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Public Service Announcement

The first paper from this project is available at arXiv:1408.2021,

and in the Journal of Combinatorial Theory, Series A (JCTA).

The second has appeared in preprint form, at arXiv:1507.04838.

A third is “in the works.”

This is joint work with Igor Dolinka (Novi Sad), James East

(Western Sydney), Athanasios Evangelou, Des FitzGerald and Nick

Ham (Tasmania) and James Hyde (St Andrews). [HEHFELD]
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Representing a partition by a diagram

� Join similarly-coloured points;

� Forget colouring on points;

� Pick spanning forest;

� Choice of spanning forest doesn’t matter.
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� Forget labelling on central pts and copy over outer ones;

� Copy non-transversal connections;

� Join top and bottom diagrams at interior points, in order;

� Copy transversal paths over as edges.
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Structural Features

� Pn contains all transformation semigroups of degree n;

� Families of interest comprise *-regular monoids;

� Green’s relations determined by combinatorics;

� Planar guys are aperiodic/combinatorial (i.e. subgroup-free);

� Usually* D-classes form chain, indexed by number of

transversal parts (*not case for partial Jones);

� Nice topological structures on sets of idempotents in “planar”

cases.
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dom
∧
(α) = {2, 4, 6, 7}

dom∨(α) = {4, 5, 6, 7}

ker
∧
(α) =






{1, 3, 5},
{2, 4},
{6}, {7}






ker∨(α) =






{1, 3}, {2},
{4, 7},
{5}, {6}






ker(α) =

�
{1, 2, 3, 4, 5, 7},

{6}

�

Understand structure by means of domains and kernels.

The rank
is the size of ker(α). An element is irreducible if it has one kernel

class.
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Idempotents and Irreducibility

Lemma (HEHFELD, I)

An irreducible partition α ∈ Pn is idempotent precisely if
rank(α) ≤ 1.

Lemma (HEHFELD, I)

A partition is idempotent iff each restriction to a kernel class is.

Corollary (HEHFELD, I)

A partition is idempotent iff each kernel class houses at most one
transverse component.
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Counting Idempotents using a Partition Trick

Can understand and very quickly enumerate idempotents in Pn,

Brn and PBrn.

Theorem (HEHFELD, I; Theorem 7)

Let Kn be any of the above. Then the number e(Kn) of
idempotents in Kn is equal to

e(K0) = 1, e(Kn) =

n�

i=1

c(Ki ) · e(Kn−i )

where c(Kn) is the number of irreducible idempotents.
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The planar case

Counting irreducible planar idempotents is hard.

Related to

counting objects related to meanders.

Hard open problem in

enumerative combinatorics, deep connections to languages and

(representations of) permutation groups.

Need new ideas to tackle this problem.
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Planar elements in partial Brauer also form submonoid, Motzkin

monoid Mn.

Subdiagrams (partition refinements) of Jones

elements form intermediate partial Jones monoid Jn < PJn < Mn.

A Motzkin element A Motzkin element

not in partial Jonesin partial Jones
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Interface diagrams

Interface diagram is neighbourhood around interface between the

two copies of a diagram α in the product α · α:

−→

Connected components are topologically either embedded circles,

intervals, rays or half-rays. Rays can be cis or trans.

For idempotents: no cis rays, no half-rays.
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A topological structure on idempotents

Maps ·̂ : E −→ D ∩ E from set E of idempotents to union D of

D-classes of rank at most 1.

Image contains only idempotents.

Fibres are connected pointed cubical-complexes; strongly reflects

combinatorics in semigroup.

Refines natural order [Higgins, 1994] on idempotents.
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Connected Idempotents

Can further reduce to studying connected idempotents with active

return edges marked.

Each connected component contributes τ · β + 1, where τ (resp.

β) is # top (resp. bottom) return edges.
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A shrub is a rooted tree of height (at most) 1.

Every connected

component contributes a shrub to its fiber under ·̂.

Every shrub is a root with τ · β leaves, τ , β as before.
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Calculating number of idempotents

The fiber of a rank ≤ 1 idempotent is a product of shrubs given by

connected components with return edges marked.



Calculating idempotents, II

Theorem
The number of idempotents in the Jones monoid of degree n is

e(Jn) =
�

e∈D
δe =

�

e∈D

�

c≤e
c connected

(τc · βc + 1) .

where D is the set of rank ≤ 1 elements, δe is the size of the fibre
at e of the hat map, and τc and βc are as above for a connected
component with return edges marked.
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Partial Jones is different and hard.

� Hat map preserves but does not reflect membership in partial

Jones;

� D-classes don’t form a chain;

� No obvious unique normal forms for elements;

� We have solved this. This will be HEHFELD, III.
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