Isogeometric mortaring

E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich

IMATI 'E. Magenes' - Pavia Technical University of Munich

(日)

A. Buffa (IMATI-CNR Italy)

IGA mortaring

1 Introduction

- Splines
- Approximation spaces and properties

2 Non conforming interfaces

- Mortar method
- Numerical validation

3 Final remarks

イロト 不得 トイヨト イヨト 二日

B-Splines are defined by the Cox-DeBoor formulae:

$$N_{i,0}(\zeta) = \begin{cases} 1 & \text{if } \xi_i \leq \zeta < \xi_{i+1}, \\ 0 & \text{otherwise}, \end{cases}$$
$$N_{i,p}(\zeta) = \frac{\zeta - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\zeta) + \frac{\xi_{i+p+1} - \zeta}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\zeta).$$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

B-Splines are defined by the Cox-DeBoor formulae:

B-Splines are defined by the Cox-DeBoor formulae:

$$N_{i,0}(\zeta) = \begin{cases} 1 & \text{if } \xi_i \leq \zeta < \xi_{i+1}, \\ 0 & \text{otherwise,} \end{cases}$$
$$N_{i,p}(\zeta) = \frac{\zeta - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\zeta) + \frac{\xi_{i+p+1} - \zeta}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\zeta).$$
$$\mathbf{F}(\xi) = \sum_{i} \mathbf{C}_i N_{i,p}(\xi) :$$

- ∢ ⊒ →

< □ > < 同 > < 回 >

B-Splines are defined by the Cox-DeBoor formulae:

$$N_{i,0}(\zeta) = \begin{cases} 1 & \text{if } \xi_i \leq \zeta < \xi_{i+1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$N_{i,p}(\zeta) = \frac{\zeta - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\zeta) + \frac{\xi_{i+p+1} - \zeta}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\zeta).$$

$$F(\xi) = \sum_i C_i N_{i,p}(\xi) :$$

NURBS: projection of splines in \mathbf{R}^{d+1} ... no need for this talk.

A. Buffa (IMATI-CNR Italy)

 The geometry Ω and its NURBS parametrization F is "given" by CAD general geometry: unstructured collection of "patches".

< 日 > < 同 > < 三 > < 三 >

- The geometry Ω and its NURBS parametrization **F** is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the *push-forward* of Spline/NURBS

A. Buffa (IMATI-CNR Italy)

イロト イポト イラト イラト

- The geometry Ω and its NURBS parametrization **F** is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the *push-forward* of Spline/NURBS
- Refinement by **knot insertion** and **degree elevation**, geometry unchanged.

A. Buffa (IMATI-CNR Italy)

イロト イポト イラト イラト

- The geometry Ω and its NURBS parametrization **F** is "given" by CAD general geometry: unstructured collection of "patches".
- The discrete space on Ω is the *push-forward* of Spline/NURBS
- Refinement by **knot insertion** and **degree elevation**, geometry unchanged.

A. Buffa (IMATI-CNR Italy)

イロト イポト イラト イラト

General geometries are multi-patch

Globally unstructured Locally structured

A. Buffa (IMATI-CNR Italy)

イロト 不得 トイヨト イヨト 二日

General geometries are multi-patch

Globally unstructured Locally structured

イロト 不得 トイヨト イヨト 二日

A. Buffa (IMATI-CNR Italy)

IGA mortaring

General geometries are multi-patch

イロト 不得 トイヨト イヨト 二日

Globally unstructured Locally structured

Question: How to enhance flexibility? **Question**: How to treat non conforming interfaces?

A. Buffa (IMATI-CNR Italy)

IGA mortaring

Perfect setting for adaptivity

if splines can support local refinement

• **T-splines** : Sederberg et al 2004, Hughes, Scott, Evans, Li, Zhang, ... Pavia team Pure geometric modeling approach:

courtesy of M. Scott

Kraft 1998. ...

