Presentations for symmetric groups encoded by idempotents in the full transformation monoid

Robert D. Gray
University of East Anglia

Durham, 29th July 2015

A joke...

Why was the maths book feeling depressed?

A joke...

Why was the maths book feeling depressed?

Because it had so many problems.
(C. A. Carvalho (2015))

Generators and relations for symmetric groups

S_{4} - symmetric group on $\{1,2,3,4\}$.
A generating set
$S_{4}=\left\langle(12),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}4 & 4\end{array}\right)\right\rangle$

Generators and relations for symmetric groups

S_{4} - symmetric group on $\{1,2,3,4\}$.
A generating set
$S_{4}=\left\langle(12),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}4 & 4\end{array}\right\rangle\right.$
Some relations between these generators
(i) Elements have order 2:
$(12)(12)=()$
(ii) Non-overlapping commute:
$(12)(34)=(34)(12)$

Generators and relations for symmetric groups

S_{4} - symmetric group on $\{1,2,3,4\}$.
A generating set
$S_{4}=\left\langle(12),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}4 & 4\end{array}\right\rangle\right.$
Some relations between these generators
(i) Elements have order 2:
$(12)(12)=()$
(ii) Non-overlapping commute:
$(12)(34)=(34)(12)$

(iii) Partially overlapping:
$(12)(23)(12)=(23)(12)(23)$

Coxeter presentation

S_{r} - the symmetric group on $[r]=\{1,2, \ldots, r\}$.
$S_{r}=\langle(12),(23), \ldots,(r-1 r)\rangle$
S_{r} is isomorphic to the group defined by the group presentation:

$$
\left.\begin{array}{rl}
\left\langle g_{1}, \ldots, g_{r-1}\right| & g_{i}^{2}=1 \\
& g_{i} g_{j}=g_{j} g_{i} \quad|i-j|>1 \\
& g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1}
\end{array}\right\rangle
$$

- This is called the Coxeter presentation for S_{r}.
- It defines S_{r} in terms of the generating set consisting of Coxeter transpositions $(i+1)$ where

$$
\text { generating symbol } g_{i} \longleftrightarrow \text { the generator }(i i+1)
$$

Aim of my talk

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.
T_{n} - full transformation monoid, $\quad S_{r}$ - symmetric group.

- I will give another finite presentation for S_{r}.
- This presentation will have:
- Generating symbols $\leftarrow_{\text {bijection }} \rightarrow$ rank r idempotents of T_{n}
- Relations obtained from certain quadruples of idempotents.

Aim of my talk

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.
T_{n} - full transformation monoid, $\quad S_{r}$ - symmetric group.

- I will give another finite presentation for S_{r}.
- This presentation will have:
- Generating symbols $\leftarrow_{\text {bijection }} \rightarrow$ rank r idempotents of T_{n}
- Relations obtained from certain quadruples of idempotents.

I aim to explain:

1. What we proved: The main theorem of the article
R. Gray and N. Ruškuc, Maximal subgroups of free idempotent generated semigroups over the full transformation monoid.
Proc. London Math. Soc. 104 (2012) 997-1018.
2. Why we proved it: Motivated by free idempotent generated semigroups.
3. How we proved it: Finding an encoding of the Coxeter presentation in the combinatorics of kernels and images of idempotent transformations.

Idempotent, sets and partitions

Idempotents in T_{n}
$e \in T_{n}$ is an idempotent $\Leftrightarrow e$ acts as identity on its image $\operatorname{im}(e)$.
$\epsilon=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4\end{array}\right), \operatorname{im}(\epsilon)=\{2,4\}$ with $2 \epsilon=2,4 \epsilon=4$, and $\epsilon^{2}=\epsilon$.
$\beta=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2\end{array}\right), \operatorname{im}(\beta)=\{2,4\}$ with $2 \beta \neq 2$, and $\beta^{2} \neq \beta$.

