ge 2$, then PSL(n, K) is strongly simple.

Open Problem

Classify the strongly simple locally finite groups.

Definition

A countably infinite group G is locally finite if we can express $G = \bigcup_{i \in \mathbb{N}} G_i$ as the union of an increasing chain of finite groups.

Simon Thomas (Rutgers University)

LMS-EPSRC Durham Symposium

Inductive limits of finite alternating groups

Definition

- G is an L(Alt)-group if we can express G = U_{i∈N} G_i as the union of an increasing chain of finite alternating groups G_i = Alt(Δ_i), where |Δ₀| ≥ 5.
- Here we allow arbitrary embeddings $G_i \hookrightarrow G_{i+1}$.

Theorem (Thomas-Tucker-Drob 2015)

It is possible to classify the strongly simple L(Alt)-groups ... **and** to classify the ergodic IRS's of the non-strongly simple L(Alt)-groups.

Inductive limits of finite alternating groups

Definition

Suppose that $\Sigma \subseteq \Delta_{i+1}$ is a G_i -orbit.

- Σ is trivial if $|\Sigma| = 1$.
- Σ is natural if $G_i = Alt(\Delta_i) \curvearrowright \Sigma$ is isomorphic to $Alt(\Delta_i) \curvearrowright \Delta_i$.
- Otherwise, Σ is exceptional.

Notation/Theorem

- $n_i = |\Delta_i|$.
- e_{i+1} is the number of $x \in \Delta_{i+1}$ which lie in an exceptional G_i -orbit.
- s_{i+1} is the number of natural G_i -orbits on Δ_{i+1} .
- If i < j, then s_{ij} = s_{i+1}s_{i+2} · · · s_j is the number of natural G_i-orbits on Δ_j.

Definition (Zalesskii)

 $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit if $e_{i+1} = 0$ for all $i \in \mathbb{N}$.

Theorem (Thomas-Tucker-Drob 2015)

If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and only if G can be expressed as an almost diagonal limit of finite alternating groups.

Definition

 $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit if $s_{i+1} > 0$ for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} e_i / s_{0i} < \infty$.

From now on, we suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit.

The analysis initially splits into two cases:

- G has linear natural orbit growth.
- *G* has sublinear natural orbit growth.

The sublinear case then splits into two cases:

- $G \ncong \operatorname{Alt}(\mathbb{N})$.
- $G \cong \operatorname{Alt}(\mathbb{N}).$

Linear vs sublinear natural orbit growth

Proposition (Leinen-Puglisi 2003)

For each $i \in \mathbb{N}$, the limit $a_i = \lim_{j \to \infty} s_{ij}/n_j$ exists.

Proof.

If i < j < k, then $s_{ik} = s_{ij}s_{jk}$ and $s_{jk}n_j \le n_k$. Hence we obtain that

$$\frac{s_{ik}}{n_k} = \frac{s_{ij}}{n_j} \cdot \frac{s_{jk}n_j}{n_k} \leq \frac{s_{ij}}{n_j}.$$

Definition (Leinen-Puglisi 2003)

G has linear natural orbit growth if $a_i > 0$ for some (equivalently every) $i \in \mathbb{N}$. Otherwise, *G* has sublinear natural orbit growth.

A natural candidate for a nontrivial ergodic IRS

Clearly we can suppose that

•
$$\Delta_0 = \{ \alpha_\ell^0 \mid \ell < t_0 = n_0 \}.$$

• $\Delta_{i+1} = \{ \sigma^k \mid \sigma \in \Delta_i, 0 \le k < s_{i+1} \} \cup \{ \alpha_\ell^{i+1} \mid 0 \le \ell < t_{i+1} \}$

and that the embedding $\varphi_i : Alt(\Delta_i) \to Alt(\Delta_{i+1})$ satisfies

•
$$\varphi_i(g)(\sigma^k) = g(\sigma)^k$$

•
$$\varphi_i(g)(\alpha_\ell^{i+1}) = \alpha_\ell^{i+1}.$$

Let Δ consist of the infinite sequences of the form

$$(\alpha_{\ell}^{i}, k_{i+1}, k_{i+2}, k_{i+3}, \cdots)$$

where $0 \le k_j < s_j$. Then $G \curvearrowright \Delta$ via

 $g \cdot (\alpha_{\ell}^{i}, \mathbf{k}_{i+1}, \cdots, \mathbf{k}_{j}, \mathbf{k}_{j+1} \cdots) = (g(\alpha_{\ell}^{i}, \mathbf{k}_{i+1}, \cdots, \mathbf{k}_{j}), \mathbf{k}_{j+1} \cdots), \quad g \in G_{j}.$

