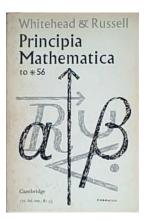
Presentations for symmetric groups encoded by idempotents in the full transformation monoid

Robert D. Gray University of East Anglia

Durham, 29th July 2015

A joke...

Why was the maths book feeling depressed?

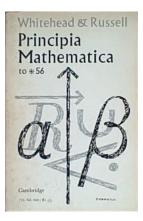


A joke...

Why was the maths book feeling depressed?

Because it had so many problems.

(C. A. Carvalho (2015))



Generators and relations for symmetric groups

 S_4 - symmetric group on $\{1, 2, 3, 4\}$.

A generating set

 $S_4 = \langle (1\ 2), (2\ 3), (3\ 4) \rangle$

Generators and relations for symmetric groups

 S_4 - symmetric group on $\{1, 2, 3, 4\}$.

A generating set

 $S_4 = \langle (1\ 2), (2\ 3), (3\ 4) \rangle$

Some relations between these generators

 $\frac{(i) \text{ Elements have order 2:}}{(1 \ 2)(1 \ 2) = ()}$

(ii) Non-overlapping commute: (1 2)(3 4) = (3 4)(1 2)

Generators and relations for symmetric groups

 S_4 - symmetric group on $\{1, 2, 3, 4\}$.

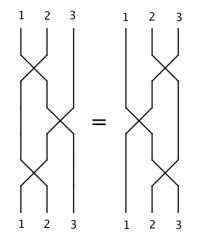
A generating set

 $S_4 = \langle (1\ 2), (2\ 3), (3\ 4) \rangle$

Some relations between these generators

 $\frac{(i) \text{ Elements have order 2:}}{(1 \ 2)(1 \ 2) = ()}$

(ii) Non-overlapping commute: (1 2)(3 4) = (3 4)(1 2)



 $\frac{\text{(iii) Partially overlapping:}}{(1\ 2)(2\ 3)(1\ 2) = (2\ 3)(1\ 2)(2\ 3)}$

Coxeter presentation

 S_r - the symmetric group on $[r] = \{1, 2, \dots, r\}$.

$$S_r = \langle (1 2), (2 3), \dots, (r-1 r) \rangle$$

 S_r is isomorphic to the group defined by the group presentation:

$$\langle g_1, \dots, g_{r-1} | g_i^2 = 1$$

 $g_i g_j = g_j g_i \quad |i - j| > 1$
 $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \qquad
angle$

- This is called the Coxeter presentation for S_r .
- It defines S_r in terms of the generating set consisting of Coxeter transpositions (i i + 1) where

generating symbol $g_i \iff$ the generator (i i + 1)

Aim of my talk

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

 T_n - full transformation monoid, S_r - symmetric group.

- I will give another finite presentation for S_r .
- This presentation will have:
 - Generating symbols $\leftarrow_{\text{bijection}} \rightarrow$ rank *r* idempotents of T_n
 - Relations obtained from certain quadruples of idempotents.

Aim of my talk

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

 T_n - full transformation monoid, S_r - symmetric group.

- I will give another finite presentation for S_r .
- This presentation will have:
 - Generating symbols $\leftarrow_{\text{bijection}} \rightarrow$ rank *r* idempotents of T_n
 - Relations obtained from certain quadruples of idempotents.

I aim to explain:

1. What we proved: The main theorem of the article

R. Gray and N. Ruškuc, Maximal subgroups of free idempotent generated semigroups over the full transformation monoid. *Proc. London Math. Soc.* 104 (2012) 997–1018.

- 2. Why we proved it: Motivated by free idempotent generated semigroups.
- 3. How we proved it: Finding an encoding of the Coxeter presentation in the combinatorics of kernels and images of idempotent transformations.

Idempotents in T_n

 $e \in T_n$ is an idempotent $\Leftrightarrow e$ acts as identity on its image im(e).

