Free homogeneous structures are generalised measurable

Will Anscombe

University of Leeds

w.g.anscombe@leeds.ac.uk

24th July 2015

Thanks and acknowledgements

Thank you for giving me this chance to speak at this wonderful conference.

Thanks and acknowledgements

This work is distinct from, but closely related to, two ongoing collaborations: one with **Dugald Macpherson**, **Charlie Steinhorn**, and **Daniel Wolf**; and the other with **Charlotte Kestner**. These collaborations have certainly informed this work and I'm greatly indebted to those colleagues **and others**. Also thanks to EPSRC.

Afterwards, I'll post these slides on anscombe.sdf.org/research.html.

Apologies for using beamer, but I will give several cumbersome definitions.

Two themes and one theorem

(A) Free homogeneous structures,

- built from amalgamation of free amalgamation classes
- e.g. random graph, generic K_n -free graphs

Two themes and one theorem

(A) Free homogeneous structures,

- built from amalgamation of free amalgamation classes
- e.g. random graph, generic K_n -free graphs

(B) (Generalised) measurable structures,

- in the sense of (Anscombe-)Macpherson-Steinhorn(-Wolf)

- definable sets can be meaningfully assigned (generalised) measure and dimension, which takes only finitely many values on any definable family

Two themes and one theorem

(A) Free homogeneous structures,

- built from amalgamation of free amalgamation classes
- e.g. random graph, generic K_n -free graphs

(B) (Generalised) measurable structures,

- in the sense of (Anscombe-)Macpherson-Steinhorn(-Wolf)
- definable sets can be meaningfully assigned (generalised) measure and dimension, which takes only finitely many values on any definable family

Main Theorem

Free homogeneous structures in finite relational languages are generalised measurable.

Coming soon to a whiteboard near you...

Theme B: Generalised measurable structures

- Finite fields
- Measurable structures
- Pseudofinite fields, the random graph
- Generalised measurable structures

Theme A: Free homogeneous structures

- Definition
- From now on...

Proof of Main Theorem

- Definition of Γ_r
- The measuring semiring T_r
- Finishing the proof

Conventions

- **1** will try to use the colour **magenta** for ideas that deserve a picture.
- Of the second second
- 'Ø-definable':='definable without parameters'.
- $Def(\mathcal{M})$ is the set of definable sets in the structure \mathcal{M} .
- $0 \in \mathbb{N}.$
- Tuples will usually be written in lowercase.
- $\phi(\mathcal{M})$ is the set defined in a structure \mathcal{M} by the formula $\phi(x)$.

Theorem (Chatzidakis-van den Dries-Macintyre)

Let $\phi(x; y)$ be a formula in the language of rings. Then there exist $C \in \mathbb{R}_{>0}$, $\mu_1, ..., \mu_r \in \mathbb{Q}_{>0}$, and $d_1, ..., d_r \in \mathbb{N}$ such that for any prime power q and any $b \in \mathbb{F}_q$ there exists $i \in \{1, ..., r\}$ such that $\phi(\mathbb{F}_q; b)$ is empty or

$$\left|\left|\phi(\mathbb{F}_q;b)\right|-\mu_i q^{d_i}\right| < C q^{d_i-\frac{1}{2}}.$$
(*_i)

Furthermore, for each $i \in \{1, ..., r\}$ the set

$$\{b \in \mathbb{F}_q \mid (*_i) \text{ holds}\}$$

is uniformly Ø*-definable.*

Theorem (Chatzidakis-van den Dries-Macintyre)

Let $\phi(x; y)$ be a formula in the language of rings. Then there exist $C \in \mathbb{R}_{>0}$, $\mu_1, ..., \mu_r \in \mathbb{Q}_{>0}$, and $d_1, ..., d_r \in \mathbb{N}$ such that for any prime power q and any $b \in \mathbb{F}_q$ there exists $i \in \{1, ..., r\}$ such that $\phi(\mathbb{F}_q; b)$ is empty or

$$\left|\left|\phi(\mathbb{F}_q;b)\right| - \frac{\mu_i q^{d_i}}{2}\right| < Cq^{d_i - \frac{1}{2}}.$$
(**i*)

Furthermore, for each $i \in \{1, ..., r\}$ the set

$$\{b \in \mathbb{F}_q \mid (*_i) \text{ holds}\}$$

is uniformly Ø-definable.

