Introduction Dimension 4 Dimensions > 4

Aspherical manifolds that cannot be triangulated

Mike Davis (joint with Jim Fowler and Jean Lafont)

Durham August 16, 2013

Mike Davis (joint with Jim Fowler and Jean Lafont) Aspherical manifolds that cannot be triangulated

Introduction Dimension 4 Dimensions > 4

Although Kirby - Siebenmann showed that, in dimensions ≥ 5 , \exists mflds which do not admit a PL structures, the possibility remained that all mflds could be triangulated. In dim 4, Freedman's E_8 mfld (and others) are not PL; moreover, they cannot be triangulated. In 1991 Januszkiewicz and I applied Gromov's hyperbolization technique to the E_8 -mfld to show the existence of nontriangulable aspherical 4-mflds. In dims \geq 5 the existence of nontriangulable mflds depended on the nonexistence of homology 3-spheres with certain properties. In 2013 this question about homology spheres was resolved by Manolescu. So, \exists nontriangulable M^n for n > 5. We use two versions of hyperbolization to show that, for $n \ge 6$, these can be chosen aspherical.

Why aspherical?

At one point the only examples of closed aspherical mflds came from differential geometry or Lie groups; hence, were smooth mflds. Gromov's hyperbolization showed that you could convert simplicial complexes (hence, triangulated mflds) into aspherical ones. But to get non PL mflds you need a trick.

2 Dimension 4

- Rokhlin's Theorem and the μ-invariant
- Freedman's E₈-manifold
- Hyperbolization

3 Dimensions > 4

- Kirby Siebenmann
- Galewski Stern + Manolescu
- Relative hyperbolization

Introduction Dimension 4 Dimensions > 4

Polyhedral homology mflds

Definitions

A simplicial cx L^n is a *polyhedral homology n-mfld* (a PHM for short) if for each *k*-simplex σ , Lk(σ , *L*) has the same homology as S^{n-k-1} . L^n is a *PL mfld* if $\forall \sigma \in L$, Lk(σ , *L*) is PL homeomorphic to $S^{n-\dim \sigma-1}$.

If the 4-dim PL Poincaré Conjecture is true, then we can drop "PL" and shorten "PL homeomorphic" to "homeomorphic" in the above.

Meaning of the Double Suspension Theorem

In dims \geq 5 top mflds can have triangulations (as PHMs) which are **not** PL.

Mike Davis (joint with Jim Fowler and Jean Lafont) Aspherical manifolds that cannot be triangulated

 Introduction
 Rokhlin's Theorem and the μ-invariant

 Dimension 4
 Freedman's E₈-manifold

 Dimensions > 4
 Hyperbolization

Fact

If *B* is an even, nondegenerate, symmetric bilinear form over \mathbb{Z} , then its signature, $\sigma(B)$, is divisible by 8.

Theorem (Rokhlin 1952)

If M^4 is a closed PL 4-mfld, with $w_1 = 0$ and $w_2 = 0$, then

$$\sigma(M^4) \equiv 0 \mod 16.$$

Introduction	Rokhlin's Theorem and the μ -invariant
Dimension 4	Freedman's <i>E</i> ₈ -manifold
Dimensions > 4	Hyperbolization

Fact

If H^3 is a homology 3-sphere, then $H^3 = \partial W^4$, where W^4 is a PL mfld with even intersection form.

The μ -invariant

Define

$$\mu(H^3) = \frac{\sigma(W^4)}{8} \in \mathbb{Z}/2.$$

This defines a homomorphism $\mu : \Theta_3^H \to \mathbb{Z}/2$, where Θ_3^H is the group of homology cobordism classes of homology 3-spheres.

 Introduction
 Rokhlin's Theorem and the μ-invariant

 Dimension 4
 Freedman's E₈-manifold

 Dimensions > 4
 Hyperbolization

 $Q(E_8) :=$ the E_8 plumbing.

It is a smooth 4-manifold with bdry. $\partial Q(E_8) = H^3$, Poincaré's homology 3-sphere. $\sigma(Q(E_8) = 8$. Let $X^4 := Q(E_8) \cup c(H^3)$. It is a PHM of signature 8.

Theorem (Freedman 1982)

 $H^3 = \partial C^4$, where C^4 is a top contractible mfld. Put $M^4 = Q(E_8) \cup C^4$, the "E₈-manifold".

By Rokhlin's Thm, M^4 does not have a PL structure.

Fact

Any triangulation of a 4-mfld is automatically PL. (Pf: By the Poincaré Conj, the link of any vertex is PL homeomorphic to S^3 .) So, Freedman's M^4 is not triangulable.