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4 \end{pmatrix}, \text{ im}(\epsilon) = \{2, 4\} \text{ with } 2\epsilon = 2, 4\epsilon = 4, \text{ and } \epsilon^2 = \epsilon.$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2 \end{pmatrix}, \text{ im}(\beta) = \{2, 4\} \text{ with } 2\beta \neq 2, \text{ and } \beta^2 \neq \beta.$$

Idempotents in T_n

 $e \in T_n$ is an idempotent $\Leftrightarrow e$ acts as identity on its image im(e).

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4 \end{pmatrix}, \text{ im}(\epsilon) = \{2, 4\} \text{ with } 2\epsilon = 2, 4\epsilon = 4, \text{ and } \epsilon^2 = \epsilon.$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2 \end{pmatrix}, \text{ im}(\beta) = \{2, 4\} \text{ with } 2\beta \neq 2, \text{ and } \beta^2 \neq \beta.$$

Images and kernels

Let $\alpha \in T_n$ with rank $(\alpha) = |\operatorname{im}(\alpha)| = r$.

Associated with α are: A set $\operatorname{im}(\alpha)$ of size *r*. A partition ker $(\alpha) = \{m\alpha^{-1} : m \in \operatorname{im}(\alpha)\}$ of [n] into *r* non-empty parts.

Idempotents in T_n

 $e \in T_n$ is an idempotent $\Leftrightarrow e$ acts as identity on its image im(e).

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4 \end{pmatrix}, \text{ im}(\epsilon) = \{2, 4\} \text{ with } 2\epsilon = 2, 4\epsilon = 4, \text{ and } \epsilon^2 = \epsilon.$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 2 & 2 \end{pmatrix}, \text{ im}(\beta) = \{2, 4\} \text{ with } 2\beta \neq 2, \text{ and } \beta^2 \neq \beta.$$

Images and kernels

Let $\alpha \in T_n$ with rank $(\alpha) = |im(\alpha)| = r$.

Associated with α are: A set $\operatorname{im}(\alpha)$ of size *r*. A partition $\operatorname{ker}(\alpha) = \{m\alpha^{-1} : m \in \operatorname{im}(\alpha)\}$ of [n] into *r* non-empty parts.

Example: $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 3 & 5 & 2 & 3 \end{pmatrix}$ im(α) = {2,3,5}, ker(α) = {{1,4}, {2,3,6}, {5}}.

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- ► *I* = {partitions of [n] into *r* non-empty sets}
- $J = \{r \text{-element subsets of } [n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in T_n or rank r} $\leftarrow_{\text{bijection}} \rightarrow \{(P,A) \in I \times J : A \perp P\}$ $e_{P,A}$ with image A and kernel $P \quad \longleftrightarrow \quad (P,A) \quad (\text{for } A \perp P)$

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- ► *I* = {partitions of [n] into *r* non-empty sets}
- $J = \{r \text{-element subsets of } [n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in T_n or rank r} $\leftarrow_{\text{bijection}} \rightarrow \{(P,A) \in I \times J : A \perp P\}$ $e_{P,A}$ with image A and kernel $P \quad \longleftrightarrow \quad (P,A) \quad (\text{for } A \perp P)$

Example

n = 8, r = 3 with $A \perp P$ being the pair $256 \perp 1247 \mid 35 \mid 68$

Image

$$A = 256$$

 Kernel
 $P = 1247 \mid 35 \mid 68$
 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & \end{pmatrix} = e_{P,A}$

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- ► *I* = {partitions of [n] into *r* non-empty sets}
- ▶ $J = \{r\text{-element subsets of } [n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in T_n or rank r} $\leftarrow_{\text{bijection}} \rightarrow \{(P,A) \in I \times J : A \perp P\}$ $e_{P,A}$ with image A and kernel $P \quad \longleftrightarrow \quad (P,A) \quad (\text{for } A \perp P)$

Example

n = 8, r = 3 with $A \perp P$ being the pair $256 \perp 1247 \mid 35 \mid 68$

Image

$$A = 256$$

 Kernel
 $P = 1247 \mid 35 \mid 68$
 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & 2 & 5 & 6 & 2 \end{pmatrix} = e_{P,A}$