Idempotent, sets and partitions

Idempotents in T_{n}
$e \in T_{n}$ is an idempotent $\Leftrightarrow e$ acts as identity on its image im (e).
$\epsilon=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4\end{array}\right), \operatorname{im}(\epsilon)=\{2,4\}$ with $2 \epsilon=2,4 \epsilon=4$, and $\epsilon^{2}=\epsilon$.
$\beta=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2\end{array}\right), \operatorname{im}(\beta)=\{2,4\}$ with $2 \beta \neq 2$, and $\beta^{2} \neq \beta$.
Images and kernels
Let $\alpha \in T_{n}$ with $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|=r$.
Associated with α are:
A set $\operatorname{im}(\alpha)$ of size r.
A partition $\operatorname{ker}(\alpha)=\left\{m \alpha^{-1}: m \in \operatorname{im}(\alpha)\right\}$ of $[n]$ into r non-empty parts.

Idempotent, sets and partitions

Idempotents in T_{n}
$e \in T_{n}$ is an idempotent $\Leftrightarrow e$ acts as identity on its image $\operatorname{im}(e)$.
$\epsilon=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4\end{array}\right), \operatorname{im}(\epsilon)=\{2,4\}$ with $2 \epsilon=2,4 \epsilon=4$, and $\epsilon^{2}=\epsilon$.
$\beta=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2\end{array}\right), \operatorname{im}(\beta)=\{2,4\}$ with $2 \beta \neq 2$, and $\beta^{2} \neq \beta$.
Images and kernels
Let $\alpha \in T_{n}$ with $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|=r$.
Associated with α are:
A set $\operatorname{im}(\alpha)$ of size r.
A partition $\operatorname{ker}(\alpha)=\left\{m \alpha^{-1}: m \in \operatorname{im}(\alpha)\right\}$ of $[n]$ into r non-empty parts.
Example: $\quad \alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 3 & 5 & 2 & 3\end{array}\right)$
$\operatorname{im}(\alpha)=\{2,3,5\}, \quad \operatorname{ker}(\alpha)=\{\{1,4\},\{2,3,6\},\{5\}\}$.

Idempotent, sets and partitions

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection
$\left\{\right.$ idempotents in T_{n} or rank $\left.r\right\} \quad \leftarrow_{\text {bijection }} \rightarrow \quad\{(P, A) \in I \times J: A \perp P\}$
$e_{P, A}$ with image A and kernel $P \quad \longleftrightarrow \quad(P, A) \quad($ for $A \perp P)$

Idempotent, sets and partitions

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.
Fact: There is a natural bijection

$$
\begin{array}{rcl}
\left\{\text { idempotents in } T_{n} \text { or rank } r\right\} & \leftarrow_{\text {bijection }} \rightarrow & \{(P, A) \in I \times J: A \perp P\} \\
e_{P, A} \text { with image } A \text { and kernel } P & \longleftrightarrow & (P, A) \quad(\text { for } A \perp P)
\end{array}
$$

Example

 $n=8, r=3$ with $A \perp P$ being the pair $256 \perp 1247|35| 68$| | | Image | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kernel $\quad P=1247\|35\| 68$ | $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & 2 & & 5 & 6 & \end{array}\right)=e_{P, A}$ | | | | | |

Idempotent, sets and partitions

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

$$
\begin{array}{rcl}
\left\{\text { idempotents in } T_{n} \text { or rank } r\right\} & \leftarrow_{\text {bijection }} \rightarrow & \{(P, A) \in I \times J: A \perp P\} \\
e_{P, A} \text { with image } A \text { and kernel } P & \longleftrightarrow & (P, A) \quad(\text { for } A \perp P)
\end{array}
$$

Example

 $n=8, r=3$ with $A \perp P$ being the pair $256 \perp 1247|35| 68$| | Image | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kernel $\quad P=1247\|35\| 68$ | $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & & 2 & 5 & 6 & 2 & \end{array}\right)=e_{P, A}$ | | | | |

Idempotent, sets and partitions

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

$$
\begin{array}{rcl}
\left\{\text { idempotents in } T_{n} \text { or rank } r\right\} & \leftarrow_{\text {bijection }} \rightarrow & \{(P, A) \in I \times J: A \perp P\} \\
e_{P, A} \text { with image } A \text { and kernel } P & \longleftrightarrow & (P, A) \quad(\text { for } A \perp P)
\end{array}
$$