Mike Davis (joint with Jim Fowler and Jean Lafont)

Aspherical manifolds that cannot be triangulated

Hyperbolization (Gromov)

A hyperbolization procedure is a functor \mathfrak{h} from {simplicial complexes} to {locally CAT(0) spaces} together with a map $f : \mathfrak{h}(K) \to K$ with the following properties:

- h preseves local structure: ∀σ ∈ K, Lk(h(σ)) ≅ Lk(σ) (Lk means "link".) In particular, if K is a mfld (or a PHM), then so is h(K).
- *f*^{*} is a split injection on cohomology.
- When K is a mfld, f pulls back stable tangent bundle to stable tangent bundle. So, f* pulls back characteristic classes of K to those of h(K).

Introduction	Rokhlin's Theorem and the μ -invariant
Dimension 4	Freedman's <i>E</i> ₈ -manifold
Dimensions > 4	Hyperbolization

(D - Januszkiewicz)

- Apply \mathfrak{h} to the E_8 homology mfld X^4 .
- Resolve it to $N^4 = (\mathfrak{h}(X^4) \mathfrak{n}bhd \text{ of cone pt}) \cup C^4$.
- Then N^4 is aspherical and not triangulable.

Theorem (DJ 1991)

 \exists closed aspherical 4-mflds that cannot be triangulated. For $n \ge 5$, \exists closed aspherical n-mflds which are not homotopy equivalent to PL mflds.

Proof of 2nd sentence.

 $N^4 \times T^k$ is not PL.

Introduction	Rokhlin's Theorem and the μ -invariant
Dimension 4	Freedman's <i>E</i> ₈ -manifold
Dimensions > 4	Hyperbolization

Remark

By Double Suspension Thm, for k > 0, $N^4 \times T^k \cong X^4 \times T^k$ (where X^4 is the PHM). So, $N^4 \times T^k$ can be triangulated.

 Introduction
 Kirby - Siebenmann

 Dimension 4
 Galewski - Stern + Manolescu

 Dimensions > 4
 Relative hyperbolization

Theorem (Kirby - Siebenmann 1969)

A top n-mfld, $n \ge 5$, admits a PL structure \iff an obstruction $\Delta \in H^4(M^n; \mathbb{Z}/2)$ vanishes.

In other words, TOP/PL is the Eilenberg-MacLane space $K(\mathbb{Z}/2,3)$.

Introduction Kirby - Siebenmann Dimension 4 Galewski - Stern + Manolescu Dimensions > 4 Relative hyperbolization

Polyhedral Mfld Characterization Theorem

Theorem (Edwards 1978 + Perelman)

A PHM (of dim > 2) is a top mfld \iff the link of each vertex is simply connected.

Example

The double suspension of a homology sphere, with $\pi_1 \neq 1$.

Such triangulations are not PL.

In the early seventies such considerations led Siebenmann to ask if all mflds could actually be triangulated (before the Double Suspension Thm or Freedman's E_8 4-mfld were known).

 Introduction
 Kirby - Siebenmann

 Dimension 4
 Galewski - Stern + Manolescu

 Dimensions > 4
 Relative hyperbolization

I will describe highlights of a theory worked out in the 1970 s by several people, Siebenmann, Matumoto, most notably Galewski - Stern (with important contributions by others, eg, Cohen, Sullivan, Martin, Maunder).

Suppose *X* is a PHM. Let $\lambda \in H^4(X; \Theta_3^H)$ be the cohomology class which associates to the "dual cell" of a codim 4 simplex σ , the class of Lk(σ) in Θ_3^H (where Θ_3^H is the group of homology cobordism classes of homology 3-spheres). λ is the obstruction to finding an "acyclic resolution" of *X* by a

PL manifold.

 Introduction
 Kirby - Siebenmann

 Dimension 4
 Galewski - Stern + Manolescu

 Dimensions > 4
 Relative hyperbolization

Consider the coefficient sequence:

$$0 \to \operatorname{Ker} \mu \longrightarrow \Theta_3^H \overset{\mu}{\longrightarrow} \mathbb{Z}/2 \to 0.$$

Fact 1

When X is a top mfld, μ_* takes $\lambda \in H^4(X; \Theta_3^H)$ to the Kirby-Siebenmann obstruction $\Delta \in H^4(X; \mathbb{Z}/2)$.

Fact 2

If *M* is a top mfld, then the obstruction to triangulation is $\beta(\Delta) \in H^5(M; \text{Ker } \mu)$, where β is the Bockstein associated to the above coefficient sequence.