• LR-splines

Dokken et al. 2013, Bressan 2013

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Definition \mathbb{R}^n , spline theory of LR-Splines

• Hierarchical splines

the closest to adaptive finite elements on quadrangular meshes

A. Buffa (IMATI-CNR Italy)

Hierarchical splines

Kraft 1998, Giannelli, Jüttler, Simeon, Speelers, Voung 2010–2013, B.-Giannelli 2014

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hierarchical splines

Kraft 1998, Giannelli, Jüttler, Simeon, Speelers, Voung 2010–2013, B.-Giannelli 2014

- $V_0 \subset V_1 \subset V_2 ... \subset V_J$
- Refinement has to contain at least one function : $(p+1)^2$ elements
- Definition of **truncated-basis** ensuring good spline properties

Giannelli, Juettler, Speelers

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_Q = h_Q \|Au_h f\|_{L^2(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}(u_h, \mathcal{M}) \geq \theta \mathcal{E}(u_h, \mathcal{T})$, $0 < \theta < 1$;
- Suitable local quasi-interpolant and their approximation properties

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_Q = h_Q \|Au_h f\|_{L^2(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}(u_h, \mathcal{M}) \geq \theta \mathcal{E}(u_h, \mathcal{T})$, $0 < \theta < 1$;
- Suitable local quasi-interpolant and their approximation properties
- The theory of adaptive methods

Morin, Nochetto, Siebert -Binev, Dahmen, DeVore 2002-2005

⇒ Convergence and optimality !

Adaptivity with hierarchical splines

B. and Giannelli, 2014

- Residual based estimator: $\eta_Q = h_Q ||Au_h f||_{L^2(Q)}$ (no jumps)
- Dörfler marking $\mathcal{E}(u_h, \mathcal{M}) \geq \theta \mathcal{E}(u_h, \mathcal{T})$, $0 < \theta < 1$;
- Suitable local quasi-interpolant and their approximation properties
- The theory of adaptive methods

Morin, Nochetto, Siebert -Binev, Dahmen, DeVore 2002-2005

- \Rightarrow Convergence and optimality !
- ... but this is another story ...

A. Buffa (IMATI-CNR Italy)

IGA mortaring

9 / 29

Let Ω be a computational domain in \mathbb{R}^n , we want to solve the Laplace problem (or linear elasticity with minor changes)

 $-\operatorname{div}\left(\mathbf{A}\nabla u\right)=f$

with boundary conditions $\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N$.

$$u = 0$$
 on Γ_D and $(\mathbf{A} \nabla u) \cdot \mathbf{n} = h$ on Γ_N

We suppose that

$$\Omega = \bigcup_{i}^{N} \Omega_{i}, \ \Omega_{i} = \mathbf{F}_{i}(\widehat{\Omega}), \ \mathsf{\Gamma}_{ij} = \partial \Omega_{i} \cap \Omega_{j},$$

- **F**_i are splines (or NURBS)
- non compatible meshes at the interfaces Γ_{ij}

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- We can handle the case when Γ_{ij} is a face of either Ω_i or Ω_j .
- There is the need for cross-point treatment/reduction

A. Buffa (IMATI-CNR Italy)

IGA mortaring

(日) (同) (日) (日)

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- We can handle the case when Γ_{ij} is a face of either Ω_i or Ω_j .
- There is the need for cross-point treatment/reduction
- Non compatible geometries interfaces at the interfaces Γ_{ij} (?)

A. Buffa (IMATI-CNR Italy)

< ロ > < 同 > < 回 > < 回 >

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh \widehat{T}_i .

• in each subdomain Ω_j ,

$$V_j = \{v_j \in H^1(\Omega_j) : v \circ \mathbf{F}_j \in \mathcal{S}_p(\widehat{\Upsilon}_j)\}$$

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh \widehat{T}_i .

• in each subdomain Ω_j ,

$$V_{j} = \{ v_{j} \in H^{1}(\Omega_{j}) : v \circ \mathbf{F}_{j} \in S_{\rho}(\widehat{\mathbb{T}}_{j}) \}$$
$$V = \{ v \in L^{2}(\Omega) : v_{|\Omega_{j}} \in V_{j}, v_{|\Gamma_{D}} = 0 \} \quad \|v\|_{V}^{2} = \sum_{i=1}^{N} \|v\|_{H^{1}(\Omega_{j})}^{2}.$$

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines/NURBS of degree p, on the knot mesh \widehat{T}_j .