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- ► *I* = {partitions of [n] into *r* non-empty sets}
- $J = \{r \text{-element subsets of } [n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in T_n or rank r} $\leftarrow_{\text{bijection}} \rightarrow \{(P, A) \in I \times J : A \perp P\}$ $e_{P,A}$ with image A and kernel $P \quad \longleftrightarrow \quad (P,A) \quad (\text{for } A \perp P)$

Example

n = 8, r = 3 with $A \perp P$ being the pair $256 \perp 1247 \mid 35 \mid 68$

Image

$$A = 256$$

 Kernel
 $P = 1247 \mid 35 \mid 68$
 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & 5 & 2 & 5 & 6 & 2 & 6 \\ 2 & 2 & 5 & 2 & 5 & 6 & 2 & 6 \end{pmatrix} = e_{P,A}$

Graham–Houghton Graph

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- I = {partitions of [n] into r non-empty sets}
- $J = \{r \text{-element subsets of } [n]\}$

For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

The Graham–Houghton Graph Γ_r is the bipartite graph with Vertices: $I \cup J$, Edges: $P \sim A \Leftrightarrow A \perp P$

Note: {edges of Γ_r } $\leftarrow_{\text{bijection}} \rightarrow$ { idempotents in T_n or rank r}

Graham–Houghton Graph

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

- I = {partitions of [n] into r non-empty sets}
- $J = \{r \text{-element subsets of } [n]\}$

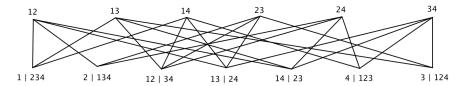
For $P \in I$ and $A \in J$ write $A \perp P$ if A is a transversal of P.

The Graham–Houghton Graph Γ_r is the bipartite graph with Vertices: $I \cup J$, Edges: $P \sim A \Leftrightarrow A \perp P$

Note: {edges of Γ_r } $\leftarrow_{\text{bijection}} \rightarrow$ { idempotents in T_n or rank r}

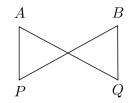
Example

With n = 4 the graph Γ_2 is below (note that it is connected).



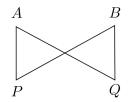
 $(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp \{P, Q\}$.

A square (P, Q, A, B) is singular if $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is a subsemigroup of T_n .



 $(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp \{P, Q\}$.

A square (P, Q, A, B) is singular if $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is a subsemigroup of T_n .



Example: With n = 4 and r = 2.

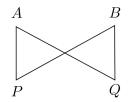
$$A = 14 \qquad B = 23$$

$$P = 12|34 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3 \end{pmatrix}$$

$$Q = 13|24 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 1 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 3 & 2 \end{pmatrix}$$

 $(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp \{P, Q\}$.

A square (P, Q, A, B) is singular if $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is a subsemigroup of T_n .



Example: With n = 4 and r = 2.

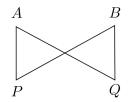
$$A = 14 \qquad B = 23$$

$$P = 12|34 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3 \end{pmatrix}$$

$$Q = 13|24 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 1 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 3 & 2 \end{pmatrix}$$
Not singular since $e_{P,A}e_{Q,B} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 2 \end{pmatrix} \notin \{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}.$

 $(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp \{P, Q\}$.

A square (P, Q, A, B) is singular if $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is a subsemigroup of T_n .



Example: With n = 4 and r = 2.

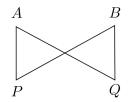
$$A = 24 \qquad B = 34$$

$$P = 14|23 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4 \end{pmatrix}$$

$$Q = 4|123 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix}$$

 $(P, Q, A, B) \in I \times I \times J \times J$ is a square if $\{A, B\} \perp \{P, Q\}$.

A square (P, Q, A, B) is singular if $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is a subsemigroup of T_n .



Example: With n = 4 and r = 2.

$$A = 24 \qquad B = 34$$

$$P = 14|23 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4 \end{pmatrix}$$

$$Q = 4|123 \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix}$$

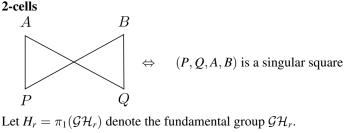
Is a singular square as $\{e_{P,A}, e_{P,B}, e_{Q,A}, e_{Q,B}\}$ is closed.

