Oblivious quadrature for long-time computation of

waves

Lehel Banjai
Heriot-Watt University, Edinburgh

LMS-EPSRC Durham symposium, 12th July 2014

Based on work with: Volker Gruhne, María López Fernández (Zurich), Christian Lubich (Tübingen), Francisco-Javier Sayas (Delaware), Achim Schädle (Düsseldorf)

Oblivious quadrature for long-time computation of

 waves and the coupling of implicit/explicit time-steppingLehel Banjai
Heriot-Watt University, Edinburgh

LMS-EPSRC Durham symposium, 12th July 2014

Based on work with: Volker Gruhne, María López Fernández (Zurich), Christian Lubich (Tübingen), Francisco-Javier Sayas (Delaware), Achim Schädle (Düsseldorf)

Outline

(1) A model problem

(2) Coupling of different time-discretizations

(3) Oblivious quadrature for long time computation
4. Conclusions

A model problem: Damped wave equation

Consider, for some bounded domain Ω with boundary Γ,

$$
\begin{array}{ll}
\frac{1}{c(x)^{2}} \partial_{t}^{2} u+\alpha \partial_{t} u-\Delta u=f, & \text { in } \Omega \times \mathbb{R}_{>0} \\
u(\cdot, 0)=u_{0}, \quad \partial_{t} u(\cdot, 0)=v_{0}, & \text { in } \Omega \\
\quad \partial_{\nu} u=-\sqrt{\partial_{t}^{2}+\alpha \partial_{t} u,} & \text { on } \Gamma \times \mathbb{R}_{>0}
\end{array}
$$

with $f, u_{0}, v_{0}, c(x)-1$, compactly supported in Ω and $\alpha>0$.

- We can think of this as the damped wave equation with corresponding zero-order absorbing boundary condition.
- Note that $u=0$ near Γ at time $t=0$.

Motivation behind the problem

Some properties of the $\sqrt{\partial_{t}^{2}+\alpha \partial_{t}}$:

- A non-local operator with infinite memory.
- Taking the Laplace transform

$$
\left(\mathscr{L} \sqrt{\partial_{t}^{2}+\alpha \partial_{t}}\right)(s)=\sqrt{s^{2}+\alpha s}
$$

we obtain an operator analytic and polynomially bounded in $\mathbb{C} \backslash(-\infty, 0]$ - an operator of parabolic type.
Motivation for considering:

- Similarities with 2D and damped wave equation fundamental solutions:

$$
\frac{H(t-r)}{4 \sqrt{t^{2}-r^{2}}}-2 \mathrm{D} \quad \frac{e^{-\sqrt{s^{2}+\alpha s} r}}{4 \pi r}-3 \mathrm{D} \text { damped in Laplace domain. }
$$

- Gives a simple example of a coupled linear hyperbolic/parabolic system, where the coupling of different time-discretizations is of interest.

Meaning of $\sqrt{\partial_{t}^{2}+\alpha \partial_{t}}$.

- For sufficiently smooth causal f and $F(s)=(\mathscr{L} f)(s)$

$$
\left(\mathscr{L}\left(\partial_{t} f\right)\right)(s)=s F(s)
$$

Note that $\partial_{t} f$ can be understood as the convolution

$$
\delta^{\prime} * f
$$

- Similarly

$$
\sqrt{\partial_{t}^{2}+\alpha \partial_{t}} f(t)=\int_{\sigma+\mathrm{i} \mathbb{R}} e^{s t} \sqrt{s^{2}+\alpha s} F(s) \mathrm{d} s
$$

and can also be understood as a convolution, which is continuous and causal if

$$
|\mathscr{L} f(s)| \leq C|s|^{-\mu}
$$

for $\mu>2$ and $\operatorname{Re} s \geq \sigma>0$.