In **red** is the monomial function (of q) that measures the approximate size of the set $\phi(\mathbb{F}_q; b)$:

$$q \mapsto \mu_i q^{d_i}.$$

Macpherson-Steinhorn:

- They study classes C of finite structures in which the C–D–M theorem holds (appropriately restated): one-dimensional asymptotic classes.
- $\textbf{0} \ \ \text{Taking an ultraproduct } \mathcal{M} \text{ of such classes gives a function}$

 $h: \operatorname{Def}(\mathcal{M}) \longrightarrow \mathbb{R}e^{\mathbb{N}}.$

Macpherson-Steinhorn:

- They study classes C of finite structures in which the C–D–M theorem holds (appropriately restated): one-dimensional asymptotic classes.
- **②** Taking an ultraproduct $\mathcal M$ of such classes gives a function

$$h: \operatorname{Def}(\mathcal{M}) \longrightarrow \mathbb{R}e^{\mathbb{N}}.$$

They axiomatise this as follows:

Definition (Macpherson-Steinhorn, slightly reformulated)

The structure \mathcal{M} is *measurable* if there is

 $h: \operatorname{Def}(\mathcal{M}) \longrightarrow \mathbb{R}e^{\mathbb{N}}$

such that

- *h* is finitely additive, and if X is a singleton then $h(X) = 1e^0$;
- **2 'MAC' condition**: For every $\phi(x; y)$,
 - $\{h(\phi(\mathcal{M}; b)) \mid b \in \mathcal{M}\} = \{r_1e^{d_1}, ..., r_ne^{d_n}\}$ is a finite set (picture), and
 - $\{b \in \mathcal{M} \mid h(\phi(\mathcal{M}; b)) = r_i e^{d_i}\}$ is \emptyset -definable, for each i; and
- Solution Fubini: If p : X → Y is a definable surjection and h takes the constant value re^d on each fibre of p, then

$$h(X) = h(Y) \cdot re^d.$$

Theorem (Macpherson–Steinhorn)

For each pseudofinite field F we have a measuring-function

 $h_F: \mathrm{Def}(F) \longrightarrow \mathbb{R}e^{\mathbb{N}}.$

Proof.

Pseudofinite fields are elementarily equivalent to non-principal ultraproducts of finite fields.

Theorem (Macpherson–Steinhorn)

For each pseudofinite field F we have a measuring-function

$$h_F: \mathrm{Def}(F) \longrightarrow \mathbb{R}e^{\mathbb{N}}.$$

Proof.

Pseudofinite fields are elementarily equivalent to non-principal ultraproducts of finite fields.

Theorem (Macpherson-Steinhorn)

For the random graph ${\mathcal R}$ we have a measuring-function

$$h_{\mathcal{R}}: \operatorname{Def}(\mathcal{R}) \longrightarrow \mathbb{R}e^{\mathbb{N}}.$$

Proof.

Goes via Paley graphs. These are graphs defined on finite fields \mathbb{F}_q with $q \equiv 1 \pmod{4}$: define *aEb* iff a - b is a square.

Will Anscombe (Leeds)

Question

For the generic triangle-free graph \mathcal{H}_3 , does there exist a measuring-function

 $h_{\mathcal{H}_3}: \operatorname{Def}(\mathcal{H}_3) \longrightarrow \mathbb{R}e^{\mathbb{N}}?$

Question

For the generic triangle-free graph \mathcal{H}_3 , does there exist a measuring-function

 $h_{\mathcal{H}_3}: \operatorname{Def}(\mathcal{H}_3) \longrightarrow \mathbb{R}e^{\mathbb{N}}?$

Answer: No. In any measurable structure, 'dimension' is well-founded (model-theoretic language: measurable implies supersimple). However, in \mathcal{H}_3 there are infinite descending chains of definable sets with strictly decreasing dimension (model-theoretic language: dividing, tree property of the first kind).