Graham–Houghton 2-complex \mathcal{GH}_r

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

1-skeleton: the Graham–Houghton graph Γ_r $I = \{ \text{partitions of } [n] \text{ into } r \text{ non-empty sets} \}$ $J = \{ r \text{-element subsets of } [n] \}$

Vertices: $I \cup J$, Edges: $P \sim A \Leftrightarrow A \perp P$



Let $H_r = \pi_1(\mathcal{G}\mathcal{H}_r)$ denote the fundamental group $\mathcal{G}\mathcal{H}_r$. Roughly speaking: $H_r \cong \langle \underbrace{\operatorname{rank} r \text{ idempotents}}_{rightarrow lines} | \underbrace{\operatorname{singular squares}}_{rightarrow lines} \rangle$

generating symbols

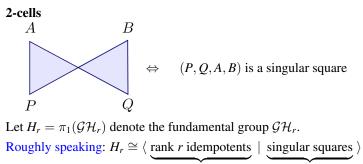
defining relations

Graham–Houghton 2-complex \mathcal{GH}_r

Let $n, r \in \mathbb{N}$ with $1 \leq r \leq n$.

1-skeleton: the Graham–Houghton graph Γ_r $I = \{ \text{partitions of } [n] \text{ into } r \text{ non-empty sets} \}$ $J = \{ r \text{-element subsets of } [n] \}$

Vertices: $I \cup J$, Edges: $P \sim A \Leftrightarrow A \perp P$

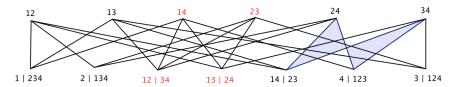


generating symbols

defining relations

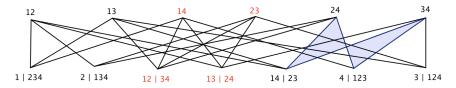
Main theorem

Example: The Graham–Houghton complex \mathcal{GH}_2 for T_4 :



Main theorem

Example: The Graham–Houghton complex \mathcal{GH}_2 for T_4 :

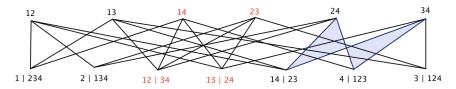


Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \le r \le n-2$, and let \mathcal{GH}_r be the Graham–Houghton complex built from the rank *r* idempotents in T_n . Then the fundamental group $H_r = \pi_1(\mathcal{GH}_r)$ is isomorphic to the symmetric group S_r .

Main theorem

Example: The Graham–Houghton complex \mathcal{GH}_2 for T_4 :



Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \le r \le n-2$, and let \mathcal{GH}_r be the Graham–Houghton complex built from the rank *r* idempotents in T_n . Then the fundamental group $H_r = \pi_1(\mathcal{GH}_r)$ is isomorphic to the symmetric group S_r .

[Note: When $r = n - 1 \Rightarrow \Gamma_r$ has no squares $\Rightarrow H_{n-1}$ is the fundamental group of a graph, and hence is a free group.]

- Why did we prove this?
- How did we prove this?

Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

Definition. *S* is idempotent generated if $\langle E(S) \rangle = S$

Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

Definition. *S* is idempotent generated if $\langle E(S) \rangle = S$

- Many natural examples
 - Howie (1966) $T_n \setminus S_n$, the non-invertible transformations;
 - Erdös (1967) singular part of $M_n(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F} ;
 - Putcha (2006) conditions for a reductive linear algebraic monoid to have the same property;
 - Fountain and Lewin (1992) endomorphism monoids of finite dimensional independence algebras;
 - East (2011) $\mathcal{P}_n \setminus S_n$, the non-invertible elements of the partition monoid.

Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

Definition. *S* is idempotent generated if $\langle E(S) \rangle = S$

- Many natural examples
 - Howie (1966) $T_n \setminus S_n$, the non-invertible transformations;
 - Erdös (1967) singular part of $M_n(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F} ;
 - Putcha (2006) conditions for a reductive linear algebraic monoid to have the same property;
 - Fountain and Lewin (1992) endomorphism monoids of finite dimensional independence algebras;
 - East (2011) $\mathcal{P}_n \setminus S_n$, the non-invertible elements of the partition monoid.
- Idempotent generated semigroups are "general"
 - Every semigroup *S* embeds into an idempotent generated semigroup.

Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

Nambooripad (1979): The set of idempotents E carries a certain abstract structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

Nambooripad (1979): The set of idempotents E carries a certain abstract structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Within this family there is a unique free object IG(E) which is the semigroup defined by presentation:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \ \{e, f\} \cap \{ef, fe\} \neq \emptyset) \ \rangle$$

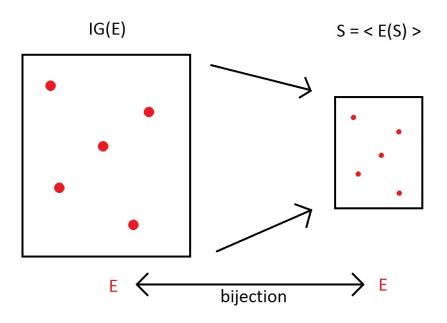
IG(E) is called the free idempotent generated semigroup on E.

First steps towards understanding IG(E)

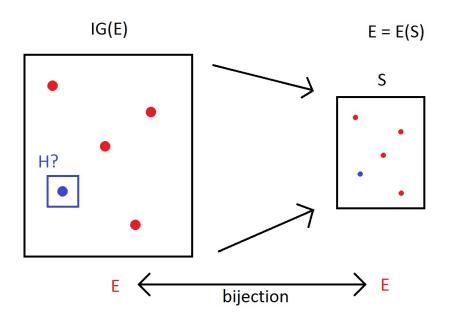
Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is an idempotent generated semigroup and there is a surjective homomorphism $\phi : IG(E) \to S$ which is bijective on idempotents.

Conclusion. It is important to understand IG(E) if one is interested in understanding an arbitrary idempotent generated semigroups.



Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?



Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

 Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

- Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.
- ► Brittenham, Margolis & Meakin (2009) gave the first counterexample to this conjecture by showing Z ⊕ Z can arise.

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

- Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.
- ► Brittenham, Margolis & Meakin (2009) gave the first counterexample to this conjecture by showing Z ⊕ Z can arise.
- RG & Ruskuc (2012) proved that *every group* is a maximal subgroup of some free idempotent generated semigroup.

New question

What can be said about maximal subgroups of IG(E) where E = E(S) for semigroups *S* that arise in nature?

IG(E) for $E = E(T_n)$

Let $E = E(T_n)$ where T_n is the full transformation monoid.

Howie (1966): $\langle E(T_n) \rangle = (T_n \setminus S_n) \cup \{id\}.$

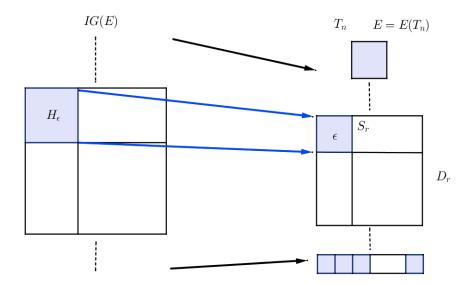
Easdown (1985): We may identify $E = E(T_n) = E(IG(E))$. Fix an idempotent transformation $\epsilon \in T_n$ of rank *r*.

Problem: Identify the maximal subgroup H_{ϵ} of

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \ \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

containing ϵ .

General fact: H_{ϵ} is a homomorphic preimage of the corresponding maximal subgroup of T_n , namely the symmetric group S_r .



Reinterpreting our result

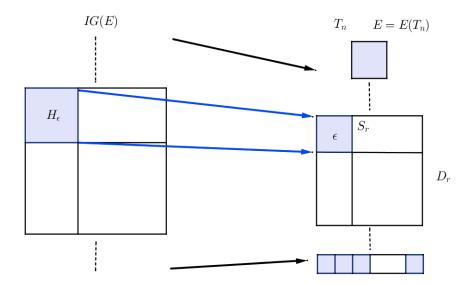
Theorem (Brittenham, Margolis & Meakin (2009)) Let *S* be a regular semigroup and set E = E(S). Then