For each $\sigma \in \Delta_i$, let $\Delta(\sigma) \subseteq \Delta$ be the set of sequences of the form

$$\sigma^{\widehat{}}(k_{i+1},k_{i+2},k_{i+3},\cdots).$$

Then the $\Delta(\sigma)$ form a clopen basis for a locally compact topology on Δ ; and $G \curvearrowright \Delta$ via homeomorphisms.

Question

When is there a G-invariant ergodic probability measure on Δ ?

Theorem (Vershik 1974 & Lindenstrauss 1999)

Suppose that $G = \bigcup G_i$ is locally finite and that $G \curvearrowright (Z, \mu)$ is ergodic. If $B \subseteq Z$ is μ -measurable, then for μ -a.e $z \in Z$,

$$\mu(B) = \lim_{i \to \infty} \frac{1}{|G_i|} |\{ g \in G_i \mid g \cdot z \in B \}|.$$

Theorem (Vershik 1974 & Lindenstrauss 1999)

Suppose that $G = \bigcup G_i$ is locally finite and that $G \curvearrowright (Z, \mu)$ is ergodic. If $B \subseteq Z$ is μ -measurable, then for μ -a.e $z \in Z$,

$$\mu(B) = \lim_{i \to \infty} \frac{1}{|G_i|} |\{ g \in G_i \mid g \cdot z \in B \}|.$$

Linear vs sublinear natural orbit growth

Proposition

If μ is a G-invariant ergodic probability measure on Δ and $\sigma \in \Delta_i$, then

$$\mu(\Delta(\sigma)) = \lim_{j\to\infty} s_{ij}/n_j = a_i.$$

Corollary

If G has sublinear natural orbit growth, then no such μ exists.

Proof.

Supposing that μ exists, we have that

$$\mathsf{1}=\mu(\Delta)=\sum_{i\in\mathbb{N}}\sum_{\mathsf{0}\leq\ell< t_i}\mu(\Delta(lpha_\ell^i))=\mathsf{0}.$$

The proof of the proposition

• Choose $z \in \Delta$ such that

$$\mu(\Delta(\sigma)) = \lim_{j \to \infty} \frac{1}{|G_j|} |\{ g \in G_j \mid g \cdot z \in \Delta(\sigma) \}|.$$

• Let
$$z = (\alpha_{\ell}^r, k_{r+1}, k_{r+2}, k_{r+3}, \cdots)$$
 and for each $j > r$, let
 $z_j = (\alpha_{\ell}^r, k_{r+1}, k_{r+2}, k_{r+3}, \cdots, k_j) \in \Delta_j.$

For each *j* > max{*i*, *r*}, let S_j ⊆ Δ_j be the set of sequences of the form σ[^](d_{i+1}, d_{i+2}, · · · , d_j).

• Then $|S_j| = s_{ij}$ and we have that

$$\{ g \in G_j \mid g \cdot z \in \Delta(\sigma) \} = \{ g \in G_j \mid g \cdot z_j \in S_j \}.$$

It now follows that

$$\mu(\Delta(\sigma)) = \lim_{j \to \infty} \frac{1}{|G_j|} |\{ g \in G_j \mid g \cdot z_j \in S_j \}| = \lim_{j \to \infty} |S_j| / |\Delta_j| = a_j.$$

Theorem

If G has linear natural orbit growth, then there exists a unique G-invariant ergodic probability measure μ on Δ .

Non-obvious Corollary

If G has linear natural orbit growth, then the diagonal action $G \curvearrowright (\Delta^r, \mu^{\otimes r})$ is ergodic for all $r \ge 1$.

Theorem (Thomas-Tucker-Drob 2015)

If G has linear natural orbit growth and $\nu \neq \delta_1$, δ_G is an ergodic IRS, then there exists $r \geq 1$ such that ν is the stabilizer distribution of $G \curvearrowright (\Delta^r, \mu^{\otimes r})$.

