Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

## Metrically Homogeneous Graphs of Generic Type

**Gregory Cherlin** 



July 22, 2015-Durham

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

# The classification problem

Two dividing lines Generic Type

Evidence

### 1 The classification problem

Two dividing lines

B Generic Type



## Metric Homogeneity

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

... Urysohn has managed to construct a

... complete metric space with a countable dense subset, which contains any other separable metric space isometrically, and furthermore satisfies a quite strong homogeneity condition; the latter being that one can take the whole space (isometrically) onto itself, so that an arbitrary finite set M is carried over to an equally arbitrary finite set M1 congruent to it. [Alexandrov to Hausdorff (in German), 3.8.24]

## Metric Homogeneity

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

... Urysohn has managed to construct a

... complete metric space with a countable dense subset, which contains any other separable metric space isometrically, and furthermore satisfies a quite strong homogeneity condition; the latter being that one can take the whole space (isometrically) onto itself, so that an arbitrary finite set M is carried over to an equally arbitrary finite set M1 congruent to it. [Alexandrov to Hausdorff (in German), 3.8.24]

$$\mathbb{U}=ar{\mathbb{U}}_{\mathbb{Q}}$$
  $\mathbb{U}_{\mathbb{Q}}=\lim_{\mathcal{F}}\mathbb{Q}$ -metric

## The Urysohn graph

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

 $\mathbb{U}_{\mathbb{Z}} = \lim_{\mathcal{F}} \mathbb{Z}\text{-metric}$ 

 $\Gamma_{\mathbb{Z}}$ : (a, b) is an edge iff d(a, b) = 1.

## The Urysohn graph

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

 $\mathbb{U}_{\mathbb{Z}} = \lim_{\mathcal{F}} \mathbb{Z}\text{-metric}$ 

 $\Gamma_{\mathbb{Z}}$ : (a, b) is an edge iff d(a, b) = 1.

#### Remark

The metric on  $\mathbb{U}_{\mathbb{Z}}$  is the path metric in  $\Gamma_{\mathbb{Z}}$ .

Thus  $\mathbb{U}_{\mathbb{Z}}$  is a countable universal graph (allowing isometric embeddings in the connected case).

## The Urysohn graph

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

 $\mathbb{U}_{\mathbb{Z}} = \lim_{\mathcal{F}} \mathbb{Z}\text{-metric}$ 

 $\Gamma_{\mathbb{Z}}$ : (a, b) is an edge iff d(a, b) = 1.

#### Remark

The metric on  $\mathbb{U}_{\mathbb{Z}}$  is the path metric in  $\Gamma_{\mathbb{Z}}$ .

Thus  $\mathbb{U}_{\mathbb{Z}}$  is a countable universal graph (allowing isometric embeddings in the connected case).

*Local structure:* The induced graph  $\Gamma_1$  on the neighbors of a vertex is the random graph.

### The classification problem

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

Metrically homogeneous graph A connected graph Γ whose associated metric space is homogeneous in Urysohn's sense.

... In the countable case, an answer to this question might be a step towards a classification of the distance homogeneous graphs. [Moss, Distanced Graphs, 1992]

... the theory of infinite distance-transitive graphs is open. Not even the countable metrically homogeneous graphs have been determined. [Cameron, A census of infinite distance-transitive graphs, 1998]

## What we have

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

- A natural division between the special and generic types;
- A full classification for the special types;
- A conjectured classification of generic type (nearly uniform);
- A reasonable amount of supporting evidence.

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type Evidence

### The classification problem

2 Two dividing lines

Generic Type



## Local type

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

 $\Gamma_i$ : The induced metric structure at distance *i* from a basepoint.

Definitely homogeneous.

If there are some edges (d(x, y) = 1), and  $\Gamma_i$  is connected, then it is a metrically homogeneous graph, with the graph metric as the induced metric.

## Local type

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

 $\Gamma_i$ : The induced metric structure at distance *i* from a basepoint.

Definitely homogeneous.

If there are some edges (d(x, y) = 1), and  $\Gamma_i$  is connected, then it is a metrically homogeneous graph, with the graph metric as the induced metric.

 $\Gamma_1$  is a homogeneous graph (possibly edgeless). We use the local structure as our main dividing line.

## $\Gamma_1$

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

### Definition

A metrically homogeneous graph has exceptional local type if  $\Gamma_1$  is imprimitive, or does not contain an infinite independent set.

A metrically homogeneous graph has generic type if  $\Gamma_1$  is primitive, and two vertices at distance 2 have infinitely many common neighbors.

## $\Gamma_1$

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

#### Definition

A metrically homogeneous graph has exceptional local type if  $\Gamma_1$  is imprimitive, or does not contain an infinite independent set.