• in each subdomain Ω_j ,

$$V_{j} = \{ v_{j} \in H^{1}(\Omega_{j}) : v \circ \mathbf{F}_{j} \in S_{p}(\widehat{\mathbb{T}}_{j}) \}$$
$$V = \{ v \in L^{2}(\Omega) : v_{|\Omega_{j}} \in V_{j}, v_{|\Gamma_{D}} = 0 \} \quad \|v\|_{V}^{2} = \sum_{i=1}^{N} \|v\|_{H^{1}(\Omega_{j})}^{2}.$$

Interface numbering and spaces

$$\Sigma_0 = igcup_{\ell=1}^{n_l} \Gamma_\ell \,, \qquad orall \ell \quad \exists (i_\ell, j_\ell) \ : \Gamma_\ell = \partial \Omega_{i_\ell} \cap \Omega_{j_\ell}.$$

Continuity across Σ_0 imposed via Lagrange multipliers:

$$M = \{\lambda \in L^2(\Sigma_0) : \lambda_\ell = \lambda_{|\Gamma_\ell} \in M_\ell\}$$

 M_{ℓ} to be chosen properly!

A. Buffa (IMATI-CNR Italy)

11 / 29

Variational formulation of the problem

Find $u_h \in V$, $\lambda_h \in M$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v_h) = \mathsf{R}(v_h) & \forall v_h \in V \ & \mathsf{b}(\mu_h,u_h) = 0 & \forall \mu_h \in M \end{aligned}$$

where

$$a(u,v) = \int_{\Omega} \mathbf{A}
abla u \cdot
abla v \qquad b(\lambda,v) = \sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \qquad [u] = u_{i_{\ell}} - u_{j_{\ell}}$$

R(v) is the RHS taking into account also Neumann BC...

Variational formulation of the problem

Find $u_h \in V$, $\lambda_h \in M$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v_h) = \mathsf{R}(v_h) & \forall v_h \in V \ & \mathsf{b}(\mu_h,u_h) = 0 & \forall \mu_h \in M \end{aligned}$$

where

$$m{a}(u,v) = \int_{\Omega} \mathbf{A}
abla u \cdot
abla v \qquad m{b}(\lambda,v) = \sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \qquad [u] = u_{i_{\ell}} - u_{j_{\ell}}$$

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of Lagrange multipliers which should guarantee stability!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Variational formulation of the problem

Find $u_h \in V$, $\lambda_h \in M$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v_h) = \mathsf{R}(v_h) & \forall v_h \in V \ & \mathsf{b}(\mu_h,u_h) = 0 & \forall \mu_h \in M \end{aligned}$$

where

$$m{a}(u,v) = \int_{\Omega} \mathbf{A}
abla u \cdot
abla v \qquad m{b}(\lambda,v) = \sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \qquad [u] = u_{i_{\ell}} - u_{j_{\ell}}$$

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of Lagrange multipliers which should guarantee stability!

$$M = \{\lambda \in L^2(\Sigma_0) : \lambda_\ell = \lambda_{|\Gamma_\ell} \in M_\ell\} \qquad \|\lambda\|_M^2 = \sum_{\ell=1}^{n_\ell} \|\lambda_\ell\|_{(H^{1/2}_{00})'}^2$$

A. Buffa (IMATI-CNR Italy)

Choice of the Langrange multiplier space

• Topology for
$$M_\ell$$
 is $H^{1/2}_{00}(\Gamma_\ell)...$

• ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v) = \int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the slave side, we want $M_{\ell} \sim V_{i_{\ell}}|_{\Gamma_{\ell}}$! It contraints **all** slave functions.

But it is known that stability fails with this choice, and there is a need for **cross point degree reduction**..

Choice of the Langrange multiplier space

• Topology for
$$M_\ell$$
 is $H^{1/2}_{00}(\Gamma_\ell)...$

• ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v) = \int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the slave side, we want $M_{\ell} \sim V_{i_{\ell}}|_{\Gamma_{\ell}}$! It contraints **all** slave functions.

But it is known that stability fails with this choice, and there is a need for **cross point degree reduction**..

$$\dim(M_{\ell}) \leq \dim\{v \in V_{i_{\ell}}|_{\Gamma_{\ell}} : v|_{\partial \Gamma_{\ell}} = 0\}$$

A. Buffa (IMATI-CNR Italy)

Choice of the Langrange multiplier space

Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} \to \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}.$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} \to \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map !

