Bredon finiteness properties of groups acting on CAT(0)-spaces

Nansen Petrosyan

KU Leuven

Durham 2013

Goal: Discuss finiteness properties for $E_{\mathcal{FIN}}G$ and $E_{\mathcal{VC}}G$ when G acts isometrically and discretely on a CAT(0)-space.

- 1 Short introduction to classifying spaces;
- 2 Associated G-simplicial complex;
- 3 About proofs of Theorems A and B;
- 4 Linear groups over positive characteristic;
- 5 Mapping class group of closed oriented surfaces.
- joint work with Dieter Degrijse

All group considered will be discrete.

Let G be a group. A *family* of subgroups \mathcal{F} of G is a collection of subgroups of G that is closed under conjugation and taking subgroups.

Definition. A classifying space of G for the family \mathcal{F} , also called a model for $E_{\mathcal{F}}G$, is a G-CW-complex X characterized by the properties:

(i) all isotropy subgroups of X are in \mathcal{F} ;

(ii) for each $H \in \mathcal{F}$, the fixed point set X^H is contractible.

- A model for $E_{\mathcal{F}}G$ can be defined as a terminal object in the *G*-homotopy category of *G*-CW-complexes whose isotropy groups are in \mathcal{F} .
- A model for $E_{\mathcal{F}}G$ exists for any G and any \mathcal{F} .

Examples:

- 1 If $G \in \mathcal{F}$, then a point is a model for $E_{\mathcal{F}}G$.
- 2 If $\mathcal{F} = \{1\}$ the trivial family of subgroups of G, then $E_{\mathcal{F}}G = EG$.
- 3 Let G be a connected Lie group and K be a maximal compact subgroup. If $\Gamma < G$ is discrete, then G/K is a model for $E_{\mathcal{FIN}}\Gamma$.

- **Ex.** Let G be an n-dimensional crystallographic group.
 - Then G acts isometrically, properly discontinuously and cocompactly on \mathbb{E}^n .
 - All stabilizer subgroups are finite.
 - The fixed point set of every finite subgroup of G is contractible.
 - Hence, \mathbb{E}^n is a *finite* model for $E_{\mathcal{FIN}}G$.

Main Motivation. $E_{\mathcal{FIN}}G$ and $E_{\mathcal{VC}}G$ appear in the Isomorphism Conjectures.

Question. What can we say about $E_{\mathcal{FIN}}$ and $E_{\mathcal{VC}}$ from isometric actions of groups on CAT(0)-spaces?

Starting point

Theorem (Lück, 2009). Let G be a group that acts properly and isometrically on a complete proper CAT(0)-space X. Let d = 1 or $d \ge 3$ such that $top-dim(X) \le d$.

- (i) Then there exists a model for $E_{\mathcal{FIN}}G$ of dimension at most d.
- (ii) If in addition, G acts by semi-simple isometries, then there is a model for $E_{\mathcal{VC}}G$ of dimension at most d+1.
- Applies to crystallographic groups!

Question. What if the action on the CAT(0)-space is not proper?

- The key condition we will need is that the actions should be discrete.

Definition. We say that G acts *discretely* on a topological space X if the orbits Gx are discrete subsets of X for all $x \in X$.

- Cellular actions are discrete.
- An isometric group action on a metric space is proper if and only if it is discrete and all point stabilizers are finite.

Setting. G acts isometrically and discretely on a CAT(0)-space.

First step. Associate to the isometric action of a group on a metric space a certain simplicial action.

Proposition. Let X be a separable metric space of topological dimension at most n. Suppose G acts isometrically and discretely on X.

- (i) Then there exists a simplicial G-complex Y of dimension at most n for which the stabilizers are the point stabilizers of X, together with a G-map $f: X \to Y$.
- (ii) Moreover, if G act cocompactly, then Y/G is finite.

Sketch of proof.

For every $x \in X$, there exists an $\varepsilon > 0$ such that for all $g \in G$

$$g \cdot B(x,\varepsilon) \cap B(x,\varepsilon) \neq \emptyset \Leftrightarrow g \in G_x.$$

A good open cover \mathcal{V} is a G-invariant open cover of X such that every $V \in \mathcal{V}$ satisfies:

there exists $x_V \in X$ such that for each $g \in G$

$$g \cdot V \cap V \neq \emptyset \Leftrightarrow g \cdot V = V \Leftrightarrow g \in G_{x_V}.$$

The *nerve* $\mathcal{N}(\mathcal{V})$ of \mathcal{V} is the simplicial complex whose vertices are the elements of \mathcal{V} and the pairwise distinct vertices V_0, \ldots, V_d span a *d*-simplex if and only if $\bigcap_{i=0}^d V_i \neq \emptyset$.