This was studied by Albert, who showed that the *measure* must be trivial: complete types (in one variable) must have measure either 0 or 1.

Question

For the generic triangle-free graph \mathcal{H}_3 , does there exist a measuring-function

 $h_{\mathcal{H}_3}: \operatorname{Def}(\mathcal{H}_3) \longrightarrow \mathbb{R}e^{\mathbb{N}}?$

Answer: No. In any measurable structure, 'dimension' is well-founded (model-theoretic language: measurable implies supersimple). However, in \mathcal{H}_3 there are infinite descending chains of definable sets with strictly decreasing dimension (model-theoretic language: dividing, tree property of the first kind).

This was studied by Albert, who showed that the *measure* must be trivial: complete types (in one variable) must have measure either 0 or 1.

So it all comes to down to *dimension*.

Definition

- $\mathcal{T} = (\mathcal{T}, +, \cdot, 0, 1, \leq)$ is a measuring semiring if
 - **(**(T, +, 0) and $(T, \cdot, 1)$ are commutative monoids,
 - 2 · distributes over +,
 - $\ \ \, \textbf{(} \mathcal{T},\leq,\textbf{0}\textbf{)} \text{ is a totally ordered set with least element 0,}$

and

∀x, y, z if x < y and (either $y \le z \le ny$ or $z \le y \le nz$, for some $n \in \mathbb{N}$) then

$$x + z < y + z.$$

Let $T = (T, +, \cdot, 0, 1, \leq)$ be a measuring semiring.

Definition (A.-Macpherson-Steinhorn-Wolf)

The structure \mathcal{M} is *T*-measurable if there is a measuring-function

 $h: \operatorname{Def}(\mathcal{M}) \longrightarrow T$

such that

- *h* is finitely additive, and if X is a singleton then h(X) = 1;
 'MAC' condition: For every φ(x; y),
 - $\{h(\phi(\mathcal{M}; b)) \mid b \in \mathcal{M}\} = \{t_1, ..., t_n\}$ is a finite set, and • $\{b \in \mathcal{M} \mid h(\phi(\mathcal{M}; b)) = t_i\}$ is \emptyset -definable, for each *i*; and
- Solution Fubini: If p : X → Y is a definable surjection and h takes the constant value t ∈ T on each fibre of p, then

$$h(X) = h(Y) \cdot t.$$

Definition (AMSW)

 \mathcal{M} is generalised measurable if it is T-measurable for some measuring semiring T.

Free homogeneous structures

Fix a finite relational language $\mathcal{L} := \{R_1, ..., R_r\}$.

Definition (Free amalgamation class)

A class C of finite L-structures is a free amalgamation class if

- closed under isomorphism and substructure,
- 2 has the joint embedding property, and
- It has the free amalgamation property.

A free homogeneous structure is a Fraïssé amalgam of a free amalgamation class.

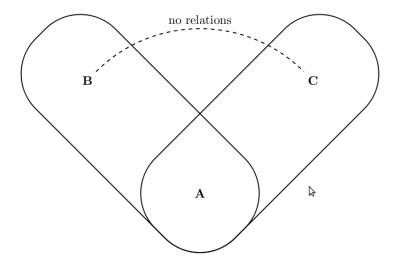


Figure: Free amalgamation

Free homogeneous structures

Fix a finite relational language $\mathcal{L} := \{R_1, ..., R_r\}.$

Definition (Free amalgamation class)

A class ${\mathcal C}$ of finite ${\mathcal L}\text{-structures}$ is a *free amalgamation class* if

- closed under isomorphism and substructure,
- has the joint embedding property, and
- In the free amalgamation property.