{ maximal subgroups of IG(E) } = { fundamental groups of Graham–Houghton complexes of S }

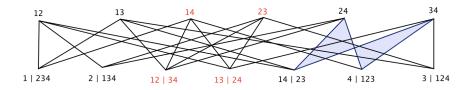
So, our result on fundamental groups of GH-complexes of T_n says:

Theorem (RG and Ruškuc (2012))

Let T_n be the full transformation semigroup, let E be its set of idempotents, and let $\epsilon \in E$ be an arbitrary idempotent with image size r ($1 \le r \le n-2$). Then the maximal subgroup H_{ϵ} of the free idempotent generated semigroup IG(E) containing ϵ is isomorphic to the symmetric group S_r .



Main theorem



Theorem (RG and Ruškuc (2012))

Let $n, r \in \mathbb{N}$ with $1 \le r \le n-2$, and let \mathcal{GH}_r be the Graham–Houghton complex built from the rank *r* idempotents in T_n . Then the fundamental group $H_r = \pi_1(\mathcal{GH}_r)$ is isomorphic to the symmetric group S_r .

- Why did we prove this?
- ▶ How did we prove this?

Computing the group H_r

The group $H_r = \pi_1(\mathcal{GH}_r)$ is then defined by the presentation with generators

$$F = \{ f_{P,A} : P \in I, A \in J, A \perp P \},\$$

and the defining relations

$$\begin{split} f_{P,A} &= 1 \qquad ((P,A) \in \mathcal{T} \text{ a spanning tree of } \Gamma_r) \\ f_{P,A}^{-1} f_{P,B} &= f_{Q,A}^{-1} f_{Q,B} \quad ((P,Q,A,B) \text{ a singular square}). \end{split}$$

Observation: This presentation has lots of generators so if this is a presentation for S_r then it must have a lot of redundancy.

Idea: Our hope is to show this is a presentation for S_r . So, ultimately each generator $f_{P,A}$ will need to be equal (in the group defined by the presentation) to some element of S_r .

So, for each $P \in I$, $A \in J$, $A \perp P$ we want to define an element $\lambda(P,A) \in S_r$ which we aim to prove is the element represented by the generator $f_{P,A}$.

The label function

For each set *A* and partition *P* with $A \perp P$ write:

$$A = \{a_1, \dots, a_r\}, \ a_1 < \dots < a_r, P = \{P_1, \dots, P_r\}, \ \min P_1 < \dots < \min P_r.$$

Then write

$$\begin{pmatrix} P_1 & P_2 & \dots & P_r \\ a_{l_1} & a_{l_2} & \dots & a_{l_r} \end{pmatrix}, \quad \lambda(P,A) = \begin{pmatrix} 1 & 2 & \dots & r \\ l_1 & l_2 & \dots & l_r \end{pmatrix} \in S_r.$$

The label function

For each set *A* and partition *P* with $A \perp P$ write:

$$A = \{a_1, \dots, a_r\}, \ a_1 < \dots < a_r, P = \{P_1, \dots, P_r\}, \ \min P_1 < \dots < \min P_r.$$

Then write

$$\begin{pmatrix} P_1 & P_2 & \dots & P_r \\ a_{l_1} & a_{l_2} & \dots & a_{l_r} \end{pmatrix}, \quad \lambda(P,A) = \begin{pmatrix} 1 & 2 & \dots & r \\ l_1 & l_2 & \dots & l_r \end{pmatrix} \in S_r.$$

Example: n = 7, r = 4

$$P_{1} \quad P_{2} \quad P_{3} \quad P_{4}$$

$$P = \{\{1\}, \{2, 3, 6\}, \{4, 7\}, \{5\}\}\}$$

$$\bigwedge$$

$$A = \{1 \quad , 4 \quad , 5 \quad , 6 \quad \}$$

$$a_{1} \quad a_{2} \quad a_{3} \quad a_{4}$$

$$\lambda(P, A) = \begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 4 & 2 & 3 \end{pmatrix}$$

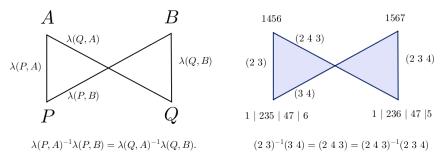
Singular squares and labels

Fact: We can read off the singular squares using λ . A square

(P, Q, A, B) is singular $\Leftrightarrow \lambda(P, A)^{-1}\lambda(P, B) = \lambda(Q, A)^{-1}\lambda(Q, B).$

We can think of λ as labelling each edge of the Graham–Houghton graph.