- Since \mathcal{V} is G-invariant, the action of G on X induces a simplicial action of G on $\mathcal{N}(\mathcal{V})$.
- Given $g \in G$, then $g \cdot (V_0, \ldots, V_d) = (V_0, \ldots, V_d)$ if and only if (V_0, \ldots, V_d) is fixed pointwise by g.

Therefore, $\mathcal{N}(\mathcal{V})$ is a *G*-simplicial complex for which the stabilizers are point stabilizers of *X*.

- (i) If $\dim(\mathcal{V}) \leq n$ then $\mathcal{N}(\mathcal{V})$ is of dimension at most n.
- (ii) If the cover \mathcal{V} has only finitely many *G*-orbits, then $\mathcal{N}(\mathcal{V})/G$ is finite.

In the rest of the proof we find a G-invariant good open cover of X that allows one to construct a G-map $f: X \to \mathcal{N}(\mathcal{V})$ and satisfying (i) and (ii). **Theorem A.** Let G be a group acting isometrically and discretely on a separable CAT(0)-space X of topological dimension n. Let \mathcal{F} be a family such that $X^H \neq \emptyset$ for all $H \in \mathcal{F}$. Denote $d = \sup\{ \operatorname{gd}_{\mathcal{F} \cap G_x}(G_x) \mid x \in X \}$. Then

 $\operatorname{gd}_{\mathcal{F}}(G) \le \max\{3, n+d\}.$

Sketch of proof.

Let $J_{\mathcal{F}}G$ be the terminal object in the *G*-homotopy category of \mathcal{F} -numerable *G*-spaces.

There exists a G-map $\varphi : E_{\mathcal{F}}G \to X \times J_{\mathcal{F}}G$ because $X \times J_{\mathcal{F}}G$ is a model for $J_{\mathcal{F}}G$ and $E_{\mathcal{F}}G$ is \mathcal{F} -numerable.

Theorem A. Let G be a group acting isometrically and discretely on a separable CAT(0)-space X of topological dimension n. Let \mathcal{F} be a family such that $X^H \neq \emptyset$ for all $H \in \mathcal{F}$. Denote $d = \sup\{ \operatorname{gd}_{\mathcal{F} \cap G_x}(G_x) \mid x \in X \}$. Then

 $\operatorname{gd}_{\mathcal{F}}(G) \le \max\{3, n+d\}.$

Z is a G-CW-complex of dimension n + d and G-homotopy equivalent to $Y \times E_{\mathcal{F}}G$.

Theorem A. Let G be a group acting isometrically and discretely on a separable CAT(0)-space X of topological dimension n. Let \mathcal{F} be a family such that $X^H \neq \emptyset$ for all $H \in \mathcal{F}$. Denote $d = \sup\{ \operatorname{gd}_{\mathcal{F} \cap G_x}(G_x) \mid x \in X \}$. Then

 $\operatorname{gd}_{\mathcal{F}}(G) \le \max\{3, n+d\}.$

Sketch of proof.

Since $E_{\mathcal{F}}G$ is G-dominated by an (n + d)-dimensional G-CW-complex Z, it is G-homotopy equivalent to one of dimension max $\{3, n + d\}$.

Question. What can we say about $E_{\mathcal{VC}}G$ at this point?

Answer. Not much, because when G acts isometrically on a CAT(0)-space an infinite cyclic subgroup C of G, we may have $X^C = \emptyset$.

General Strategy: Adapt a finite dimensional model for $E_{\mathcal{FIN}}G$ into a finite dimensional model for $E_{\mathcal{VC}}G$.

Construction of Lück and Weiermann

Let H be an infinite v-cyclic subgroup of G.

 $N_G[H] := \{ x \in G \mid |H \cap H^x| = \infty \} = \operatorname{Comm}_G(H).$

Let X be the cellular G-pushout:

If each $f_{[H]}$ is a cellular $N_G[H]$ -map and *i* is an inclusion of *G*-CW-complexes, then *X* is a model for $E_{\mathcal{VC}}G$.

Theorem B. Let G be a countable group acting discretely by semi-simple isometries on a complete separable CAT(0)-space X of topological dimension n. Then

$$\operatorname{cd}_{\mathcal{VC}}(G) \le n + \max\{\operatorname{st}_{vc}, \operatorname{vst}_{fin} + 1\},\$$

where

-
$$\operatorname{st}_{vc} = \sup\{\operatorname{cd}_{\mathcal{VC}}(G_x) \mid x \in X\}$$

- $\operatorname{vst}_{fin} = \sup\{\operatorname{cd}_{\mathcal{FIN}}(E) \mid E \in \mathcal{E}(G, X)\}$

and $\mathcal{E}(G, X)$ is the collection of all groups E that fit

$$1 \to N \to E \to F \to 1,$$

with $N \leq G_x$ for some $x \in X$ and F a subgroup of a finite dihedral group.