#### Theorem

The metrically homogeneous graphs of exceptional local type fall into the following classes.

- Diameter at most 2 (homogeneous graph)
- n-cycle
- Antipodal of diameter 3, finite
- Tree-like T<sub>r,s</sub>, an s-branching tree of r-cliques; excluding the tree T<sub>2,∞</sub>.

## $\Gamma_1$

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

### Definition

A metrically homogeneous graph has exceptional local type if  $\Gamma_1$  is imprimitive, or does not contain an infinite independent set.

A metrically homogeneous graph has generic type if  $\Gamma_1$  is primitive, and two vertices at distance 2 have infinitely many common neighbors.

#### Theorem

The only metrically homogeneous graph which is neither of exceptional local type nor generic type is the regular tree of infinite degree.

 $T_{2,\infty}$ 

#### Major Tool The Lachlan-Woodrow classification

## Non-generic type

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

The metrically homogeneous graphs of non-generic type are classified

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type Evidence The classification problem

Two dividing lines

3 Generic Type



### Generic type

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

A metrically homogeneous graph has generic type if  $\Gamma_1$  is primitive, and two vertices at distance 2 have infinitely many common neighbors.

## Generic type

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classificatic problem

Two dividing lines

Generic Type

A metrically homogeneous graph has generic type if  $\Gamma_1$  is primitive, and two vertices at distance 2 have infinitely many common neighbors.

Γ<sub>1</sub>: Henson, Random, or an independent set. And for *u*, *v* at distance 2, the common neighbors of *u*, *v* give a graph isomorphic to  $Γ_1$ .

## The Generic Type Conjecture

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

(Via Fraïssé theory, go to amalgamation classes and forbidden substructures.)

Conjecture (Classification Conjecture Generic Type)

For diameter  $\delta \geq 3$ , either

$$\mathcal{A} = \mathcal{A}_{\Delta} \cap \mathcal{A}_{H} \tag{1}$$

where A is an amalgamation class determined by triangle constraints, and  $A_H$  is an amalgamation class determined by Henson constraints; or

$$\mathcal{A} = \mathcal{A}_{a} \cap \mathcal{A}_{H'} \tag{2}$$

where  $A_a$  is an antipodal class and  $A_{H'}$  is determined by antipodal Henson constraints.

### Henson Classes

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classificatio problem

Two dividing lines

Generic Type

Henson Graph Forbid 1-cliques of order *n*; or, dually, 2-cliques of order *n*.

For  $\delta \geq 3$ : Forbid some  $(1, \delta)$ -spaces.

### Henson Classes

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classificatio problem

Two dividing lines

Generic Type

Evidence

Henson Graph Forbid 1-cliques of order *n*; or, dually, 2-cliques of order *n*.

For  $\delta \geq 3$ : Forbid some  $(1, \delta)$ -spaces.

I'll probably skip the antipodal variation ....

## Triangle constraints

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

Theorem

Let  $A_{\Delta}$  be an amalgamation class whose Fraïssé limit is a metrically homogeneous graph of generic type, and whose minimal constraints are of order at most 3. Then

$$\mathcal{A}_{\Delta} = \mathcal{A}_{\mathcal{K}_1,\mathcal{K}_2,\mathcal{C}_0,\mathcal{C}_1}^{\delta}$$

where  $K_1$ ,  $K_2$  are parameters controlling the forbidden triangles of small odd perimeter, and  $C_0$ ,  $C_1$  control the forbidden triangles of large perimeter (even or odd, respectively). Furthermore the parameters are subject to a certain collection of numerical constraints, e.g.

If  $C = \min(C_0, C_1) \le 2\delta + K_1$ , then  $C = 2K_1 + 2K_2 + 1$ 

### The Generic Conjecture

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Minimal constraints should be triangles or Henson constraints (and then we know everything) Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

The classification problem

Two dividing lines

Generic Type



## Supporting evidence

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

- Diameter 3 (with Amato, Macpherson)
- If the conjecture holds in finite diameter then it holds in infinite diameter (hence: induction)
- The bipartite case can be handled under an inductive hypothesis via *halving*.

Still to do: find an inductive treatment of the antipodal case, thereby reducing to the primitive case (via Smith's theorem).

## 4-triviality

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classification problem

Two dividing lines

Generic Type

Evidence

#### Definition

An amalgamation class is *4-trivial* if any forbidden structure of order 4 either contains a forbidden triangle or is a Henson constraint.

#### Proposition

In a 4-trivial amalgamation class, the pattern of forbidden triangles is known.

## **Topological Dynamics**

Metrically Homogeneous Graphs of Generic Type

> Gregory Cherlin

The classificatior problem

Two dividing lines

Generic Type

Evidence

### Question

In the primitive generic type case, is the universal minimal flow the space of orders?