Observation

- Suppose that G has linear natural orbit growth and that ν_r is the stabilizer distribution of G ∼ (Δ^r, μ^{⊗r}).
- Then for ν_r-a.e. H ∈ Sub_G, for all but finitely many i ∈ N, there exists Σ_i ⊂ Δ_i with |Δ_i \ Σ_i| = r such that H ∩ Alt(Δ_i) = Alt(Σ_i).

Target

- Suppose that G has linear natural orbit growth and that ν ≠ δ₁, δ_G is the stabilizer distribution of the ergodic action G ∼ (Z, μ).
- Then there exists r ≥ 1 such that for ν-a.e. H ∈ Sub_G, for all but finitely many i ∈ N, there exists Σ_i ⊂ Δ_i with |Δ_i \ Σ_i| = r such that H ∩ Alt(Δ_i) = Alt(Σ_i).

Another application of the pointwise ergodic theorem

• Let $G = \bigcup G_i$ be locally finite and let $G \frown (Z, \mu)$ be ergodic.

• For each $z \in Z$ and $i \in \mathbb{N}$, let $\Omega_i(z) = \{ g \cdot z \mid g \in G_i \}$.

Theorem

With the above hypotheses, for μ -a.e. $z \in Z$, for all $g \in G$,

$$\mu(\operatorname{Fix}_{Z}(g)) = \lim_{i \to \infty} |\operatorname{Fix}_{\Omega_{i}(z)}(g)| / |\Omega_{i}(z)|.$$

Remark

Note that the $|\operatorname{Fix}_{\Omega_i(z)}(g)|/|\Omega_i(z)|$ is the probability that an element of $(\Omega_i(z), \mu_i)$ is fixed by $g \in G_i$, where μ_i is the uniform probability measure on $\Omega_i(z)$

Computing the normalized permutation character

Definition

The normalized permutation character of the action $G_i \curvearrowright \Omega_i(z)$ is

$$\chi_i(\boldsymbol{g}) = |\operatorname{Fix}_{\Omega_i(\boldsymbol{z})}(\boldsymbol{g})|/|\Omega_i(\boldsymbol{z})|.$$

 Note that G_i → Ω_i(z) is isomorphic to G_i → G_i/H_i, where H_i = { h ∈ G_i | h ⋅ z = z } is the stabilizer of z.

Proposition

If χ_i is the normalized permutation character corresponding to the action $G_i \sim G_i/H_i$, then

$$\chi_i(g) = rac{|g^{G_i} \cap H_i|}{|g^{G_i}|} = rac{|\{s \in G_i \mid sgs^{-1} \in H_i\}|}{|G_i|}$$

The basic strategy for groups of linear orbit growth

- Let $G = \bigcup G_i$ have linear natural orbit growth, where $G_i = Alt(\Delta_i)$.
- Let ν be the stabilizer distribution of the ergodic G ∩ (Z, μ).
- Then we can suppose that there exists $1 \neq g \in G$ such that $\mu(\operatorname{Fix}_{Z}(g)) \neq 0$. Otherwise, $\nu = \delta_{1}$.
- Choose a μ -random point $z \in Z$ such that for all $g \in G$,

$$\mu(\operatorname{\mathsf{Fix}}_Z(g)) = \lim_{i o \infty} |\operatorname{\operatorname{Fix}}_{\Omega_i(z)}(g)| / |\Omega_i(z)|;$$

and let $H = \{ h \in G \mid h \cdot z = z \}$ be the ν -random subgroup.

• Then we can suppose that $\mu(\operatorname{Fix}_{Z}(h)) > 0$ for all $h \in H$.

The basic strategy for groups of linear orbit growth

- We must analyse the action of $H_i = H \cap G_i$ on Δ_i .
- Let $h \in H$ be an element of prime order p.
- Regarded as an element of Alt(Δ_i), let *h* be a product of *c_i p*-cycles.
- Then there exists a constant *b* such that $c_i \ge b n_i$.
- By Stirling's Formula, there exist constants r, s > 0 such that

$$|h^{\operatorname{Alt}(\Delta_i)}| > r s^{n_i} n_i^{n_i(p-1)b}$$

The basic strategy for groups of linear orbit growth

• Suppose that $H_i \curvearrowright \Delta_i$ is primitive for infinitely many $i \in \mathbb{N}$.

Theorem (Praeger-Saxl 1979)

If $H_i < Alt(n_i)$ is a proper primitive subgroup, then $|H_i| < 4^{n_i}$.

