Isogeometric mortaring

E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich

IMATI 'E. Magenes' - Pavia
Technical University of Munich
π

(1) Introduction

- Splines
- Approximation spaces and properties
(2) Non conforming interfaces
- Mortar method
- Numerical validation
(3) Final remarks

IGA is based on spline theory

B-Splines are defined by the Cox-DeBoor formulae:

$$
\begin{gathered}
N_{i, 0}(\zeta)= \begin{cases}1 & \text { if } \xi_{i} \leq \zeta<\xi_{i+1}, \\
0 & \text { otherwise }\end{cases} \\
N_{i, p}(\zeta)=\frac{\zeta-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\zeta)+\frac{\xi_{i+p+1}-\zeta}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\zeta)
\end{gathered}
$$

IGA is based on spline theory

B-Splines are defined by the Cox-DeBoor formulae:

$$
\begin{gathered}
N_{i, 0}(\zeta)= \begin{cases}1 & \text { if } \xi_{i} \leq \zeta<\xi_{i+1}, \\
0 & \text { otherwise }\end{cases} \\
N_{i, p}(\zeta)=\frac{\zeta-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\zeta)+\frac{\xi_{i+p+1}-\zeta}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\zeta)
\end{gathered}
$$

$$
\mathbf{F}(\xi)=\sum_{\mathbf{i}} \mathbf{C}_{i} \boldsymbol{N}_{i, p}(\xi):
$$

IGA is based on spline theory

B-Splines are defined by the Cox-DeBoor formulae:

$$
\begin{gathered}
N_{i, 0}(\zeta)= \begin{cases}1 & \text { if } \xi_{i} \leq \zeta<\xi_{i+1}, \\
0 & \text { otherwise }\end{cases} \\
N_{i, p}(\zeta)=\frac{\zeta-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\zeta)+\frac{\xi_{i+p+1}-\zeta}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\zeta) .
\end{gathered}
$$

$$
\mathbf{F}(\xi)=\sum_{\mathbf{i}} \mathbf{C}_{i} \boldsymbol{N}_{i, p}(\xi):
$$

IGA is based on spline theory

B-Splines are defined by the Cox-DeBoor formulae:

$$
\begin{gathered}
N_{i, 0}(\zeta)= \begin{cases}1 & \text { if } \xi_{i} \leq \zeta<\xi_{i+1}, \\
0 & \text { otherwise },\end{cases} \\
N_{i, p}(\zeta)=\frac{\zeta-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\zeta)+\frac{\xi_{i+p+1}-\zeta}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\zeta)
\end{gathered}
$$

$\mathbf{F}(\xi)=\sum_{\mathbf{i}} \mathbf{C}_{i} \boldsymbol{N}_{i, p}(\xi):$

NURBS: projection of splines in $\mathbf{R}^{d+1} \ldots$ no need for this talk.

Construction of approximation spaces

- The geometry Ω and its NURBS parametrization \mathbf{F} is "given" by CAD general geometry: unstructured collection of "patches".

Construction of approximation spaces

- The geometry Ω and its NURBS parametrization \mathbf{F} is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the push-forward of Spline/NURBS

Construction of approximation spaces

- The geometry Ω and its NURBS parametrization \mathbf{F} is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the push-forward of Spline/NURBS
- Refinement by knot insertion and degree elevation, geometry unchanged.

Construction of approximation spaces

- The geometry Ω and its NURBS parametrization \mathbf{F} is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the push-forward of Spline/NURBS
- Refinement by knot insertion and degree elevation, geometry unchanged.

General geometries are multi-patch

Globally unstructured
Locally structured

General geometries are multi-patch

Globally unstructured Locally structured

General geometries are multi-patch

Globally unstructured
Locally structured

Question: How to enhance flexibility?
Question: How to treat non conforming interfaces?