Example

 $n=8, r=3$ with $A \perp P$ being the pair $256 \perp 1247|35| 68$| | | Image | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kernel $\quad P=1247\|35\| 68$ | $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & 5 & 2 & 5 & 6 & 2 & 6\end{array}\right)=e_{P, A}$ | | | | | |

Graham-Houghton Graph

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.
The Graham-Houghton Graph Γ_{r} is the bipartite graph with
Vertices: $I \cup J, \quad$ Edges: $P \sim A \Leftrightarrow A \perp P$
Note: $\quad\left\{\right.$ edges of $\left.\Gamma_{r}\right\} \leftarrow_{\text {bijection }} \rightarrow$ \{ idempotents in T_{n} or rank r \}

Graham-Houghton Graph

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- $I=$ \{partitions of [n] into r non-empty sets $\}$
- $J=\{r$-element subsets of $[n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

The Graham-Houghton Graph Γ_{r} is the bipartite graph with
Vertices: $I \cup J, \quad$ Edges: $P \sim A \Leftrightarrow A \perp P$
Note: $\quad\left\{\right.$ edges of $\left.\Gamma_{r}\right\} \leftarrow_{\text {bijection }} \rightarrow\left\{\right.$ idempotents in T_{n} or rank $\left.r\right\}$

Example

With $n=4$ the graph Γ_{2} is below (note that it is connected).

Singular squares

$(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp\{P, Q\}$.

A square (P, Q, A, B) is singular if $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is a subsemigroup of T_{n}.

Singular squares

$(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp\{P, Q\}$.

A square (P, Q, A, B) is singular if $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is a subsemigroup of T_{n}.

Example: With $n=4$ and $r=2$.

	$A=14$	
$P=12 \mid 34$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3\end{array}\right)$
$Q=13 \mid 24$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 1 & 4\end{array}\right) \quad\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 3 & 2\end{array}\right)$	

Singular squares

$(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp\{P, Q\}$.

A square (P, Q, A, B) is singular if $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is a subsemigroup of T_{n}.

Example: With $n=4$ and $r=2$.

	$A=14$	
$P=12 \mid 34$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3\end{array}\right)$
$Q=13 \mid 24$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 1 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 3 & 2\end{array}\right)$

Not singular since $e_{P, A} e_{Q, B}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 2\end{array}\right) \notin\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$.

Singular squares

$(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp\{P, Q\}$.

A square (P, Q, A, B) is singular if $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is a subsemigroup of T_{n}.

Example: With $n=4$ and $r=2$.

	$A=24$	
$P=14 \mid 23$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4\end{array}\right)$
$Q=4 \mid 123$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4\end{array}\right) \quad\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4\end{array}\right)$	

Singular squares

$(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp\{P, Q\}$.

A square (P, Q, A, B) is singular if $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is a subsemigroup of T_{n}.

Example: With $n=4$ and $r=2$.

	$A=24$	
$P=14 \mid 23$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4\end{array}\right)$
$Q=4 \mid 123$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4\end{array}\right)$	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4\end{array}\right)$

Is a singular square as $\left\{e_{P, A}, e_{P, B}, e_{Q, A}, e_{Q, B}\right\}$ is closed.

Graham-Houghton 2-complex $\mathcal{G H}_{r}$

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.
1-skeleton: the Graham-Houghton graph Γ_{r}
$I=$ \{partitions of [n] into r non-empty sets $\}$
$J=\{r$-element subsets of $[n]\}$
Vertices: $I \cup J, \quad$ Edges: $P \sim A \Leftrightarrow A \perp P$
2-cells

Let $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ denote the fundamental group $\mathcal{G} \mathcal{H}_{r}$.
Roughly speaking: $H_{r} \cong\langle\underbrace{\operatorname{rank} r \text { idempotents }}_{\text {generating symbols }} \mid \underbrace{\text { singular squares }}_{\text {defining relations }}\rangle$