But this means that

$$\mu(\operatorname{Fix}_{Z}(g)) = \lim_{i \to \infty} \frac{|h^{\operatorname{Alt}(\Delta_{i})} \cap H_{i}|}{|h^{\operatorname{Alt}(\Delta_{i})}|} \\ \leq \lim_{i \to \infty} \frac{|H_{i}|}{|h^{\operatorname{Alt}(\Delta_{i})}|} = 0,$$

which is a contradiction!

Observation

- Then for ν_r -a.e. $H \in \text{Sub}_G$, for all but finitely many $i \in \mathbb{N}$, there exists $\Sigma_i \subset \Delta_i$ with $|\Delta_i \smallsetminus \Sigma_i| = r$ such that $H \cap \text{Alt}(\Delta_i) = \text{Alt}(\Sigma_i)$.

Basic Idea

Construct an IRS ν which concentrates on subgroups

$$H = \bigcup \operatorname{Alt}(\Sigma_i), \qquad \Sigma_i \subset \Delta_i,$$

such that $|\Delta_i \setminus \Sigma_i| \to \infty$.

Another natural candidate for a nontrivial ergodic IRS

Let Σ consist of the sequences $(\Sigma_i)_{i \in \mathbb{N}}$ such that:

- $\Sigma_i \subseteq \Delta_i$
- $\operatorname{Alt}(\Sigma_{i+1}) \cap G_i = \operatorname{Alt}(\Sigma_i).$

For each $X \subseteq \Delta_i$, let $\Sigma(X) \subseteq \Sigma$ be the sequences such that $\Sigma_i = X$. Then the $\Sigma(X)$ form a basis for a locally compact topology on Σ ; and $G \curvearrowright \Sigma$ via homeomorphisms.

Fix some $\beta_0 = \beta \in \mathbb{R}^+$ and let $\beta_{i+1} = \beta_i / s_{i+1}$. Then we can define a *G*-invariant probability measure μ_β on Σ by

$$\mu_{\beta}(\Sigma(X)) = \left(1/e^{\beta_{i}}\right)^{|X|} \left(1-1/e^{\beta_{i}}\right)^{n_{i}-|X|}$$

for each $X \subseteq \Delta_i$. Note that $1/e^{\beta_i} = (1/e^{\beta_{i+1}})^{s_{i+1}}$.

Another natural candidate for a nontrivial ergodic IRS

Question

When is μ_{β} ergodic?

Proposition

If G has linear natural orbit growth, then μ_{β} is not ergodic.

Proof.

If $\sigma = (\Delta_i)_{i \in \mathbb{N}}$, then $\{\sigma\}$ is *G*-invariant. Furthermore,

$$\mu_{\beta}(\{ \sigma \}) = \lim_{i \to \infty} \mu_{\beta}(\Sigma(\Delta_i)) = \lim_{i \to \infty} \frac{1}{e^{\beta n_i/s_{0i}}} = \frac{1}{e^{\beta/a_0}}$$

Remark

- Suppose that *G* has linear natural orbit growth and let $\lambda = \beta/a_0$.
- For $r \ge 1$, let ν_r be the stabilizer distribution of $G \frown (\Delta^r, \mu^{\otimes r})$.
- Write $\nu_0 = \delta_G$.
- Then the ergodic decomposition of μ_{β} is given by

$$\mu_{\beta} = \frac{1}{e^{\lambda}} \sum_{r=0}^{\infty} \frac{\lambda^r}{r!} \nu_r.$$

Theorem

If G has sublinear natural orbit growth, then μ_{β} is ergodic.

Theorem (Thomas-Tucker-Drob 2015)

If $G \neq Alt(\mathbb{N})$ has sublinear natural orbit growth and $\nu \neq \delta_1$, δ_G is an ergodic IRS, then there exists $\beta \in \mathbb{R}^+$ such that ν is the stabilizer distribution of $G \curvearrowright (\Sigma, \mu_\beta)$.

Remark (Vershik)

 $Alt(\mathbb{N})$ has a much richer collection of ergodic IRS's.

Question

If G is a countably infinite simple locally finite group and ν is an ergodic IRS of G, does ν necessarily concentrate on the subgroups $H \leq G$ of a fixed isomorphism type?

Remark

- Clearly *ν* concentrates on the subgroups *H* ≤ *G* with a fixed skeleton; i.e. with a fixed set of isomorphism types of finite subgroups.
- However, since the skeleton is usually the set of all finite groups, this observation is not very useful.