Outline

(1) A model problem
(2) Coupling of different time-discretizations
(3) Oblivious quadrature for long time computation

4 Conclusions

Variational formulation and spatial discretization

Let $S_{h} \subset H^{1}(\Omega)$ be a piecewise linear finite element space. Find $u_{h}(\cdot, t) \in S_{h}$ such that
$\left(\partial_{t}^{2} u_{h}+\alpha \partial_{t} u_{h}, v\right)_{L^{2}(\Omega)}+\left(\nabla u_{h}, \nabla v\right)_{L^{2}(\Omega)}+\left\langle\sqrt{\partial_{t}^{2}+\alpha \partial_{t}} u_{h}, v\right\rangle_{L^{2}(\Gamma)}=(f, v)_{L^{2}(S}$
and $u_{h}(0)=u_{0, h}, \partial_{t} u_{h}(0)=v_{0, h}$.

Variational formulation and spatial discretization

Let $S_{h} \subset H^{1}(\Omega)$ be a piecewise linear finite element space. Find $u_{h}(\cdot, t) \in S_{h}$ such that
$\left(\ddot{u}_{h}+\alpha \dot{u}_{h}, v\right)_{L^{2}(\Omega)}+\left(\nabla u_{h}, \nabla v\right)_{L^{2}(\Omega)}+\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \dot{u}_{h}, v\right\rangle_{L^{2}(\Gamma)}=(f, v)_{L^{2}(\Omega)}$
and $u_{h}(0)=u_{0, h}, \dot{u}_{h}(0)=v_{0, h}$.

Variational formulation and spatial discretization

Let $S_{h} \subset H^{1}(\Omega)$ be a piecewise linear finite element space. Find $u_{h}(\cdot, t) \in S_{h}$ such that
$\left(\ddot{u}_{h}+\alpha \dot{u}_{h}, v\right)_{L^{2}(\Omega)}+\left(\nabla u_{h}, \nabla v\right)_{L^{2}(\Omega)}+\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \dot{u}_{h}, v\right\rangle_{L^{2}(\Gamma)}=(f, v)_{L^{2}(\Omega)}$
and $u_{h}(0)=u_{0, h}, \dot{u}_{h}(0)=v_{0, h}$.

- We plan to discretize \dot{u} and ∂_{t}^{-1} with different discretization schemes.
- Testing with $v=\dot{u}_{h}$ we obtain the energy identity (for $f=0$)

$$
E(t)=E(0)-\int_{0}^{t} \alpha\left\|\dot{u}_{h}\right\|_{L^{2}(\Omega)}^{2} d \tau-\int_{0}^{t}\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \dot{u}_{h}, \dot{u}_{h}\right\rangle_{L^{2}(\Gamma)} d \tau
$$

where

$$
E(t)=\frac{1}{2}\left\|\dot{u}_{h}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|\nabla u_{h}\right\|_{L^{2}(\Omega)}^{2} .
$$

Positivity of the boundary term [LB, Lubich, Sayas 2014]

Lemma

For a sufficiently smooth causal $\varphi(\cdot, t) \in H^{1 / 2}(\Gamma)$

$$
\int_{0}^{t}\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \varphi, \varphi\right\rangle_{L^{2}(\Gamma)} d \tau \geq \int_{0}^{t}\|\varphi\|^{2} d \tau
$$

Proof: For $\sigma>0$ consider

$$
\int_{\mathbb{R}} e^{-2 \sigma \tau}\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \varphi, \varphi\right\rangle_{L^{2}(\Gamma)} d \tau=\int_{\mathbb{R}} \sqrt{1+\alpha s^{-1}}\|\Phi(s)\|^{2} d \omega
$$

where, $s=\sigma+\mathrm{i} \omega, \Phi(s)=\mathscr{L} \varphi(s)$. The proof is finished by noticing that

$$
\operatorname{Re} \sqrt{1+\alpha s^{-1}} \geq 1 \Longrightarrow
$$

$$
\int_{\mathbb{R}} e^{-2 \sigma \tau}\left\langle\sqrt{1+\alpha \partial_{t}^{-1}} \varphi, \varphi\right\rangle_{L^{2}(\Gamma)} d \tau \geq \int_{\mathbb{R}} e^{-2 \sigma \tau}\|\varphi\|^{2} d \tau
$$

Discretizing $\sqrt{\partial_{t}^{2}+\alpha \partial_{t}}$ - Convolution quadrature [Lubich' '88]

- $\partial_{t} u(t) \approx \partial_{\Delta t} u(t)=\frac{u(t)-u(t-\Delta t)}{\Delta t}$. Then

$$
\left(\mathscr{L} \partial_{\Delta t} u\right)(s)=\left(\frac{1-e^{-s \Delta t}}{\Delta t}\right) U(s)=s_{\Delta t} U(s)
$$

Note $s_{\Delta t}=s(1+O(s \Delta t))$.

Discretizing $\sqrt{\partial_{t}^{2}+\alpha \partial_{t}}-$ Convolution quadrature [Lubich '88]

- $\partial_{t} u(t) \approx \partial_{\Delta t} u(t)=\frac{u(t)-u(t-\Delta t)}{\Delta t}$. Then

$$
\left(\mathscr{L} \partial_{\Delta t} u\right)(s)=\left(\frac{1-e^{-s \Delta t}}{\Delta t}\right) U(s)=s_{\Delta t} U(s)
$$

Note $s_{\Delta t}=s(1+O(s \Delta t))$.

- Similarly $\sqrt{1+\alpha \partial_{t}^{-1}} u(t) \approx \sqrt{1+\alpha \partial_{\Delta t}^{-1}} u(t)$ where

$$
\left(\mathscr{L} \sqrt{1+\alpha \partial_{\Delta t}^{-1}} u\right)(s)=\sqrt{1+\alpha s_{\Delta t}^{-1}} U(s)
$$

Expanding

$$
\sqrt{1+\alpha s_{\Delta t}^{-1}}=\sum_{j=0}^{\infty} \omega_{j} e^{-s j \Delta t}
$$

we get that

$$
\sqrt{1+\alpha \partial_{\Delta t}^{-1}} u(t)=\sum_{j=0}^{\infty} \omega_{j} u\left(t-t_{j}\right)
$$

Computing the weights ω_{j} and extensions

- The weights are Taylor coefficients of the analytic function

$$
\sqrt{1+\alpha \frac{\Delta t}{1-z}}=\sum_{j=0}^{\infty} \omega_{j} z^{j}
$$

and can hence be efficiently computed using contour integrals and FFTs.

- Similarly higher order $A(\theta)$-stable linear multistep or Runge-Kutta methods can be used as the basis for discretization.

Example for $\alpha=1 / 2, \Delta t=1 / 100$:

j	0	1	2	3
ω_{j}	1.0024969	0.0024938	0.0024907	0.0024876

Fully discrete system

Writing $t_{j}=j \Delta t$ and u_{j} an approximation of $u_{h}\left(t_{j}\right)$ the fully discrete system reads

$$
\begin{aligned}
\frac{1}{\Delta t^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}, v\right) & +\left(\alpha \dot{u}_{n}, v\right)+\left(\nabla u_{n}, \nabla v\right) \\
& +\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n}\right), v\right\rangle=\left(f_{n}, v\right)
\end{aligned}
$$

where $\dot{u}_{n}=\frac{1}{2 \Delta t}\left(u_{n+1}-u_{n-1}\right)$.

- To obtain an energy identity test again with $v=\dot{u}_{n}$ (for $f=0$) and sum over n to obtain

$$
E_{N+1 / 2}=E_{1 / 2}-\Delta t \sum_{n=0}^{N} \alpha\left\|\dot{u}_{n}\right\|^{2}-\Delta t \sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n}\right), \dot{u}_{n}\right\rangle
$$

where the discrete energy

$$
E_{n+1 / 2}=\frac{1}{2}\left\|\frac{u_{n+1}-u_{n}}{\Delta t}\right\|^{2}+\frac{1}{2}\left(\nabla u_{n}, \nabla u_{n+1}\right)
$$

is positive under the usual CFL condition.

Positivity of the discretized boundary term [LB, Lubich, Sayas 2014]

Lemma

We have

$$
\sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} v\left(t_{n}\right), v_{n}\right\rangle \geq 0 .
$$

Proof is similar and requires that

$$
\operatorname{Re} \sqrt{1+\alpha / s^{\Delta t}}>0 .
$$

- This is true as long as $s^{\Delta t}$ avoids the negative real axis.
- For $s=\mathrm{i} \omega, s^{\Delta t}$ traverses the boundary of the stability region, hence the above holds for $A(\theta)$-stable methods.

Different time-steps: version 1

The time-step may be severely restricted by the CFL condition. So use

$$
\kappa=\Delta t / k, \quad k \in \mathbb{N},
$$

in the interior. Denote $t_{n, \ell}=n \Delta t+\ell \kappa=n \Delta t+(\ell / k) \Delta t$ and $u_{n, \ell}$ the corresponding approximation.

$$
\begin{aligned}
\frac{1}{\kappa^{2}}\left(u_{n, \ell+1}-2 u_{n, \ell}+u_{n, \ell-1}, v\right) & +\left(\alpha \dot{u}_{n, \ell}, v\right)+\left(\nabla u_{n, \ell}, \nabla v\right) \\
& +\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n, \ell}\right), v\right\rangle=\left(f_{n, \ell}, v\right)
\end{aligned}
$$

where $\dot{u}_{n, \ell}=\frac{1}{2 \kappa}\left(u_{n, \ell+1}-u_{n, \ell-1}\right)$.

- To obtain an energy identity test again with $v=\dot{u}_{n, \ell}$ and sum over n and ℓ to obtain

$$
E_{N, 1 / 2}=E_{0,1 / 2}-\kappa \sum_{\ell=0}^{k-1} \sum_{n=0}^{N} \alpha\left\|\dot{u}_{n}\right\|^{2}-\kappa \sum_{\ell=0}^{k-1} \sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n, \ell}\right), \dot{u}_{n, \ell}\right\rangle
$$

Comments on version 1

- Note

$$
\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n, \ell}\right)=\sum_{j=0}^{\infty} \omega_{j} \dot{u}_{n-j, \ell}
$$

- The boundary term is again positive since it is positive for each ℓ :

$$
\sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n, \ell}\right), \dot{u}_{n, \ell}\right\rangle \geq 0
$$

- Only need to compute N weights and each convolution requires N multiplications, rather than $k N$.
- But we still need to compute the whole convolution for each $t_{n, \ell}$. Can this be improved?

A bad version

Let us throw caution to the wind and try

$$
\begin{aligned}
\frac{1}{\kappa^{2}}\left(u_{n, \ell+1}-2 u_{n, \ell}+u_{n, \ell-1}, v\right) & +\left(\alpha \dot{u}_{n, \ell}, v\right)+\left(\nabla u_{n, \ell}, \nabla v\right) \\
& +\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n}\right), v\right\rangle=\left(f_{n, \ell}, v\right)
\end{aligned}
$$

First compute with the stable version:

A bad version

Let us throw caution to the wind and try

$$
\begin{aligned}
\frac{1}{\kappa^{2}}\left(u_{n, \ell+1}-2 u_{n, \ell}+u_{n, \ell-1}, v\right) & +\left(\alpha \dot{u}_{n, \ell}, v\right)+\left(\nabla u_{n, \ell}, \nabla v\right) \\
& +\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \dot{u}\left(t_{n}\right), v\right\rangle=\left(f_{n, \ell}, v\right)
\end{aligned}
$$

Instability occurs eventually with the ad-hoc version:

Version 2: cheaper and stable

Idea: Apply the boundary operator to a different approximation of \dot{u} :

$$
\begin{aligned}
\frac{1}{\kappa^{2}}\left(u_{n, \ell+1}-2 u_{n, \ell}+u_{n, \ell-1}, v\right) & +\left(\alpha \dot{u}_{n, \ell}, v\right)+\left(\nabla u_{n, \ell}, \nabla v\right) \\
& +\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \widetilde{\dot{u}}\left(t_{n}\right), v\right\rangle=\left(f_{n, \ell}, v\right) .
\end{aligned}
$$

- Testing with $v=\dot{u}_{n, \ell}$ we obtain

$$
\begin{aligned}
& E_{N, 1 / 2}=E_{0,1 / 2}-\kappa \sum_{\ell=1}^{k} \sum_{n=0}^{N} \alpha\left\|\dot{u}_{n}\right\|^{2}-\kappa \sum_{\ell=1}^{k} \sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \widetilde{\dot{u}}\left(t_{n}\right), \dot{u}_{n, \ell}\right) \\
& =E_{0,1 / 2}-\Delta t \sum_{n=0}^{N} \alpha\left\|\dot{u}_{n}\right\|^{2}-\Delta t \sum_{n=0}^{N}\left\langle\sqrt{1+\alpha \partial_{\Delta t}^{-1}} \widetilde{\dot{u}}\left(t_{n}\right), \frac{1}{k} \sum_{\ell=1}^{k} \dot{u}_{n, \ell}\right\rangle .
\end{aligned}
$$

- Energy balance is obtained by choosing

$$
\widetilde{\dot{u}}_{n}=\frac{1}{k} \sum_{\ell=1}^{k} \dot{u}_{n, \ell} .
$$

Comments on version 2

- Now the convolution is only evaluated N times.
- The convergence order has been reduced.
- The boundary and domain values of u are strongly coupled.
- In [Abboud et al. ,2011] the authors consider a predictor-corrector strategy to solve a similar system.
- With all the versions the memory connected to the boundary is infinite.

Outline

(1) A model problem

(2) Coupling of different time-discretizations
(3) Oblivious quadrature for long time computation

Weights and inverse Laplace transform

- Another representation of ω_{j} s is useful for $n>1$

$$
\omega_{n}=\frac{\Delta t}{2 \pi \mathrm{i}} \int_{\sigma+\mathrm{i} \mathbb{R}} \sqrt{1+\alpha / s} e_{n}(s \Delta t) \mathrm{d} s
$$

where for Backward Euler

$$
e_{n}(z)=\frac{1}{(1-z)^{n+1}}, \quad \text { Note: } \frac{1}{1-z}=e^{z}+O\left(z^{2}\right)
$$

- Similar to inverse Laplace computations use

$$
\omega_{n}=\frac{\Delta t}{2 \pi \mathrm{i}} \int_{\Gamma} \sqrt{1+\alpha / s} e_{n}(s \Delta t) \mathrm{d} s
$$

with Γ a hyperbola or Talbot contour and discretize by a truncated trapezoid rule.

- To obtain uniform quadrature errors us different contours Γ_{i} for

$$
t_{n} \in\left[B^{n-1} \Delta t, 2 B^{n} \Delta t\right)
$$

Oblivious quadrature [Schädle, López Fernández, Lubich 2005]

 Split the discrete convolution as$$
v_{n+1}=\sum_{j=0}^{n} \omega_{n-j} u_{j}=v_{n+1}^{(0)}+\cdots+v_{n+1}^{L},
$$

with

$$
v_{n+1}^{(0)}=\omega_{0} u_{n} \text { and } v_{n+1}^{(i)}=\sum_{j=b_{i}}^{b_{i-1}-1} \omega_{n-j} u_{j},
$$

where $b_{0}=N, b_{L}=0$, and for $i \in\left[b_{i}, b_{i-1}-1\right]$ we have $n-j \in\left[B^{i-1}, 2 B^{i}-2\right]$.

Oblivious quadrature [Schädle, López Fernández, Lubich 2005]

Split the discrete convolution as

$$
v_{n+1}=\sum_{j=0}^{n} \omega_{n-j} u_{j}=v_{n+1}^{(0)}+\cdots+v_{n+1}^{L},
$$

with

$$
v_{n+1}^{(0)}=\omega_{0} u_{n} \text { and } v_{n+1}^{(i)}=\sum_{j=b_{i}}^{b_{i-1}-1} \omega_{n-j} u_{j},
$$

where $b_{0}=N, b_{L}=0$, and for $i \in\left[b_{i}, b_{i-1}-1\right]$ we have $n-j \in\left[B^{i-1}, 2 B^{i}-2\right]$.

$$
v_{n+1}^{(i)}=\sum_{j=b_{i}}^{b_{i-1}-1} \omega_{n-j} u_{j}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{i}} e_{n-\left(b_{i-1}-1\right)}(s h) \sqrt{1+\alpha / s y^{(i)}}(h s) d s
$$

with

$$
y^{(i)}(h s)=h \sum_{j=b_{i}}^{b_{i-1}-1} e_{\left(b_{i-1}-1\right)-j}(h s) u_{j} .
$$

Oblivious quadrature [Schädle, López Fernández, Lubich 2005]

Some comments regarding the algorithm:

- $y^{(i)}(h s)$ is the Backward-Euler approximation at $t=b_{i-1} h$ to

$$
u^{\prime}=s y+g(t), \quad y\left(b_{i} h\right)=0
$$

- This ODE needs to be solved for L contours Γ_{i} and the corresponding $2 K+1$ quadrature points $s_{k}^{(i)}=\varphi_{i}\left(x_{k}\right)$.
- There are only $(2 K+1) L=O\left(\log N \log \frac{1}{\epsilon}\right)$ evaluations of $\sqrt{1+\alpha / s}$ $((K+1) L$ when using symmetry).
- To compute N steps after $t_{n}>r$, required number of multiplications is $O(N \log N)$ with $O(\log N)$ memory stored.

Relation to time-domain boundary integral equations
Laplace domain fundamental solutions $K(r, s)=(\mathscr{L} k)(r, s)$

$$
\text { 2D: } K(r, s)=\frac{1}{2 \pi} K_{0}(r s), \quad \text { damped 3D: } K(r, s)=\frac{e^{-\sqrt{s^{2}+\alpha s} r}}{4 \pi r}
$$

- Note $K(s, r) e^{s r}$ bounded for $\operatorname{Re} s>0$ - causality. But more is true.

Relation to time-domain boundary integral equations

Laplace domain fundamental solutions $K(r, s)=(\mathscr{L} k)(r, s)$

$$
\text { 2D: } K(r, s)=\frac{1}{2 \pi} K_{0}(r s), \quad \text { damped 3D: } K(r, s)=\frac{e^{-\sqrt{s^{2}+\alpha s} r}}{4 \pi r} .
$$

- Note $K(s, r) e^{s r}$ bounded for $\operatorname{Re} s>0$ - causality. But more is true.

Late-time behaviour of fundamental solution [LB,Gruhne 2011]

Dissipative and 2D wave equations have infinite memory but the kernel has a parabolic behaviour for $t>r$:

$$
\left|K(r, s) e^{r s}\right| \leq C|s|^{\mu}, \quad s \in \mathbb{C} \backslash(-\infty, 0]
$$

$\mu=-1 / 2$ for $K_{0}(\cdot)$ and $\mu=0$ for 3D dissipative wave equation.
For how to combine this observation with oblivious quadrature ideas see work in progress with López-Fernández and Schädle.

Outline

(1) A model problem
(2) Coupling of different time-discretizations
(3) Oblivious quadrature for long time computation
(4) Conclusions

Conclusions

- Coupling of explicit/implicit schemes based on energy balance.
- Relevant also to the coupling of FEM/BEM in the time domain as the time-domain boundary integral equations are discretizaed by implicit mehods.
- Oblivious quadrature reduces memory requirements and is also applicable to wave propagation problems and time-domain boundary integral equations.