Graham-Houghton 2-complex $\mathcal{G H}_{r}$

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.
1-skeleton: the Graham-Houghton graph Γ_{r}
$I=$ \{partitions of [n] into r non-empty sets\}
$J=\{r$-element subsets of $[n]\}$
Vertices: $I \cup J, \quad$ Edges: $P \sim A \Leftrightarrow A \perp P$
2-cells

Let $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ denote the fundamental group $\mathcal{G} \mathcal{H}_{r}$.
Roughly speaking: $H_{r} \cong\langle\underbrace{\operatorname{rank} r \text { idempotents }}_{\text {generating symbols }} \mid \underbrace{\text { singular squares }}_{\text {defining relations }}\rangle$

Main theorem

Example: The Graham-Houghton complex $\mathcal{G H}_{2}$ for T_{4} :

Main theorem

Example: The Graham-Houghton complex $\mathcal{G H}_{2}$ for T_{4} :

Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n-2$, and let $\mathcal{G} \mathcal{H}_{r}$ be the Graham-Houghton complex built from the rank r idempotents in T_{n}. Then the fundamental group $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ is isomorphic to the symmetric group S_{r}.

Main theorem

Example: The Graham-Houghton complex $\mathcal{G H}_{2}$ for T_{4} :

Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n-2$, and let $\mathcal{G} \mathcal{H}_{r}$ be the Graham-Houghton complex built from the rank r idempotents in T_{n}. Then the fundamental group $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ is isomorphic to the symmetric group S_{r}.
[Note: When $r=n-1 \Rightarrow \Gamma_{r}$ has no squares $\Rightarrow H_{n-1}$ is the fundamental group of a graph, and hence is a free group.]

- Why did we prove this?
- How did we prove this?

Idempotent generated semigroups

S - semigroup, $\quad E=E(S)$ - idempotents $e=e^{2}$ of S
Definition. S is idempotent generated if $\langle E(S)\rangle=S$

Idempotent generated semigroups

S - semigroup, $\quad E=E(S)$ - idempotents $e=e^{2}$ of S
Definition. S is idempotent generated if $\langle E(S)\rangle=S$

- Many natural examples
- Howie (1966) - $T_{n} \backslash S_{n}$, the non-invertible transformations;
- Erdös (1967) - singular part of $M_{n}(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F};
- Putcha (2006) - conditions for a reductive linear algebraic monoid to have the same property;
- Fountain and Lewin (1992) - endomorphism monoids of finite dimensional independence algebras;
- East (2011) - $\mathcal{P}_{n} \backslash S_{n}$, the non-invertible elements of the partition monoid.

Idempotent generated semigroups

S - semigroup, $\quad E=E(S)$ - idempotents $e=e^{2}$ of S
Definition. S is idempotent generated if $\langle E(S)\rangle=S$

- Many natural examples
- Howie (1966) - $T_{n} \backslash S_{n}$, the non-invertible transformations;
- Erdös (1967) - singular part of $M_{n}(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F};
- Putcha (2006) - conditions for a reductive linear algebraic monoid to have the same property;
- Fountain and Lewin (1992) - endomorphism monoids of finite dimensional independence algebras;
- East (2011) - $\mathcal{P}_{n} \backslash S_{n}$, the non-invertible elements of the partition monoid.
- Idempotent generated semigroups are "general"
- Every semigroup S embeds into an idempotent generated semigroup.

Free idempotent generated semigroups

S - semigroup, $\quad E=E(S)$ - idempotents of S
Nambooripad (1979): The set of idempotents E carries a certain abstract structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Free idempotent generated semigroups

S - semigroup, $\quad E=E(S)$ - idempotents of S
Nambooripad (1979): The set of idempotents E carries a certain abstract structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Within this family there is a unique free object $I G(E)$ which is the semigroup defined by presentation:

$$
I G(E)=\langle E \mid e \cdot f=e f(e, f \in E,\{e, f\} \cap\{e f, f e\} \neq \emptyset)\rangle
$$

$I G(E)$ is called the free idempotent generated semigroup on E.

First steps towards understanding $I G(E)$

Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with $E=E(S)$. Then $I G(E)$ is an idempotent generated semigroup and there is a surjective homomorphism $\phi: I G(E) \rightarrow S$ which is bijective on idempotents.