Theorem B. Let G be a countable group acting discretely by semi-simple isometries on a complete separable CAT(0)-space X of topological dimension n. Then

$$\operatorname{cd}_{\mathcal{VC}}(G) \le n + \max\{\operatorname{st}_{vc}, \operatorname{vst}_{fin} + 1\},\$$

Ex. Let G be a generalized Baumslag-Solitar group and X be the Bass-Serre tree.

The group G acts on X with infinite cyclic stabilizers.

Then $\operatorname{st}_{vc} = 0$ and $\operatorname{vst}_{fin} = 1$ and we get $\operatorname{gd}_{\mathcal{VC}}(G) \leq 3$.

Theorem B. Let G be a countable group acting discretely by semi-simple isometries on a complete separable CAT(0)-space X of topological dimension n. Then

$$\operatorname{cd}_{\mathcal{VC}}(G) \leq n + \max\{\operatorname{st}_{vc}, \operatorname{vst}_{fin} + 1\},\$$

Idea of Proof.

- Apply Theorem A to get a model for $E_{\mathcal{FIN}}G$.
- Use Lück-Weiermann's construction to reduce the problem to bounding $\operatorname{cd}_{\mathcal{F}[H]}(\operatorname{N}_G[H])$ for each class [H] where H is an infinite cyclic subgroup G.
- Consider 2 cases: a generator h of H is either an elliptic or a hyperbolic element.

H acts on an axis $c(\mathbb{R})$ of h by $h \cdot c(t) = c(t + |h|)$ where |h| is the translation length.

Let $g \in N_G[H]$. Then $\exists l, m \neq 0$ such that $g^{-1}h^l g = h^m$. This implies $|h^l| = |h^m|$. $\Rightarrow l = \pm m$.

Now, let K be a f.g. subgroup of $N_G[H]$ that contains H. $\exists m \neq 0$ so that $g^{-1}h^m g = h^{\pm m}$ for all $g \in K$.

Because $N_G[H] = N_G[\langle h^m \rangle]$, we may assume m = 1.

Hence, $H \triangleleft K$ where K is a f.g. subgroup of $N_G[H]$. $\Rightarrow \operatorname{cd}_{\mathcal{F}[H]\cap K}(K) \leq \operatorname{cd}_{\mathcal{FIN}}(K/H).$

- It is left to bound $\operatorname{cd}_{\mathcal{FIN}}(K/H)$.

Case 2: $H = \langle h \rangle$ and h is hyperbolic, i.e. has no fixed point.

Recall that $Min(h) = \{x \in X \mid d(h \cdot x, x) = |h|\}.$

Case 2: $H = \langle h \rangle$ and h is hyperbolic, i.e. has no fixed point.

Recall that $Min(h) = \{x \in X \mid d(h \cdot x, x) = |h|\}.$

It is a complete CAT(0)-space.

 $\forall q \in K, qhq^{-1} = h^{\pm 1} \Rightarrow q \cdot \operatorname{Min}(h) = \operatorname{Min}(qhq^{-1}) = \operatorname{Min}(h)$

Moreover, K maps an axis of h to an axis of h.

Case 2: $H = \langle h \rangle$ and h is hyperbolic, i.e. has no fixed point.

There is a complete separable CAT(0)-subspace Y of X so that Min(h) is isometric to $Y \times \mathbb{R}$ and K acts on $Y \times \mathbb{R}$ via discrete isometries in $Iso(Y) \times Iso(\mathbb{R})$.

Since H acts by neutrinoid translations on each axis, here it acts trivially on Y-factor and it acts cocompactly on \mathbb{R} -factor.

It follows that K/H acts isometrically and discretely on Y.

Th.A
$$\Rightarrow \operatorname{cd}_{\mathcal{FIN}}(K/H) \leq n - 1 + \operatorname{vst}_{fin}$$
.

Corollary 1. Let G be a finitely generated subgroup of $GL_n(F)$ where F is a field of positive characteristic. Then

 $\operatorname{gd}_{\mathcal{FIN}}(G) < \infty \quad \text{and} \quad \operatorname{gd}_{\mathcal{VC}}(G) < \infty.$

Proof. The strategy is to obtain an action of G on a finite product of buildings.

Cornick-Kropholler Construction

- Can reduce to $G = SL_n(S)$ where is S is a f.g. domain of characteristic p > 0.
- The ring S is a finitely generated domain and hence it is integral over some $\mathbb{F}_p[x_1, \ldots, x_s]$.

- There are finitely many discrete valuations of the fraction field E of S such that $S \cap \bigcap_{i=1}^{r} \mathcal{O}_{v_i} \subseteq L$, the algebraic closure of \mathbb{F}_p in E and L is finite.