Example



Generators:
$$F = \{f_{P,A} : P \in I, A \in J, A \perp P\}$$

Relations:

(I)
$$f_{P,A} = 1$$
 whenever $\lambda(P,A) = 1$ $\lambda(P,A)$ $\lambda(P,B)$
(II) $f_{P,A}^{-1} f_{P,B} = f_{Q,A}^{-1} f_{Q,B}$ where (P,Q,A,B) is a square: $\lambda(P,A)^{-1}\lambda(P,B) = \lambda(Q,A)^{-1}\lambda(Q,B)$. $\lambda(Q,A)$ $\lambda(Q,B)$

Generators:
$$F = \{f_{P,A} : P \in I, A \in J, A \perp P\}$$

Relations:

(I)
$$f_{P,A} = 1$$
 whenever $\lambda(P,A) = 1$ $\lambda(P,A)$ $\lambda(P,B)$
(II) $f_{P,A}^{-1} f_{P,B} = f_{Q,A}^{-1} f_{Q,B}$ where (P,Q,A,B) is a square: $\lambda(P,A)^{-1}\lambda(P,B) = \lambda(Q,A)^{-1}\lambda(Q,B)$. $\lambda(Q,A)$ $\lambda(Q,B)$

Basic idea of the proof that $H_r \cong S_r$

Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_r .

Generators:
$$F = \{f_{P,A} : P \in I, A \in J, A \perp P\}$$

Relations:

(I)
$$f_{P,A} = 1$$
 whenever $\lambda(P,A) = 1$ $\lambda(P,A)$ $\lambda(P,B)$
(II) $f_{P,A}^{-1} f_{P,B} = f_{Q,A}^{-1} f_{Q,B}$ where (P,Q,A,B) is a square: $\lambda(P,A)^{-1}\lambda(P,B) = \lambda(Q,A)^{-1}\lambda(Q,B)$. $\lambda(Q,A)$ $\lambda(Q,B)$

Basic idea of the proof that $H_r \cong S_r$

Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_r .

1. Eliminate all generators $f_{P,A}$ with $\lambda(P,A) \neq (i \ i + 1)$ expressing them as products of generators with labels $(i \ i + 1)$.

Generators:
$$F = \{f_{P,A} : P \in I, A \in J, A \perp P\}$$

Relations:

(I)
$$f_{P,A} = 1$$
 whenever $\lambda(P,A) = 1$ $\lambda(P,A)$ $\lambda(P,B)$
(II) $f_{P,A}^{-1} f_{P,B} = f_{Q,A}^{-1} f_{Q,B}$ where (P,Q,A,B) is a square: $\lambda(P,A)^{-1}\lambda(P,B) = \lambda(Q,A)^{-1}\lambda(Q,B)$. $\lambda(Q,A)$ $\lambda(Q,B)$

Basic idea of the proof that $H_r \cong S_r$

Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_r .

- 1. Eliminate all generators $f_{P,A}$ with $\lambda(P,A) \neq (i \ i + 1)$ expressing them as products of generators with labels $(i \ i + 1)$.
- 2. Show that if $\lambda(P,A) = (i i + 1) = \lambda(Q, B)$ then $f_{P,A} = f_{Q,B}$ is a consequence of (I) & (II).

Generators:
$$F = \{f_{P,A} : P \in I, A \in J, A \perp P\}$$

Relations:

(I)
$$f_{P,A} = 1$$
 whenever $\lambda(P,A) = 1$ $\lambda(P,A)$ $\lambda(P,B)$
(II) $f_{P,A}^{-1} f_{P,B} = f_{Q,A}^{-1} f_{Q,B}$ where (P,Q,A,B) is a square: $\lambda(P,A)^{-1}\lambda(P,B) = \lambda(Q,A)^{-1}\lambda(Q,B)$. $\lambda(Q,A)$ $\lambda(Q,B)$

Basic idea of the proof that $H_r \cong S_r$

Use Tietze transformations to transform the presentation above into the classical Coxeter presentation for S_r .