Perfect setting for adaptivity

if splines can support local refinement

- T-splines: Sederberg et al 2004, Hughes, Scott, Evans, Li, Zhang, ... Pavia team Pure geometric modeling approach:

courtesy of M. Scott
- LR-splines

Dokken et al. 2013, Bressan 2013
Definition \mathbb{R}^{n}, spline theory of LR-Splines

- Hierarchical splines

Kraft 1998, ...
the closest to adaptive finite elements on quadrangular meshes

Hierarchical splines

Kraft 1998, Giannelli, Jüttler, Simeon, Speelers, Voung 2010-2013, B.-Giannelli 2014

Hierarchical splines

Kraft 1998, Giannelli, Jüttler, Simeon, Speelers, Voung 2010-2013, B.-Giannelli 2014

- $V_{0} \subset V_{1} \subset V_{2} \ldots \subset V_{J}$
- Refinement has to contain at least one function: $(p+1)^{2}$ elements
- Definition of truncated-basis ensuring good spline properties

Giannelli, Juettler, Speelers

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_{Q}=h_{Q}\left\|A u_{h}-f\right\|_{L^{2}(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}\left(u_{h}, \mathcal{M}\right) \geq \theta \mathcal{E}\left(u_{h}, \mathcal{T}\right), 0<\theta<1$;
- Suitable local quasi-interpolant and their approximation properties

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_{Q}=h_{Q}\left\|A u_{h}-f\right\|_{L^{2}(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}\left(u_{h}, \mathcal{M}\right) \geq \theta \mathcal{E}\left(u_{h}, \mathcal{T}\right), 0<\theta<1$;
- Suitable local quasi-interpolant and their approximation properties
- The theory of adaptive methods

Morin, Nochetto, Siebert -Binev, Dahmen, DeVore 2002-2005
\Rightarrow Convergence and optimality !

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_{Q}=h_{Q}\left\|A u_{h}-f\right\|_{L^{2}(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}\left(u_{h}, \mathcal{M}\right) \geq \theta \mathcal{E}\left(u_{h}, \mathcal{T}\right), 0<\theta<1$;
- Suitable local quasi-interpolant and their approximation properties
- The theory of adaptive methods

Morin, Nochetto, Siebert -Binev, Dahmen, DeVore 2002-2005
\Rightarrow Convergence and optimality !
... but this is another story ...

Non conforming interfaces and mortaring

Non conforming interfaces and mortaring

Let Ω be a computational domain in \mathbb{R}^{n}, we want to solve the Laplace problem (or linear elasticity with minor changes)

$$
-\operatorname{div}(\mathbf{A} \nabla u)=f
$$

with boundary conditions $\partial \Omega=\bar{\Gamma}_{D} \cup \bar{\Gamma}_{N}$.

$$
u=0 \text { on } \Gamma_{D} \text { and }(\mathbf{A} \nabla u) \cdot \mathbf{n}=h \text { on } \Gamma_{N}
$$

We suppose that
$\Omega=\bigcup_{i}^{N} \Omega_{i}, \Omega_{i}=\mathbf{F}_{i}(\widehat{\Omega}), \Gamma_{i j}=\partial \Omega_{i} \cap \Omega_{j}$,

- F_{i} are splines (or NURBS)
- non compatible meshes at the interfaces $\Gamma_{i j}$

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- We can handle the case when $\Gamma_{i j}$ is a face of either Ω_{i} or Ω_{j}.
- There is the need for cross-point treatment/reduction

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- We can handle the case when $\Gamma_{i j}$ is a face of either Ω_{i} or Ω_{j}.
- There is the need for cross-point treatment/reduction
- Non compatible geometries interfaces at the interfaces $\Gamma_{i j}$ (?)

Non conforming interfaces and mortaring

Let $S_{p}\left(\widehat{\mathcal{T}}_{j}\right)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh $\widehat{\mathcal{T}}_{j}$.

- in each subdomain Ω_{j},

$$
V_{j}=\left\{v_{j} \in H^{1}\left(\Omega_{j}\right): v \circ \mathbf{F}_{j} \in S_{p}\left(\widehat{\mathscr{T}}_{j}\right)\right\}
$$

Non conforming interfaces and mortaring

Let $S_{p}\left(\widehat{\mathcal{T}}_{j}\right)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh $\widehat{\mathcal{T}}_{j}$.

- in each subdomain Ω_{j},

$$
\begin{gathered}
V_{j}=\left\{v_{j} \in H^{1}\left(\Omega_{j}\right): v \circ \mathbf{F}_{j} \in S_{p}\left(\widehat{\mathcal{T}}_{j}\right)\right\} \\
V=\left\{v \in L^{2}(\Omega): v_{\mid \Omega_{j}} \in V_{j}, v_{\mid \Gamma_{D}}=0\right\} \quad\|v\|_{V}^{2}=\sum_{i=1}^{N}\|v\|_{H^{1}\left(\Omega_{j}\right)}^{2} .
\end{gathered}
$$

Non conforming interfaces and mortaring

Let $S_{p}\left(\widehat{\mathcal{T}}_{j}\right)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh $\widehat{\mathscr{T}}_{j}$.

- in each subdomain Ω_{j},

$$
\begin{gathered}
V_{j}=\left\{v_{j} \in H^{1}\left(\Omega_{j}\right): v \circ \mathbf{F}_{j} \in S_{p}\left(\widehat{\mathcal{T}}_{j}\right)\right\} \\
V=\left\{v \in L^{2}(\Omega): v_{\mid \Omega_{j}} \in V_{j}, v_{\mid \Gamma_{D}}=0\right\} \quad\|v\|_{V}^{2}=\sum_{i=1}^{N}\|v\|_{H^{1}\left(\Omega_{j}\right)}^{2} .
\end{gathered}
$$

Interface numbering and spaces

$$
\Sigma_{0}=\bigcup_{\ell=1}^{n_{1}} \Gamma_{\ell}, \quad \forall \ell \quad \exists\left(i_{\ell}, j_{\ell}\right): \Gamma_{\ell}=\partial \Omega_{i_{\ell}} \cap \Omega_{j_{\ell}}
$$

Continuity across Σ_{0} imposed via Lagrange multipliers:

$$
M=\left\{\lambda \in L^{2}\left(\Sigma_{0}\right): \lambda_{\ell}=\lambda_{\mid \Gamma_{\ell}} \in M_{\ell}\right\}
$$

M_{k} to be chosen properly!

Variational formulation of the problem

Find $u_{h} \in V, \lambda_{h} \in M$ such that

$$
\begin{aligned}
a\left(u_{h}, v_{h}\right)+b\left(\lambda_{h}, v_{h}\right) & =R\left(v_{h}\right) & & \forall v_{h}
\end{aligned} \in V
$$

where

$$
a(u, v)=\int_{\Omega} \mathbf{A} \nabla u \cdot \nabla v \quad b(\lambda, v)=\sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \quad[u]=u_{i_{\ell}}-u_{j_{\ell}}
$$

$R(v)$ is the RHS taking into account also Neumann BC...

Variational formulation of the problem

Find $u_{h} \in V, \lambda_{h} \in M$ such that

$$
\begin{aligned}
a\left(u_{h}, v_{h}\right)+b\left(\lambda_{h}, v_{h}\right) & =R\left(v_{h}\right) & & \forall v_{h}
\end{aligned} \in V
$$

where

$$
a(u, v)=\int_{\Omega} \mathbf{A} \nabla u \cdot \nabla v \quad b(\lambda, v)=\sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \quad[u]=u_{i \ell}-u_{j \ell}
$$

$R(v)$ is the RHS taking into account also Neumann BC...
Wellposedness and approximation depends only upon the choice of Lagrange multipliers which should guarantee stability!

Variational formulation of the problem

Find $u_{h} \in V, \lambda_{h} \in M$ such that

$$
\begin{aligned}
a\left(u_{h}, v_{h}\right)+b\left(\lambda_{h}, v_{h}\right) & =R\left(v_{h}\right) & & \forall v_{h}
\end{aligned} \in V
$$

where

$$
a(u, v)=\int_{\Omega} \mathbf{A} \nabla u \cdot \nabla v \quad b(\lambda, v)=\sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \quad[u]=u_{i \ell}-u_{j \ell}
$$

$R(v)$ is the RHS taking into account also Neumann BC...
Wellposedness and approximation depends only upon the choice of Lagrange multipliers which should guarantee stability!

$$
M=\left\{\lambda \in L^{2}\left(\Sigma_{0}\right): \lambda_{\ell}=\lambda_{\mid \Gamma_{\ell}} \in M_{\ell}\right\} \quad\|\lambda\|_{M}^{2}=\sum_{\ell=1}^{n_{1}}\left\|\lambda_{\ell}\right\|_{\left(H_{00}^{1 / 2}\right)^{\prime}}^{2}
$$

Choice of the Langrange multiplier space

- Topology for M_{ℓ} is $H_{00}^{1 / 2}\left(\Gamma_{\ell}\right) \ldots$
- ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v)=\int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the slave side, we want $\left.M_{\ell} \sim V_{i_{\ell}}\right|_{r_{\ell}}$!
It contraints all slave functions.
But it is known that stability fails with this choice, and there is a need for cross point degree reduction..

Choice of the Langrange multiplier space

- Topology for M_{ℓ} is $H_{00}^{1 / 2}\left(\Gamma_{\ell}\right) \ldots$
- ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v)=\int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the slave side, we want $\left.M_{\ell} \sim V_{i_{\ell}}\right|_{\Gamma_{\ell}}$!
It contraints all slave functions.
But it is known that stability fails with this choice, and there is a need for cross point degree reduction..

$$
\operatorname{dim}\left(M_{\ell}\right) \leq \operatorname{dim}\left\{\left.v \in V_{i_{\ell}}\right|_{\Gamma_{\ell}}:\left.v\right|_{\partial \Gamma_{\ell}}=0\right\}
$$

Choice of the Langrange multiplier space

Each Γ_{ℓ} is a face of a subdomain Ω_{i} (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}:(0,1)^{d-1} \rightarrow \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma}=(0,1)^{d-1}$ denoted as $\widehat{\mathscr{T}}_{\ell}$.

Choice of the Langrange multiplier space

Each Γ_{ℓ} is a face of a subdomain Ω_{i} (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}:(0,1)^{d-1} \rightarrow \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma}=(0,1)^{d-1}$ denoted as $\widehat{\mathscr{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map!

Choice of the Langrange multiplier space

Each Γ_{ℓ} is a face of a subdomain Ω_{i} (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}:(0,1)^{d-1} \rightarrow \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma}=(0,1)^{d-1}$ denoted as $\widehat{\mathscr{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map!
Choice 1: same degree, cross point reduction

$$
\widehat{M}_{\ell}^{1}=\widetilde{S}_{p}\left(\widehat{\mathcal{T}}_{\ell}\right)
$$

Choice of the Langrange multiplier space

Each Γ_{ℓ} is a face of a subdomain Ω_{i} (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}:(0,1)^{d-1} \rightarrow \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma}=(0,1)^{d-1}$ denoted as $\widehat{\mathscr{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map!
Choice 2: degree reduction

$$
\widehat{M}_{\ell}^{2}=S_{p-2}\left(\widehat{\mathcal{T}}_{\ell}\right)
$$

Indeed, it is true that

$$
\operatorname{dim}\left(\widehat{M}_{\ell}^{2}\right)=\left\{\left.\widehat{v} \in S_{p}\left(\widehat{\mathcal{T}}_{i_{\ell}}\right)\right|_{\Gamma_{\ell}}:\left.\widehat{v}\right|_{\partial \Gamma_{\ell}}=0\right\}
$$

- No need for degree reduction or other manipulation
- If stable, it will deliver a slightly suboptimal order : $1 / 2$ suboptimal

Stability: numerical checks

Chapelle-Bathe test
Estimate on the inf-sup constant:

Stability: numerical checks

Chapelle-Bathe test

Estimate on the inf-sup constant:
Testing \widehat{M}_{ℓ} against $\left.S_{p}\left(\widehat{\mathcal{T}}_{i_{\ell}}\right)\right|_{\Gamma_{\ell}}$ without boundary conditions

$p / p-2 k$ couples are all stable!

the pairings are also stable varying p !

Stability: numerical checks

Chapelle-Bathe test

Estimate on the inf-sup constant:
Testing \widehat{M}_{ℓ} against $\left.S_{p}\left(\widehat{\mathcal{T}}_{i_{\ell}}\right)\right|_{\Gamma_{\ell}}$ with boundary conditions \ldots. the right thing!

$p / p-2 k$ couples are all stable!

exponential behavior in p !

Stability: Proof of the inf-sup condition

the $p / p-2$ case
We consider \widehat{M}_{ℓ}^{2} and can prove the following:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \hat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

+ quasi uniform meshes:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{H_{00}^{1 / 2}}\|\widehat{\mu}\|_{\left(H_{00}^{-1 / 2}\right)^{\prime}}} \geq \alpha_{0}
$$

Stability: Proof of the inf-sup condition

the $p / p-2$ case
We consider \widehat{M}_{ℓ}^{2} and can prove the following:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\widehat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

+ quasi uniform meshes:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{P} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{H_{00}^{1 / 2}}\|\widehat{\mu}\|_{\left(H_{00}^{-1 / 2}\right)^{\prime}}} \geq \alpha_{0}
$$

Proof

In 2D:

- $S_{p} \cap H_{0}^{1} \xrightarrow{\partial_{x}} S_{p-1} \cap L_{0}^{2} \xrightarrow{\partial_{x}} S_{p-2}$ is exact
- choose $\widehat{v} \in S_{p} \cap H_{0}^{1}$ such that $\partial_{x x}^{2} \widehat{v}=\widehat{\mu}$ and the work with Sobolev norms.
In 3D, basically the same applies...

Stability: Proof of the inf-sup condition

 the $p / p-2$ caseWe consider \widehat{M}_{ℓ}^{2} and can prove the following:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\widehat{\Gamma}} \widehat{\mu} \hat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

+ quasi uniform meshes:

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{H_{00}^{1 / 2}}\|\widehat{\mu}\|_{\left(H_{00}^{-1 / 2}\right)^{\prime}}} \geq \alpha_{0}
$$

Proof

In 2D:

- $S_{p} \cap H_{0}^{1} \xrightarrow{\partial_{x}} S_{p-1} \cap L_{0}^{2} \xrightarrow{\partial_{x}} S_{p-2}$ is exact
- choose $\widehat{v} \in S_{p} \cap H_{0}^{1}$ such that $\partial_{x x}^{2} \widehat{v}=\widehat{\mu}$ and the work with Sobolev norms.
In 3D, basically the same applies...
It is stable! ... we need now to go to physical space
A. Buffa (IMATI-CNR Italy)

Stability in the physical space
the $p / p-2$ case

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\widehat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

Stability in the physical space

the $p / p-2$ case

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

$$
\inf _{\mu \in M_{\ell}} \sup _{v \in V_{i_{\ell}}: v \in H_{0}^{1}\left(\Gamma_{\ell}\right)} \frac{\int_{\Gamma_{\ell}} \mu v}{\|v\|_{L^{2}}\|\mu\|_{L^{2}}} \geq \alpha_{0}
$$

$\int_{\Gamma_{\ell}} \mu v=\int_{\hat{\Gamma}} \rho \widehat{\mu} \widehat{v} \quad \rho=$ weight, area change..

Stability in the physical space

the $p / p-2$ case

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \widehat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

$$
\inf _{\mu \in M_{\ell}} \sup _{v \in V_{i_{\ell}}: v \in H_{0}^{1}\left(\Gamma_{\ell}\right)} \frac{\int_{\Gamma_{\ell}} \mu v}{\|v\|_{L^{2}}\|\mu\|_{L^{2}}} \geq \alpha_{0}
$$

$\int_{\Gamma_{\ell}} \mu v=\int_{\widehat{\Gamma}} \rho \widehat{\mu} \widehat{v} \quad \rho=$ weight, area change. and by super-convergence results à la Wahlbin:

$$
\Pi: L^{2}(\widehat{\Gamma}) \rightarrow \widehat{M}_{\ell}^{2} \quad \Rightarrow \quad\|\rho \widehat{\mu}-\Pi(\rho \widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq C h\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}
$$