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}: (0,1)^{d-1} \to \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map ! Choice 1: same degree, cross point reduction

$$\widehat{M}^1_\ell = \widetilde{S}_p(\widehat{\mathbb{T}}_\ell)$$

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_{ℓ} inherits a spline mapping $\mathbf{F}_{\ell}: (0,1)^{d-1} \to \Gamma_{\ell}$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map ! Choice 2: degree reduction

$$\widehat{M}_{\ell}^2 = S_{p-2}(\widehat{\mathfrak{T}}_{\ell})$$

Indeed, it is true that

$$\dim(\widehat{M}_{\ell}^2) = \{ \widehat{\boldsymbol{\nu}} \in \mathcal{S}_{\boldsymbol{\rho}}(\widehat{\mathbb{T}}_{i_\ell})|_{\boldsymbol{\Gamma}_\ell} \ : \ \widehat{\boldsymbol{\nu}}|_{\partial \boldsymbol{\Gamma}_\ell} = 0 \}$$

- No need for degree reduction or other manipulation
- If stable, it will deliver a slightly suboptimal order : 1/2 suboptimal

A. Buffa (IMATI-CNR Italy)

IGA mortaring

Stability: numerical checks

Chapelle-Bathe test

Estimate on the inf-sup constant:

Stability: numerical checks

Chapelle-Bathe test

Estimate on the inf-sup constant:

Testing \widehat{M}_{ℓ} against $S_{p}(\widehat{T}_{i_{\ell}})|_{\Gamma_{\ell}}$ without boundary conditions

p/p - 2k couples are all stable!

the pairings are also stable varying p !

イロト 不同 ト イヨト イヨト

A. Buffa (IMATI-CNR Italy)

Stability: numerical checks

Chapelle-Bathe test

Estimate on the inf-sup constant:

Testing \widehat{M}_{ℓ} against $S_{\rho}(\widehat{T}_{i_{\ell}})|_{\Gamma_{\ell}}$ with boundary conditions the right thing!

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove the following:

$$\inf_{\widehat{\mu}\in \mathcal{S}_{p-2}}\sup_{\widehat{\nu}\in \mathcal{S}_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

+ quasi uniform meshes :

$$\inf_{\widehat{\mu}\in S_{p-2}}\sup_{\widehat{\nu}\in S_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{H_{00}^{1/2}}\|\widehat{\mu}\|_{(H_{00}^{-1/2})'}}\geq \alpha_0$$

A. Buffa (IMATI-CNR Italy)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove the following:

$$\inf_{\widehat{\mu}\in \mathcal{S}_{p-2}}\sup_{\widehat{\nu}\in \mathcal{S}_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

+ quasi uniform meshes :

$$\inf_{\widehat{\mu}\in S_{p-2}} \sup_{\widehat{\nu}\in S_p\cap H_0^1} \frac{\int_{\widehat{\Gamma}} \widehat{\mu} \, \widehat{\nu}}{\|\widehat{\nu}\|_{\mathcal{H}_{00}^{1/2}} \|\widehat{\mu}\|_{(\mathcal{H}_{00}^{-1/2})'}} \ge \alpha_0$$

Proof

In 2D:

•
$$S_{\rho} \cap H_0^1 \xrightarrow{\partial_x} S_{\rho-1} \cap L_0^2 \xrightarrow{\partial_x} S_{\rho-2}$$
 is exact

- choose $\hat{v} \in S_p \cap H_0^1$ such that $\partial_{xx}^2 \hat{v} = \hat{\mu}$ and the work with Sobolev norms.
- In 3D, basically the same applies...

A. Buffa (IMATI-CNR Italy)

IGA mortaring

16 / 29

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove the following:

$$\inf_{\widehat{\mu}\in \mathcal{S}_{p-2}}\sup_{\widehat{\nu}\in \mathcal{S}_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

+ quasi uniform meshes :

$$\inf_{\widehat{\mu}\in S_{p-2}} \sup_{\widehat{\nu}\in S_p\cap H_0^1} \frac{\int_{\widehat{\Gamma}} \widehat{\mu} \, \widehat{\nu}}{\|\widehat{\nu}\|_{\mathcal{H}_{00}^{1/2}} \|\widehat{\mu}\|_{(\mathcal{H}_{00}^{-1/2})'}} \ge \alpha_0$$

Proof

In 2D:

- $S_p \cap H^1_0 \xrightarrow{\partial_x} S_{p-1} \cap L^2_0 \xrightarrow{\partial_x} S_{p-2}$ is exact
- choose $\widehat{v} \in S_p \cap H_0^1$ such that $\partial_{xx}^2 \widehat{v} = \widehat{\mu}$ and the work with Sobolev norms.
- In 3D, basically the same applies...