A *free homogeneous* structure is a Fraïssé amalgam of a free amalgamation class.

Free homogeneous structures

Fix a finite relational language $\mathcal{L} := \{R_1, ..., R_r\}.$

Definition (Free amalgamation class)

A class $\mathcal C$ of finite $\mathcal L$ -structures is a *free amalgamation class* if

- closed under isomorphism and substructure,
- has the joint embedding property, and
- In the free amalgamation property.

A *free homogeneous* structure is a Fraïssé amalgam of a free amalgamation class.

Facts

If \mathcal{M} is the Fraïssé amalgam of the free amalgamation class \mathcal{C} then $\mathcal{C} = \operatorname{age}(\mathcal{M})$, \mathcal{M} is \aleph_0 -categorical, (ultra)homogeneous, has quantifier elimination, and algebraic closure is trivial.

Examples

- $C_0 := \{ \text{finite graphs} \}, \mathcal{R} = \text{random graph}.$
- **2** $C_n := \{ \text{finite } K_n \text{-free graphs} \}, \mathcal{H}_n = \text{generic } K_n \text{-free graph.}$
- Hypergraph versions of these.

Non-examples

- class = finite partial orders, limit = generic partial order.
- **2** class = finite total orders, limit = $(\mathbb{Q}, <)$.
- class = finite totally ordered graphs, limit = generic totally ordered graph.

From now on we work with a fixed free homogeneous \mathcal{L} -structure \mathcal{M} .

We can think of $\mathcal{M} = \mathcal{H}_3$ = generic triangle-free graph.

Definition of Γ_r

Definition

The structure $\Gamma_r = (\Gamma_r, +, 0, -\infty, \leq)$ is defined as follows.

• Γ_r is the set

$${\sf \Gamma}^*_{\sf r}:=\omega^*\oplus_{\operatorname{lex}}(-\omega)\oplus_{\operatorname{lex}}\ldots\oplus_{\operatorname{lex}}(-\omega)$$

adjoined by two elements $-\infty$ and 0;

- 2 the addition + is coordinate-wise on the lexicographic product, 0 is the identity, and $-\infty$ is a zero; and
- $\le \text{ is such that } -\infty < 0 < \Gamma_r^*.$

Example

$$\Gamma_{1} = \{-\infty\} \bigsqcup_{<} \{0\} \bigsqcup_{<} \left(\omega^{*} \oplus_{\mathrm{lex}} (-\omega)\right).$$

Will Anscombe (Leeds)

Definition

Let
$$T_r = (T_r, \oplus, \otimes, 0e^{-\infty}, 1e^0, \leq) := \mathbb{N}e^{\Gamma_r}$$
.

Underlying set:

$$\{me^d \mid m \in \mathbb{N} \setminus \{0\}, d \in \Gamma_r \setminus \{-\infty\}\} \sqcup \{0e^{-\infty}\}$$

$$\ \, \mathbf{m}_1e^{d_1}\oplus m_2e^{d_2}:= \left\{ \begin{array}{ll} (m_1+m_2)e^{d_1} & d_1=d_2 \\ m_1e^{d_1} & d_1>d_2 \\ m_2e^{d_2} & d_1$$

• $0e^{-\infty}$ is the \oplus -identity and a ' \otimes -zero', and $1e^{0}$ is the \otimes -identity.

Fact

 T_r is a measuring semiring.

Will Anscombe (Leeds)

Theorem (Main Theorem again)

 \mathcal{M} is T_r -measurable with measuring-function $h_{\mathcal{M}}$.

Finishing the proof

It remains to argue that

$$h_{\mathcal{M}}: \mathrm{Def}(\mathcal{M}) \longrightarrow T_r$$

really is a measuring-function.

- Finitely additive
- Finite sets: a single tuple is a complete type
- Imac' condition: follows from ℵ₀-categoricity.
- Fubini condition: