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Although Kirby - Siebenmann showed that, in dimensions ≥ 5,
∃ mflds which do not admit a PL structures, the possibility
remained that all mflds could be triangulated. In dim 4,
Freedman’s E8 mfld (and others) are not PL; moreover, they
cannot be triangulated. In 1991 Januszkiewicz and I applied
Gromov’s hyperbolization technique to the E8-mfld to show the
existence of nontriangulable aspherical 4-mflds. In dims ≥ 5
the existence of nontriangulable mflds depended on the
nonexistence of homology 3-spheres with certain properties. In
2013 this question about homology spheres was resolved by
Manolescu. So, ∃ nontriangulable Mn for n ≥ 5. We use two
versions of hyperbolization to show that, for n ≥ 6, these can be
chosen aspherical.
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Why aspherical?

At one point the only examples of closed aspherical mflds came
from differential geometry or Lie groups; hence, were smooth
mflds. Gromov’s hyperbolization showed that you could convert
simplicial complexes (hence, triangulated mflds) into aspherical
ones. But to get non PL mflds you need a trick.
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Polyhedral homology mflds

Definitions
A simplicial cx Ln is a polyhedral homology n-mfld (a PHM for
short) if for each k -simplex σ, Lk(σ, L) has the same homology
as Sn−k−1. Ln is a PL mfld if ∀σ ∈ L, Lk(σ, L) is PL
homeomorphic to Sn−dimσ−1.

If the 4-dim PL Poincaré Conjecture is true, then we can drop
“PL” and shorten “PL homeomorphic” to “homeomorphic” in the
above.

Meaning of the Double Suspension Theorem
In dims ≥ 5 top mflds can have triangulations (as PHMs) which
are not PL.
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Rokhlin’s Theorem and the µ-invariant
Freedman’s E8-manifold
Hyperbolization

Fact
If B is an even, nondegenerate, symmetric bilinear form over Z,
then its signature, σ(B), is divisible by 8.

Theorem (Rokhlin 1952)

If M4 is a closed PL 4-mfld, with w1 = 0 and w2 = 0, then

σ(M4) ≡ 0 mod 16.
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Fact

If H3 is a homology 3-sphere, then H3 = ∂W 4, where W 4 is a
PL mfld with even intersection form.

The µ-invariant
Define

µ(H3) =
σ(W 4)

8
∈ Z/2.

This defines a homomorphism µ : ΘH
3 → Z/2, where ΘH

3 is the
group of homology cobordism classes of homology 3-spheres.
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Q(E8) := the E8 plumbing.

It is a smooth 4-manifold with bdry.
∂Q(E8) = H3, Poincaré’s homology 3-sphere. σ(Q(E8) = 8. Let
X 4 := Q(E8) ∪ c(H3). It is a PHM of signature 8.

Theorem (Freedman 1982)

H3 = ∂C4, where C4 is a top contractible mfld. Put
M4 = Q(E8) ∪ C4, the “E8-manifold”.

By Rokhlin’s Thm, M4 does not have a PL structure.

Fact
Any triangulation of a 4-mfld is automatically PL. (Pf: By the
Poincaré Conj, the link of any vertex is PL homeomorphic
toS3.) So, Freedman’s M4 is not triangulable.
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Hyperbolization (Gromov)
A hyperbolization procedure is a functor h from
{simplicial complexes} to {locally CAT(0) spaces} together
with a map f : h(K )→ K with the following properties:

h preseves local structure: ∀σ ∈ K , Lk(h(σ)) ∼= Lk(σ)
(Lk means “link”.) In particular, if K is a mfld (or a PHM),
then so is h(K ).
f ∗ is a split injection on cohomology.
When K is a mfld, f pulls back stable tangent bundle to
stable tangent bundle. So, f ∗ pulls back characteristic
classes of K to those of h(K ).
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(D - Januszkiewicz)

Apply h to the E8 homology mfld X 4.
Resolve it to N4 = (h(X 4)− nbhd of cone pt) ∪ C4.
Then N4 is aspherical and not triangulable.

Theorem (DJ 1991)
∃ closed aspherical 4-mflds that cannot be triangulated. For
n ≥ 5, ∃ closed aspherical n-mflds which are not homotopy
equivalent to PL mflds.

Proof of 2nd sentence.

N4 × T k is not PL.
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Remark

By Double Suspension Thm, for k > 0, N4 × T k ∼= X 4 × T k

(where X 4 is the PHM). So, N4 × T k can be triangulated.
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Theorem (Kirby - Siebenmann 1969)
A top n-mfld, n ≥ 5, admits a PL structure ⇐⇒ an obstruction
∆ ∈ H4(Mn;Z/2) vanishes.

In other words, TOP/PL is the Eilenberg-MacLane space
K (Z/2,3).
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Polyhedral Mfld Characterization Theorem

Theorem (Edwards 1978 + Perelman)
A PHM (of dim > 2) is a top mfld ⇐⇒ the link of each vertex is
simply connected.

Example
The double suspension of a homology sphere, with π1 6= 1.

Such triangulations are not PL.

In the early seventies such considerations led Siebenmann to
ask if all mflds could actually be triangulated (before the Double
Suspension Thm or Freedman’s E8 4-mfld were known).
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I will describe highlights of a theory worked out in the 1970 s by
several people, Siebenmann, Matumoto, most notably Galewski
- Stern (with important contributions by others, eg, Cohen,
Sullivan, Martin, Maunder).

Suppose X is a PHM. Let λ ∈ H4(X ; ΘH
3 ) be the cohomology

class which associates to the “dual cell” of a codim 4 simplex σ,
the class of Lk(σ) in ΘH

3 (where ΘH
3 is the group of homology

cobordism classes of homology 3-spheres).
λ is the obstruction to finding an “acyclic resolution” of X by a
PL manifold.
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Consider the coefficient sequence:

0→ Kerµ−→ΘH
3

µ−→Z/2→ 0.

Fact 1

When X is a top mfld, µ∗ takes λ ∈ H4(X ; ΘH
3 ) to the

Kirby-Siebenmann obstruction ∆ ∈ H4(X ;Z/2).

Fact 2
If M is a top mfld, then the obstruction to triangulation is
β(∆) ∈ H5(M; Kerµ), where β is the Bockstein associated to
the above coefficient sequence.
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Theorem (Galewski-Stern ∼ 1980)

In dim n > 4, ∃ nontriangulable Mn iff the sequence
0→ Kerµ→ ΘH

3 → Z/2→ 0 does not split, ie, iff 6 ∃ a homology
3-sphere H3 with µ(H3) 6= 0 and with H3#H3 = 0 in ΘH

3 .

Theorem (Manolescu 2013)
The sequence does not split.
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Galewski-Stern mflds

It suffices to consider the Bockstein associated to

0→ Z/2 ×2−→ Z/4−→Z/2→ 0.

This Bockstein is Sq1 (the first Steenrod square).

∃ a (nonorientable) PHM P5 with bdry st
int P5 is a top mfld (this uses Edwards’ Thm).
∆(P5) = µ∗(λ(P5)) 6= 0 in H4(P5;Z/2) and
∆(∂P5) = 0.
Sq1(∆) 6= 0 in H5(P5, ∂P5;Z/2).
∃ a PHM bordism U from ∂P5 to a PL mfld V 4, and V 4 is
bdry of PL mfld W 5.
M5 := P5 ∪ U ∪W 5 is not triangulable.

Mike Davis (joint with Jim Fowler and Jean Lafont) Aspherical manifolds that cannot be triangulated



Introduction
Dimension 4

Dimensions > 4

Kirby - Siebenmann
Galewski - Stern + Manolescu
Relative hyperbolization

Relative hyperbolization (D - Januszkiewicz - Weinberger, 2001)

Let (M, ∂M) be a triangulated mfld with bdry. Put

H(M, ∂M) := h(M ∪ c(∂M))− (nbhd of cone point)

Key properties

H(M, ∂M) is mfld with bdry; its bdry is ∂M.
π1(∂M)→ π1(H(M, ∂M)) is injective.
H(M, ∂M) is aspherical iff ∂M is aspherical.

Corollary (DJW)
If an aspherical mfld bounds a triangulable mfld, then it bounds
an aspherical mfld.
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GS mflds in dimensions ≥ 6

Put P6 := P5 × S1. Since ∆(∂P6) = 0, ∂P6 admits a PL
structure.

Put M6 = P6 ∪ U ∪W , where U is the mapping cylinder of a
(necessarily non-PL) homeomorphism from ∂P6 to a PL mfld
V 5 and W is a PL 6-mfld bounded by V 5.
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Theorem (D-Fowler-Lafont)

In each dim n ≥ 6, ∃ an aspherical mfld Nn that cannot be
triangulated.
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Proof.

Start with h(P6). Then h(∂P6) is homeomorphic to a PL mfld
V 5. Let U be the mapping cylinder of a homeomorphism
V 5 → h(∂P6). V 5 is bdry of a PL 6-mfld W . Put

N6 := h(P6) ∪ U ∪H(W ,V ).

We check immediately that
N6 is aspherical.
∆(N6) 6= 0 and Sq1(∆(N6)) 6= 0.

So, N6 cannot be triangulated.
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Thank you.
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