Stability in the physical space

the $p / p-2$ case

$$
\inf _{\widehat{\mu} \in S_{p-2}} \sup _{\widehat{v} \in S_{p} \cap H_{0}^{1}} \frac{\int_{\hat{\Gamma}} \widehat{\mu} \hat{v}}{\|\widehat{v}\|_{L^{2}}\|\widehat{\mu}\|_{L^{2}}} \geq \alpha_{0}
$$

$$
\inf _{\mu \in M_{\ell}} \sup _{v \in V_{i_{\ell}}: v \in H_{0}^{1}\left(\Gamma_{\ell}\right)} \frac{\int_{\Gamma_{\ell}} \mu v}{\|v\|_{L^{2}}\|\mu\|_{L^{2}}} \geq \alpha_{0}
$$

$\int_{\Gamma_{\ell}} \mu v=\int_{\hat{\Gamma}} \rho \widehat{\mu} \widehat{v} \quad \rho=$ weight, area change. and by super-convergence results à la Wahlbin:

$$
\Pi: L^{2}(\widehat{\Gamma}) \rightarrow \widehat{M}_{\ell}^{2} \quad \Rightarrow \quad\|\rho \widehat{\mu}-\Pi(\rho \widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq C h\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}
$$

For h small enough the stability holds in physical space!

Back to our variational problem

Find $u_{h} \in V, \lambda_{h} \in M$ such that

$$
\begin{array}{cc}
a\left(u_{h}, v_{h}\right)+b\left(\lambda_{h}, v\right)=R\left(v_{h}\right) & \forall v_{h} \in V \\
b\left(\mu_{h}, u_{h}\right)=0 & \forall \mu_{h} \in M
\end{array}
$$

Back to our variational problem

Find $u_{h} \in V, \lambda_{h} \in M$ such that

$$
\begin{array}{cc}
a\left(u_{h}, v_{h}\right)+b\left(\lambda_{h}, v\right)=R\left(v_{h}\right) & \forall v_{h} \in V \\
b\left(\mu_{h}, u_{h}\right)=0 & \forall \mu_{h} \in M
\end{array}
$$

It is well-posed and verifies the following error estimate: if $u \in H^{r}(\Omega)$:

$$
\begin{align*}
\left\|u-u_{h}\right\| v & \leq C \inf _{v_{h} \in V}\left\|u-v_{h}\right\| v+\inf _{\mu_{h} \in M}\left\|\lambda-\mu_{h}\right\|_{M} \tag{1}\\
& \leq C h^{t}+C h^{s} \quad t=\min \{p, r-1\} \tag{2}
\end{align*}
$$

- $s=\min \{p+1 / 2, r-1\}$ for Choice 1: same degree,
- $s=\min \{p-1 / 2, r-1\}$ for Choice 2: degree reduction

Or, indeed:

$$
\left\|u-u_{h}\right\| v \leq C \inf _{v_{h} \in V \cap \operatorname{Ker}(B)}\left\|u-v_{h}\right\| v \leq C \ldots
$$

Numerical validation: problem 1

Ω_{3}

Numerical validation: problem 1

Numerical validation: problem 2

Numerical validation: problem 2

Multipliers' degree does not affect the order for the primal unknown!

Numerical validation: problem 2

but it affects the convergence of the multiplier!

Numerical validation: elasticity

Numerical validation: elasticity

Numerical validation: elasticity

Final remarks

- This approach can be used to treat contact in a variationally consistent way
- For patch gluing: the geometric non-matching patch cases should be studied in details
- The question of exact / inexact integration for interface integrals remains open (robustness of splines thanks to regularity)

Final remarks

Surveys and Codes

- New Acta Numerica survey paper with several math results:
L. Beirão Da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods
- We have two codes available to public:
- GeoPDEs library is a GNU licensed software available here: www.imati.cnr.it/geopdes
- IGATools is a C++ dimension independent library http://code.google.com/p/igatools

THANKS!