- 1. Eliminate all generators $f_{P,A}$ with $\lambda(P,A) \neq (i \ i + 1)$ expressing them as products of generators with labels $(i \ i + 1)$.
- 2. Show that if $\lambda(P,A) = (i i + 1) = \lambda(Q, B)$ then $f_{P,A} = f_{Q,B}$ is a consequence of (I) & (II).
- 3. We are left with a presentation with generators in one-one correspondence with the Coxeter generators of S_r . To finish the proof we show that the Coxeter relations are consequences.

Table of labels			Т	Table of generating symbols		
$I \times J$	A	В	$I \times J$	A	В	
Р	()	(2 3)	Р	$f_{P,A}$	$f_{P,B}$	
Q	$(1\ 2)$	(1 3 2)	Q	$f_{Q,A}$	$f_{Q,B}$	
Spot singular squares () ⁻¹ (2 3) = (1 2) ⁻¹ (1 3 2)			f_F	Deduce relations $f_{P,A} = 1$, and $f_{Q,A}f_{P,B} = f_{Q,B}$		

Spotting relations from Coxeter presentation for S_r

 $\langle g_1, \dots, g_{r-1} | g_i^2 = 1, \quad g_i g_j = g_j g_i \quad (|i-j| > 1), \quad g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \rangle$ Example: Case n = 7, r = 4 finding a relation $g_i g_j = g_j g_i$.

	A 1 2 5 6	B 2 3 5 6	C 2 3 4 5
$P = 1 \; 3 \; 4 \; 7 \; \; 2 \; \; 5 \; \; 6$	()	(1 2)	
$Q = 1 \; 3 \; 7 \; \; 2 \; \; 4 \; 6 \; \; 5$	(3 4)	(1 2)(3 4)	(1 2)
$R = 1 \ 2 \ 7 \ \ 3 \ \ 4 \ 6 \ \ 5$		(3 4)	()

Spotting relations from Coxeter presentation for S_r

 $\langle g_1, \dots, g_{r-1} | g_i^2 = 1, \quad g_i g_j = g_j g_i \quad (|i-j| > 1), \quad g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \rangle$ Example: Case n = 7, r = 4 finding a relation $g_i g_j = g_j g_i$.

A
 B
 C

$$1 \ 2 \ 5 \ 6$$
 $2 \ 3 \ 5 \ 6$
 $2 \ 3 \ 4 \ 5$

 P = 1 3 4 7 | 2 | 5 | 6
 ()
 (1 2)

 Q = 1 3 7 | 2 | 4 6 | 5
 (3 4)
 (1 2)(3 4)
 (1 2)

 R = 1 2 7 | 3 | 4 6 | 5
 (3 4)
 ()
 ()

Deductions: $f_{Q,A} f_{P,B} = f_{Q,B} = f_{Q,C} f_{R,B}$, $f_{Q,A} = f_{R,B}$, $f_{P,B} = f_{Q,C}$ $\therefore f_{Q,A} f_{P,B} = f_{P,B} f_{Q,A}$ where $\lambda(P, B) = (1 \ 2)$ and $\lambda(Q, A) = (3 \ 4)$.

Related results and future work

Analogous results have since been proved for:

- Endomorphism monoids of free G-acts
 - I. Dolinka, V. Gould and D. Yang, Free idempotent generated semigroups and endomorphism monoids of free G-acts. *Journal of Algebra*. 429 (2015), 133–176.

• The full linear monoid $M_n(\mathbb{F})$

I. Dolinka and R. D. Gray,

Maximal subgroups of free idempotent generated semigroups over the full linear monoid.

Trans. Amer. Math. Soc. 366(1) (2014), 419-455.

Note: For the full linear monoid we currently only know the groups for $r < \frac{n}{3}$ (we get the general linear group $GL_r(\mathbb{F})$) but we do not know what the groups are for higher values of r.