Conclusion. It is important to understand $I G(E)$ if one is interested in understanding an arbitrary idempotent generated semigroups.

IG(E)

$$
S=\langle E(S)\rangle
$$

Maximal subgroups of $I G(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

IG(E)

$E=E(S)$

Maximal subgroups of $I G(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

- Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.

Maximal subgroups of $I G(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

- Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.
- Brittenham, Margolis \& Meakin (2009) - gave the first counterexample to this conjecture by showing $\mathbb{Z} \oplus \mathbb{Z}$ can arise.

Maximal subgroups of $I G(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

- Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.
- Brittenham, Margolis \& Meakin (2009) - gave the first counterexample to this conjecture by showing $\mathbb{Z} \oplus \mathbb{Z}$ can arise.
- RG \& Ruskuc (2012) proved that every group is a maximal subgroup of some free idempotent generated semigroup.

New question

What can be said about maximal subgroups of $I G(E)$ where $E=E(S)$ for semigroups S that arise in nature?

$I G(E)$ for $E=E\left(T_{n}\right)$

Let $E=E\left(T_{n}\right)$ where T_{n} is the full transformation monoid.
Howie (1966): $\left\langle E\left(T_{n}\right)\right\rangle=\left(T_{n} \backslash S_{n}\right) \cup\{\mathrm{id}\}$.
Easdown (1985): We may identify $E=E\left(T_{n}\right)=E(I G(E))$.
Fix an idempotent transformation $\epsilon \in T_{n}$ of rank r.
Problem: Identify the maximal subgroup H_{ϵ} of

$$
I G(E)=\langle E \mid e \cdot f=e f(e, f \in E,\{e, f\} \cap\{e f, f e\} \neq \emptyset)\rangle
$$

containing ϵ.
General fact: H_{ϵ} is a homomorphic preimage of the corresponding maximal subgroup of T_{n}, namely the symmetric group S_{r}.

Reinterpreting our result

> Theorem (Brittenham, Margolis \& Meakin (2009))
> Let S be a regular semigroup and set $E=E(S)$. Then
> $\{$ maximal subgroups of $I G(E)\}=\quad\{$ fundamental groups of
> \quad Graham-Houghton complexes of $S\}$

So, our result on fundamental groups of GH-complexes of T_{n} says:

Theorem (RG and Ruškuc (2012))

Let T_{n} be the full transformation semigroup, let E be its set of idempotents, and let $\epsilon \in E$ be an arbitrary idempotent with image size $r(1 \leq r \leq n-2)$. Then the maximal subgroup H_{ϵ} of the free idempotent generated semigroup $I G(E)$ containing ϵ is isomorphic to the symmetric group S_{r}.

Main theorem

Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n-2$, and let $\mathcal{G} \mathcal{H}_{r}$ be the Graham-Houghton complex built from the rank r idempotents in T_{n}. Then the fundamental group $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ is isomorphic to the symmetric group S_{r}.

- Why did we prove this?
- How did we prove this?

Computing the group H_{r}

The group $H_{r}=\pi_{1}\left(\mathcal{G H}_{r}\right)$ is then defined by the presentation with generators

$$
F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}
$$

and the defining relations

$$
\begin{array}{ll}
f_{P, A}=1 & \left((P, A) \in \mathcal{T} \text { a spanning tree of } \Gamma_{r}\right) \\
f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B} & ((P, Q, A, B) \text { a singular square }) .
\end{array}
$$

Observation: This presentation has lots of generators so if this is a presentation for S_{r} then it must have a lot of redundancy.

Idea: Our hope is to show this is a presentation for S_{r}. So, ultimately each generator $f_{P, A}$ will need to be equal (in the group defined by the presentation) to some element of S_{r}.

So, for each $P \in I, A \in J, A \perp P$ we want to define an element $\lambda(P, A) \in S_{r}$ which we aim to prove is the element represented by the generator $f_{P, A}$.

The label function

For each set A and partition P with $A \perp P$ write:

$$
\begin{aligned}
& A=\left\{a_{1}, \ldots, a_{r}\right\}, a_{1}<\cdots<a_{r}, \\
& P=\left\{P_{1}, \ldots, P_{r}\right\}, \min P_{1}<\cdots<\min P_{r} .
\end{aligned}
$$

Then write

$$
\left(\begin{array}{cccc}
P_{1} & P_{2} & \ldots & P_{r} \\
a_{l_{1}} & a_{l_{2}} & \ldots & a_{l_{r}}
\end{array}\right), \quad \lambda(P, A)=\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
l_{1} & l_{2} & \ldots & l_{r}
\end{array}\right) \in S_{r} .
$$

The label function

For each set A and partition P with $A \perp P$ write:

$$
\begin{aligned}
A & =\left\{a_{1}, \ldots, a_{r}\right\}, a_{1}<\cdots<a_{r}, \\
P & =\left\{P_{1}, \ldots, P_{r}\right\}, \min P_{1}<\cdots<\min P_{r} .
\end{aligned}
$$

Then write

$$
\left(\begin{array}{cccc}
P_{1} & P_{2} & \ldots & P_{r} \\
a_{l_{1}} & a_{l_{2}} & \ldots & a_{l_{r}}
\end{array}\right), \quad \lambda(P, A)=\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
l_{1} & l_{2} & \ldots & l_{r}
\end{array}\right) \in S_{r} .
$$

Example: $n=7, r=4$

$$
\left.P=\begin{array}{cccc}
P_{1} & P_{2} & P_{3} & P_{4} \\
\{\{1\}, & \\
A=2,3,6\},\{4,7\},\{5\}\} \\
\{1 & , 4 & , 5 & , 6
\end{array}\right\}(P, A)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right)
$$

Singular squares and labels

Fact: We can read off the singular squares using λ. A square

$$
(P, Q, A, B) \text { is singular } \Leftrightarrow \lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) .
$$

We can think of λ as labelling each edge of the Graham-Houghton graph.
Example

First we prove the group H_{r} is defined by the presentation

Generators: $F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}$
Relations:
(I) $f_{P, A}=1$ whenever $\lambda(P, A)=1$
$\lambda(P, A) \quad \lambda(P, B)$
(II) $f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B}$ where (P, Q, A, B) is a square: $\lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) . \quad \lambda(Q, A) \quad \lambda(Q, B)$

First we prove the group H_{r} is defined by the presentation

Generators: $F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}$
Relations:
(I) $f_{P, A}=1$ whenever $\lambda(P, A)=1$ $\lambda(P, A) \quad \lambda(P, B)$
(II) $f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B}$ where (P, Q, A, B) is a square: $\lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) . \quad \lambda(Q, A) \quad \lambda(Q, B)$

Basic idea of the proof that $H_{r} \cong S_{r}$
Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_{r}.

First we prove the group H_{r} is defined by the presentation

Generators: $F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}$
Relations:
(I) $f_{P, A}=1$ whenever $\lambda(P, A)=1$ $\lambda(P, A) \quad \lambda(P, B)$
(II) $f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B}$ where (P, Q, A, B) is a square: $\lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) . \quad \lambda(Q, A) \quad \lambda(Q, B)$

Basic idea of the proof that $H_{r} \cong S_{r}$
Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_{r}.

1. Eliminate all generators $f_{P, A}$ with $\lambda(P, A) \neq(i i+1)$ expressing them as products of generators with labels $(i i+1)$.

First we prove the group H_{r} is defined by the presentation

Generators: $F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}$
Relations:
(I) $f_{P, A}=1$ whenever $\lambda(P, A)=1$ $\lambda(P, A) \quad \lambda(P, B)$
(II) $f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B}$ where (P, Q, A, B) is a square: $\lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) . \quad \lambda(Q, A) \quad \lambda(Q, B)$

Basic idea of the proof that $H_{r} \cong S_{r}$
Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_{r}.

1. Eliminate all generators $f_{P, A}$ with $\lambda(P, A) \neq(i i+1)$ expressing them as products of generators with labels $(i i+1)$.
2. Show that if $\lambda(P, A)=(i i+1)=\lambda(Q, B)$ then $f_{P, A}=f_{Q, B}$ is a consequence of (I) \& (II).