A. Buffa (IMATI-CNR Italy)

IGA mortaring

17 / 29

 $\int_{\Gamma_{\ell}} \mu \, \mathbf{v} = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{\mathbf{v}} \quad \rho = \text{weight, area change..}$

A. Buffa (IMATI-CNR Italy)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\int_{\Gamma_{\ell}} \mu \, v = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{v} \quad \rho = \text{weight, area change..}$ and by super-convergence results à la Wahlbin:

$$\Pi: L^{2}(\widehat{\Gamma}) \to \widehat{M}_{\ell}^{2} \quad \Rightarrow \quad \|\rho\widehat{\mu} - \Pi(\rho\widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq Ch\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}$$

A. Buffa (IMATI-CNR Italy)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

 $\int_{\Gamma_{\ell}} \mu \, \mathbf{v} = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{\mathbf{v}} \quad \rho = \text{weight, area change..}$ and by super-convergence results à la Wahlbin:

$$\Pi: L^{2}(\widehat{\Gamma}) \to \widehat{M}_{\ell}^{2} \quad \Rightarrow \quad \|\rho\widehat{\mu} - \Pi(\rho\widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq Ch\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}$$

For h small enough the stability holds in physical space!

A. Buffa (IMATI-CNR Italy)

IGA mortaring

Back to our variational problem Find $u_h \in V$, $\lambda_h \in M$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v) = \mathsf{R}(v_h) & \forall v_h \in V \ & \mathsf{b}(\mu_h,u_h) = 0 & \forall \mu_h \in M \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Back to our variational problem Find $u_h \in V$, $\lambda_h \in M$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v) = \mathsf{R}(v_h) & & \forall v_h \in V \ & \mathsf{b}(\mu_h,u_h) = 0 & & \forall \mu_h \in M \end{aligned}$$

It is well-posed and verifies the following error estimate: if $u \in H^{r}(\Omega)$:

$$\|u - u_h\|_V \le C \inf_{v_h \in V} \|u - v_h\|_V + \inf_{\mu_h \in M} \|\lambda - \mu_h\|_M$$
(1)
$$\le Ch^t + Ch^s \qquad t = \min\{p, r - 1\}$$
(2)

$$\|u-u_h\|_V \leq C \inf_{v_h \in V \cap \operatorname{Ker}(B)} \|u-v_h\|_V \leq C \dots$$

A. Buffa (IMATI-CNR Italy)

A. Buffa (IMATI-CNR Italy)

19 / 29

3

・ロト ・回ト ・ヨト ・ヨト

A. Buffa (IMATI-CNR Italy)

IGA mortaring

20 / 29

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Buffa (IMATI-CNR Italy)

IGA mortaring

21 / 29

3

・ロト ・回ト ・モト ・モト

Multipliers' degree does not affect the order for the primal unknown!

A. Buffa (IMATI-CNR Italy)

IGA mortaring

< ロ > < 同 > < 回 > < 回 >

but it affects the convergence of the multiplier!

A. Buffa (IMATI-CNR Italy)

IGA mortaring

23 / 29

A > 4

.⊒ →

Numerical validation: elasticity

< ロ > < 同 > < 回 > < 回 > < □ > <

A. Buffa (IMATI-CNR Italy)

IGA mortaring

24 / 29

3

Numerical validation: elasticity

э

< ロ > < 同 > < 回 > < 回 >

Numerical validation: elasticity

A. Buffa (IMATI-CNR Italy)

IGA mortaring

(日)

- ∢ ⊒ →

26 / 29

Final remarks

- This approach can be used to treat **contact** in a variationally consistent way
- For patch gluing: the geometric non-matching patch cases should be studied in details
- The question of exact / inexact integration for interface integrals remains open (robustness of splines thanks to regularity)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Final remarks

Surveys and Codes

• New Acta Numerica survey paper with several math results:

L. Beirão Da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods

- We have two codes available to public :
 - GeoPDEs library is a GNU licensed software available here: www.imati.cnr.it/geopdes
 - IGATools is a C++ dimension independent library http://code.google.com/p/igatools

イロト 不同 ト イヨト イヨト

A. Buffa (IMATI-CNR Italy)

THANKS!

A. Buffa (IMATI-CNR Italy)

IGA mortaring

29 / 29