 $SL_n(\hat{E}_i)$ acts chamber transitively on the associated Euclidean building X_i of dimension n-1.

Let C_i be a chamber of X_i . Since X_i is a continuous image of the separable space $SL_n(\hat{E}_i) \times C_i$ it is itself separable.

The restriction of this action to G has vertex stabilizers conjugate to a subgroup of $SL_n(\mathcal{O}_{v_i})$.

Then G acts diagonally on

$$X = X_1 \times \ldots \times X_r$$

such that each stabilizer G_x of a vertex x of X lies inside

$$\operatorname{SL}_n(S) \cap \bigcap_{i=1}^r a_i^{-1} \operatorname{SL}_n(\mathcal{O}_{v_i}) a_i, \text{ for } a_i \in \operatorname{SL}_n(E), i = 1, \dots, r.$$

and therefore is locally finite.

Th.A
$$\Rightarrow \operatorname{cd}_{\mathcal{FIN}}(G) \leq r(n-1) + 1.$$

Th.B $\Rightarrow \operatorname{cd}_{\mathcal{VC}}(G) \leq r(n-1) + \max\{\operatorname{st}_{vc}, \operatorname{vst}_{fin} + 1\},$
$$\leq r(n-1) + 2.$$

Corollary 2. Let $Mod(S_g)$ be the mapping class group of a closed, connected and orientable surface of genus $g \ge 2$. Then

$$\operatorname{gd}_{\mathcal{VC}}(\operatorname{Mod}(S_g)) \le 9g - 8.$$

Proof. Let $\mathcal{T}(S_g)$ be the Teichmüller space of S_g .

- With the natural topology $\mathcal{T}(S_g) \cong \mathbb{R}^{6g-6}$.

This is not enough as we need a CAT(0)-metric!

- Equipped with the Weil-Petersson metric, $\mathcal{T}(S_g)$ is a non-complete separable CAT(0)-space on which $Mod(S_g)$ acts by isometries.
- The completion of $\mathcal{T}(S_g)$ with respect to the Weil-Petersson metric is the *augmented* Teichmüller space $\overline{\mathcal{T}}(S_g)$.

 $\Rightarrow (\overline{\mathcal{T}}(S_g), d_{WP}) \text{ is a complete separable CAT}(0)\text{-space of dimension } 6g - 6 \text{ on which } \operatorname{Mod}(S_g) \text{ acts (cocompactly) by isometries.}$

- By a theorem of Bridson (2010), this action is semi-simple.
- Claim 1: The stabilizers are virtually abelian of rank at most 3g 3.
- Claim 2: The action is discrete.

Claim 1: The stabilizers are v-abelian of rank at most 3g-3.

We only need to check stabilizers of points in $\overline{\mathcal{T}}(S_g) \smallsetminus \mathcal{T}(S_g)$.

It is a union of strata S_{Γ} corresponding to sets Γ of free homotopy classes of disjoint essential simple closed curves on S_g .

Let $x \in S_{\Gamma}$ and let Δ_{Γ} be the group generated by the Dehn twists defined by the curves in Γ .

Claim 1: The stabilizers are v-abelian of rank at most 3g-3.

We only need to check stabilizers of points in $\overline{\mathcal{T}}(S_g) \smallsetminus \mathcal{T}(S_g)$.

It is a union of strata S_{Γ} corresponding to sets Γ of free homotopy classes of disjoint essential simple closed curves on S_g .

Let $x \in S_{\Gamma}$ and let Δ_{Γ} be the group generated by the Dehn twists defined by the curves in Γ .

Γ

1 0

By Hubbard-Koch (2011), there is a neighborhood $U \subseteq \overline{\mathcal{T}}(S_g)$ of x such that the set

 $1/\alpha$

Т

٢

$$\{g \in \operatorname{Mod}(S_g) \mid g \cdot U \cap U \neq \emptyset\}$$

 Δ_{Γ} is free abelian of rank at most $3g-3$ and fixes S_{Γ} pointwise.
s a finite union of cosets of Δ_{Γ} .

Now, applying Theorem B, we have

 $\operatorname{cd}_{\mathcal{VC}}(\operatorname{Mod}(S_g)) \le 6g - 6 + \max\{3g - 3 + 1, 3g - 3 + 1\},\$ $\le 9g - 8.$

- Recall that $Mod(S_g)$ acts cocomactly on $(\overline{\mathcal{T}}(S_g), d_{WP})$.

Then,

$$E_{\mathcal{ST}}\mathrm{Mod}(S_g) \to \overline{\mathcal{T}}(S_g) \xrightarrow{f} Y \to E_{\mathcal{ST}}\mathrm{Mod}(S_g)$$

Corollary 3. $E_{\mathcal{ST}} Mod(S_g)$ has a model of finite type.