Introduction	Kirby - Siebenmann
Dimension 4	Galewski - Stern + Manolescu
Dimensions > 4	Relative hyperbolization

Theorem (Galewski-Stern \sim 1980)

In dim n > 4, \exists nontriangulable M^n iff the sequence $0 \rightarrow \text{Ker } \mu \rightarrow \Theta_3^H \rightarrow \mathbb{Z}/2 \rightarrow 0$ does not split, ie, iff \nexists a homology 3-sphere H^3 with $\mu(H^3) \neq 0$ and with $H^3 \# H^3 = 0$ in Θ_3^H .

Theorem (Manolescu 2013)

The sequence does not split.

Introduction Dimension 4 Dimensions > 4 Kirby - Siebenmann Galewski - Stern + Manolescu Relative hyperbolization

Galewski-Stern mflds

It suffices to consider the Bockstein associated to

$$0
ightarrow \mathbb{Z}/2 \stackrel{ imes 2}{\longrightarrow} \mathbb{Z}/4 \longrightarrow \mathbb{Z}/2
ightarrow 0.$$

This Bockstein is Sq^1 (the first Steenrod square).

 \exists a (nonorientable) PHM P^5 with bdry st

- int *P*⁵ is a top mfld (this uses Edwards' Thm).
- $\Delta(P^5) = \mu_*(\lambda(P^5)) \neq 0$ in $H^4(P^5; \mathbb{Z}/2)$ and $\Delta(\partial P^5) = 0$.
- $Sq^{1}(\Delta) \neq 0$ in $H^{5}(P^{5}, \partial P^{5}; \mathbb{Z}/2)$.
- ∃ a PHM bordism U from ∂P⁵ to a PL mfld V⁴, and V⁴ is bdry of PL mfld W⁵.
- $M^5 := P^5 \cup U \cup W^5$ is not triangulable.

Mike Davis (joint with Jim Fowler and Jean Lafont)

Aspherical manifolds that cannot be triangulated

 Introduction
 Kirby - Siebenmann

 Dimension 4
 Galewski - Stern + Manolescu

 Dimensions > 4
 Relative hyperbolization

Relative hyperbolization (D - Januszkiewicz - Weinberger, 2001)

Let $(M, \partial M)$ be a triangulated mfld with bdry. Put

 $\mathcal{H}(M, \partial M) := \mathfrak{h}(M \cup c(\partial M)) - (\text{nbhd of cone point})$

Key properties

- $\mathcal{H}(M, \partial M)$ is mfld with bdry; its bdry is ∂M .
- $\pi_1(\partial M) \to \pi_1(\mathcal{H}(M, \partial M))$ is injective.
- $\mathcal{H}(M, \partial M)$ is aspherical iff ∂M is aspherical.

Corollary (DJW)

If an aspherical mfld bounds a triangulable mfld, then it bounds an aspherical mfld. Introduction Dimension 4 C

Kirby - Siebenmann Galewski - Stern + Manolescu Relative hyperbolization

GS mflds in dimensions \geq 6

Put $P^6 := P^5 \times S^1$. Since $\Delta(\partial P^6) = 0$, ∂P^6 admits a PL structure.

Put $M^6 = P^6 \cup U \cup W$, where U is the mapping cylinder of a (necessarily non-PL) homeomorphism from ∂P^6 to a PL mfld V^5 and W is a PL 6-mfld bounded by V^5 .

Introduction	Kirby - Siebenmann
Dimension 4	Galewski - Stern + Manolescu
Dimensions > 4	Relative hyperbolization

Theorem (D-Fowler-Lafont)

In each dim $n \ge 6$, \exists an aspherical mfld N^n that cannot be triangulated.

Introduction	Kirby - Siebenmann
Dimension 4	Galewski - Stern + Manolescu
Dimensions > 4	Relative hyperbolization

Proof.

Start with $\mathfrak{h}(P^6)$. Then $\mathfrak{h}(\partial P^6)$ is homeomorphic to a PL mfld V^5 . Let *U* be the mapping cylinder of a homeomorphism $V^5 \to \mathfrak{h}(\partial P^6)$. V^5 is bdry of a PL 6-mfld *W*. Put

$$N^6 := \mathfrak{h}(P^6) \cup U \cup \mathcal{H}(W, V).$$

We check immediately that

- N⁶ is aspherical.
- $\Delta(N^6) \neq 0$ and $Sq^1(\Delta(N^6)) \neq 0$.

So, N^6 cannot be triangulated.

Introduction	Kirby - Siebenmann
Dimension 4	Galewski - Stern + Manolescu
Dimensions > 4	Relative hyperbolization

Thank you.