First we prove the group H_{r} is defined by the presentation

Generators: $F=\left\{f_{P, A}: P \in I, A \in J, A \perp P\right\}$
Relations:
(I) $f_{P, A}=1$ whenever $\lambda(P, A)=1$ $\lambda(P, A) \quad \lambda(P, B)$
(II) $f_{P, A}^{-1} f_{P, B}=f_{Q, A}^{-1} f_{Q, B}$ where (P, Q, A, B) is a square: $\lambda(P, A)^{-1} \lambda(P, B)=\lambda(Q, A)^{-1} \lambda(Q, B) . \quad \lambda(Q, A) \quad \lambda(Q, B)$

Basic idea of the proof that $H_{r} \cong S_{r}$
Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_{r}.

1. Eliminate all generators $f_{P, A}$ with $\lambda(P, A) \neq(i i+1)$ expressing them as products of generators with labels $(i i+1)$.
2. Show that if $\lambda(P, A)=(i i+1)=\lambda(Q, B)$ then $f_{P, A}=f_{Q, B}$ is a consequence of (I) \& (II).
3. We are left with a presentation with generators in one-one correspondence with the Coxeter generators of S_{r}. To finish the proof we show that the Coxeter relations are consequences.

Table of labels

Spot singular squares

$$
()^{-1}\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
$$

Table of generating symbols

$$
I \times J \quad A \quad B
$$

Deduce relations
$f_{P, A}=1$, and $f_{Q, A} f_{P, B}=f_{Q, B}$

Spotting relations from Coxeter presentation for S_{r}

$$
\left\langle g_{1}, \ldots, g_{r-1} \mid g_{i}^{2}=1, \quad g_{i} g_{j}=g_{j} g_{i} \quad(|i-j|>1), \quad g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1}\right\rangle
$$

Example: Case $n=7, r=4$ finding a relation $g_{i} g_{j}=g_{j} g_{i}$.

	A	B	C
	1256	2356	2345
$\mathrm{P}=1347\|2\| 5 \mid 6$	()	(12)	
$\mathrm{Q}=137\|2\| 46 \mid 5$	(34)	$(12)(34)$	(12)
$\mathrm{R}=127\|3\| 46 \mid 5$		(3 4)	()

Spotting relations from Coxeter presentation for S_{r}

$$
\left\langle g_{1}, \ldots, g_{r-1} \mid g_{i}^{2}=1, \quad g_{i} g_{j}=g_{j} g_{i} \quad(|i-j|>1), \quad g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1}\right\rangle
$$

Example: Case $n=7, r=4$ finding a relation $g_{i} g_{j}=g_{j} g_{i}$.

	A	B	C
	1256	2356	2345
$\mathrm{P}=1347\|2\| 5 \mid 6$	()	(12)	
$\mathrm{Q}=137\|2\| 46 \mid 5$	(34)	$(12)(34)$	(12)
$\mathrm{R}=127\|3\| 46 \mid 5$		(3 4)	()

Deductions: $f_{Q, A} f_{P, B}=f_{Q, B}=f_{Q, C} f_{R, B}, \quad f_{Q, A}=f_{R, B}, \quad f_{P, B}=f_{Q, C}$

$$
\therefore \quad f_{Q, A} f_{P, B}=f_{P, B} f_{Q, A} \text { where } \lambda(P, B)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \text { and } \lambda(Q, A)=\left(\begin{array}{ll}
3 & 4
\end{array}\right) \text {. }
$$

Related results and future work

Analogous results have since been proved for:

- Endomorphism monoids of free G-acts

I. Dolinka, V. Gould and D. Yang,

Free idempotent generated semigroups and endomorphism monoids of free G-acts. Journal of Algebra. 429 (2015), 133-176.

- The full linear monoid $M_{n}(\mathbb{F})$

I. Dolinka and R. D. Gray,

Maximal subgroups of free idempotent generated semigroups over the full linear monoid.
Trans. Amer. Math. Soc. 366(1) (2014), 419-455.

Note: For the full linear monoid we currently only know the groups for $r<\frac{n}{3}$ (we get the general linear group $G L_{r}(\mathbb{F})$) but we do not know what the groups are for higher values of r.

